

GAME MANUAL
Version: AL-ISS 1.1.0 - Italian

ECO-SPHERES

Evade, Capture, deOrbit space debris Spheres Program

TO: ZERO ROBOTICS HEADQUARTERS

Ver AL-ISS 1.0.0

 1

INCOMING SOS

The following transmission was received just moments ago:

SOS

 RED SPHERES_15569824

 SOS

 Thruster_09 …. UNRESPONSIVE

 Thruster_12 … UNRESPONSIVE

 Location_Data … UNKNOWN

 Radar … NULL

 Target_Location … LEO SATELLITE 92F003 RETRIEVAL

 Last_Target … GEO SATELLITE 35B117 RETRIEVAL

 SOS

 RED SPHERES_15569824

 SOS

The Red SPHERES Satellite is in trouble.

Increasing numbers of satellites are being deployed to Low Earth Orbit (LEO) to study

Earth’s atmosphere, climate, land, oceans, and weather. To protect the success of this

important research the SPHERES program is working with space agencies internationally

to identify and remove space debris from LEO. Recently the SPHERES program deployed ECO-

SPHERES as a part of its Evade, Capture, de-Orbit (ECO) initiative to remove debris. The

ECO-SPHERES design includes a hook for the SPHERES to use to tow any type of cargo.

By its very nature, capturing and removing junk puts expensive debris removal satellites

in harm’s way. Any clean-up method is prone to damage. As you heard in the transmission

above, one of our SPHERES Satellites has been damaged by debris and we need to retrieve

it. The mission ahead of us, however, is dangerous. We must deploy another ECO-SPHERES

to traverse the crowded LEO and, instead of moving debris, it needs to hook onto the

damaged red SPHERES Satellite and bring it back to safety.

Program your satellite to avoid debris while trying to locate the red SPHERES. Use expert

geometry to latch onto the damaged satellite, and bring it back to safety, taking into

account the momentum of your precious cargo as to not further damage it.

Good luck to all participating space engineers.

Alvar Saenz-Otero

SPHERES Lead

Ver AL-ISS 1.0.0

 2

Table of Contents

1 Game Overview

2 Game Rules/Phases of Game Play

2.1 Playing Field

2.1.1 Initial Position

2.1.2 SPHERES “Pointing Face” for ECO-SPHERES

2.2 Debris Field Navigation

2.2.1 Bounds of Debris Field

2.2.2 Size and Position of Space Debris

2.2.3 Collision with Space Debris

2.2.4 Cancel Debris Collision Damage tool (for test only)

2.3 Rendezvous

2.3.1 Motion of Target SPHERES

2.3.2 Criteria for Successful Rendezvous

2.4 Hooking

2.4.1 Position and Motion of Target SPHERES during Hooking

2.4.2.Hooking Criteria

2.4.3 Unhooking

2.5 Towing/Return of Target SPHERES to “Safe Zone”

2.6 Scoring

2.6.1 Time Dependent Scoring

2.6.2 Bonus Points

2.6.2.1 Rendezvous Pointing Bonus Points

2.6.2.2 Target Distance Bonus Points

2.6.3 Scoring Equation

2.7 End of game

2.8 SPHERES Satellites

Ver AL-ISS 1.0.0

 3

2.8.1 Fuel

2.8.2 Collision Avoidance

2.8.3 Code Size

2.8.4 Noise

3 Game API

4 The Leaderboard for ECO-SPHERES

4.1 Introduction

4.2 Daily Rankings

4.3 Elimination Rankings

4.4 Tips

5 Tournament Structure

5.1 Semifinal Simulation Competition

5.2 Final Competition

5.5.1 Overview and Objectives

6 Season Rules

6.1 Tournament Rules

6.2 Ethics Code

7 Appendix: Euler Angles Explanation

Why do you need Euler Angles for Eco SPHERES?

How to think about Euler Angles

Potential issues with Euler Angles (aka, why you may want to use Quaternions)

8 Revision History

Ver AL-ISS 1.0.0

 4

1 Game Overview

Each team will compete individually by programming one SPHERES ("player SPHERES") to

interact with a pre-programmed SPHERES ("target SPHERES"). The game consists of four

phases: Debris Field Navigation, Rendezvous, Hooking, and Towing/Return Target.

Debris Field Navigation

The player SPHERES must navigate through a field of debris, thruster damage will be

incurred for collisions with debris.

Rendezvous

The player SPHERES must approach the target SPHERES and meet the "rendezvous

conditions." Once "rendezvous conditions" are met, all Space Debris will cease to exist

and the target SPHERES will stop moving and actively hold position with its thrusters.

Hooking

The player SPHERES will then attempt to capture the target SPHERES with its hook.

Towing/Return Target

The player SPHERES must then get the target SPHERES back to the "safe zone".

Each team will compete to have the most points when the game time is up. Each game lasts 210

seconds for all phases of the competition.

Ver AL-ISS 1.0.0

 5

2 Game Rules/Phases of Game Play
In order to be victorious over other participating teams, each player SPHERES should carefully

navigate the debris field to rendezvous and hook the target SPHERES and return it to safety all

while managing fuel, time, and their location on the gameplay area.

Note: Satellite position relative to all game features is determined by the location of the

center of the satellite as stored in the state variables (ZR state or SPHERES state) unless

indicated otherwise.

2.1 Playing Field

The playing field is determined by the size of the area available for the SPHERES satellites to

move inside the International Space Station. The simulation creates an interaction zone of the

same size. If players leave the Interaction Zone, they are considered out of bounds.

The Interaction Zone for the game has the following dimensions:

Interaction Zone Dimensions

 3D

X [m] [-0.64 : +0.64]

Y [m] [-0.80 : +0.80]

Z [m] [-0.64 : +0.64]

A player will be penalized 1% of its fuel allocation for every second it remains out of these bounds.

Ver AL-ISS 1.0.0

 6

›

Playing Field Area and Interaction Zone Dimensions

The Playing Field Area and Interaction Zone Dimensions are shown in the Figure above. The

Debris Field is represented by the green, purple and orange circles. At the start of the ECO-

SPHERES game, the Player SPHERES (Blue SPHERES) is on one side of the Debris Field

and the Target SPHERES (Red Spheres) is on the other side of the Debris Field.

2.1.1 Initial Position

The Blue and Red SPHERES satellites are deployed to the same initial position every game as

follows:

Initial Positions

 3D

Player SPHERE (Blue)

X [m] 0.0

Y [m] 0.75

Z [m] 0.0

X x=
0.64m

x= -
0.64m

x=
0.64m

x= -
0.64m

y= 0m

x= 0m

Y

Ver AL-ISS 1.0.0

 7

Target SPHERE (Red)

X [m] 0.0

Y [m] -0.5

Z [m] -0.2

The satellite radius is 0.11m.

2.1.2 SPHERES “Pointing Face” for ECO-SPHERES

Since the hooks used in the ECO-SPHERES game mount on the +X face (docking face) of the

SPHERES both satellites are configured with the +X face as the pointing face for the ECO-

SPHERES game. This means that the setAttitudeTarget() function will determine the

pointing direction of the hook of the satellite on the +X face.

(This is as compared to Free Mode which assigns the -X face of the SPHERES as the pointing

face when using setAttitudeTarget())

2.2 Debris Field Navigation

During the first phase of ECO-SPHERES, the player SPHERES must carefully navigate through

a Debris Field in order to reach the Target SPHERES. Collisions with debris will result in thruster

damage.

2.2.1 Bounds of Debris Field

Space Debris obstacles are located in range 0m < y < 0.7m

Parameter Description Value (m)

ydebris,start y value of start of debris field 0.7

ydebris,end y value of end of debris field 0.0

2.2.2 Size and Position of Space Debris

In the 3D game there are 41 Debris obstacles located within the Debris Field. Obstacles occur in

the three sizes shown in the table below. Use the Function: game.getDebris to retrieve

information about debris position and size.

Ver AL-ISS 1.0.0

 8

Debris Type radius(m)

Small 0.03

Medium .045

Large .09

Space Debris Sizes

Game Number

3D 41

Number of Debris

Ver AL-ISS 1.0.0

 9

Possible locations of Space Debris within Debris Field

(represented by orange, purple, green rectangles)

The three different sizes of debris occur in 3 zones centered on y=0.1m (large debris), y=0.3m

(medium debris) and y=0.5m (small debris) as shown in the figure above. The orange, purple

and green rectangles (with specified width and length) in the figure above reflect the possible

locations for debris within each zone. The debris position is specified by the location of the

debris center.

The same geometry is repeated about the Z axis, such that there are 4x4 small debris, 4x4

medium debris, and 3x3 large debris (41 total debris parts). The exact location is also random

about the Z axis in the same way as in the X axis. An example of a 3D Debris Field is shown in

x=0

Ver AL-ISS 1.0.0

 10

the figure below.

Example of 3D Debris Field

2.2.3 Collision with Space Debris

Collision with debris results in thruster damage, which reduces the maximum translational and

rotational velocity of the SPHERES. The damage incurred depends on the size of the debris as

shown in the table below. If the player SPHERE is out of bounds and it crosses into any of the

debris zone areas (small: 0.60m < Y < 0.40m; medium 0.40m < Y < 0.20m; large 0.20m < Y <

0.00m) this will incur thruster damage equivalent to collision with one of the Debris located in that

region.

Debris Type 3D

Effect Decrease in total thrust power

(position and attitude) as a % of

original thrust.

Small 10%

Medium 25%

Large 50%

Ver AL-ISS 1.0.0

 11

Note: collisions are determined numerically solely by the distance between the center of the

satellite and the center of the debris assuming perfect spheres. The hook is not considered for

debris collision purposes.

2.2.4 Cancel Debris Collision Damage tool (for test only)

In order to facilitate concurrent development of code for all phases of the ECO-SPHERES game

a flag has been added to the simulation window which can be set to allow the player satellite to

pass through the debris field without thruster damage. Look for the “Cancel Debris” field at the

bottom of the simulation window, which can be toggled between 0 and 1.

0 = incurs normal thruster damage (default)

1 = cancels debris collision damage.

2.3 Rendezvous

During the second phase of the game the player SPHERES must rendezvous with the Target

SPHERES.

2.3.1 Motion of Target SPHERES

In the 3D game the target SPHERES will always follow a “cone” trajectory, as if it were the end of

a docking port on a spacecraft rotating off-center from the docking port axis. The angle of the

cone is 10°. The figure below illustrates the motion of the target satellite at the start of each match.

10d

Y =

r=0

f=0.0066666

Y

Z

X

Ver AL-ISS 1.0.0

 12

2.3.2 Criteria for Successful Rendezvous

The "rendezvous position" will be defined by the following conditions being met: 1) the center to

center separation of the SPHERES must be less than εr, 2) the hook of the player satellite must

be pointing at the center of the target satellite within εr,θ , 3) the player satellite must be moving

with a speed (absolute value, not directional velocity) less than v_max, and 4) the player satellite

must have a body rotation rate under w_max. Note that the two velocities are inertial, and not

relative to the target satellite.

Call the function game.completeRendezvous() when conditions are met to complete this

phase.

Parameter Description Value Units

εr
max “center to center” distance for rendezvous 0.40 m

εr,θ
max angular tolerance for rendezvous 0.052

3

rad

deg

v_max maximum local speed of the player satellite 0.005 m/s

w_max maximum body rotation rate of the player satellite 0.0175

1

rad/s

deg/s

Note that the Rendezvous criteria only checks that the player is pointing correctly to the target.

However, successful hooking will also require the target to point correctly to the player. Because

MIT controls the motion of the target, there is no requirement on the pointing of the target to the

player. However, there is a scoring bonus if the target hook is pointing to the player or penalty if

the target hook is pointing away from the player. The scoring section details this bonus/penalty.

2.4 Hooking

During the third phase of the game the player SPHERES must successfully Hook the Target

SPHERES.

Ver AL-ISS 1.0.0

 13

2.4.1 Position and Motion of Target SPHERES during Hooking

Once the rendezvous phase has been completed, all Space Debris will cease to exist and the

target SPHERES will come to a stop as quickly as possible and actively hold at this “stop” position

and attitude.

2.4.2.Hooking Criteria

The Player SPHERES must carefully position its hook into the hooking area of the Target

SPHERES. The figure below shows the 3D printed hook assembled on the SPHERES. The Hook

assembly attaches to the SPHERES docking face (+x face).

Dimensions shown are mm.

Key Details/Dimensions Value

Hook assembly attaches to the SPHERES docking face (+x face) N/A

Ver AL-ISS 1.0.0

 14

Distance between center of SPHERES and hooking center 0.17095m

Width of Hook .008m

In order to simplify control of the player satellite, the two hooks are pre-oriented 90° relative to

each other, such that the hooks can couple when the two satellites are oriented with the tank

pointing in the same direction and the +X face pointing exactly opposite of each other.

Successful hooking requires:

- The distance between the two “hooking centers” to be less than 0.005m

- The tanks (satellite Z Body Axis) to be aligned within 5°

- The other axes (satellite X & Y Body Axes) to be aligned within 120° (e.g., the hooks can

hook while at 90° from each other as long as the tanks are aligned)

- The satellites must reach hooking distance without causing a collision.

During this stage the hook is modeled as rigid object, and collisions between the two hooks will

result in forces and torque that override the SPHERES motion to simulate collisions in the real

hardware. The override takes place for up to 5 seconds. Both satellites are affected by the motion.

The target satellite will return to the “stop” position after the collision override. The player is

responsible for the motion of the player satellite after collisions.

The hooks are modeled as cylinders of 0.0006m diameter as shown in the figure below. The red

rectangles represent the cylinders, or the keep-out area to avoid collisions. The green dot at the

tip of the hook is the “hooking center”. The satellites must make their “green hooking centers”

overlap without causing overlap of the red hook cylinders.

Ver AL-ISS 1.0.0

 15

There are no specific requirements on the velocity of the satellites during hooking, but note that

the velocity will account of the magnitude of collision forces in case the hooks collide instead of

hooking successfully.

Hooking is determined automatically by the simulation; there is no need to call any functions.

Once hooking is successful the target satellite will completely stop using its thrusters and will free

float for the remainder of the game. Its motion will be fully dependent on forces and torque

imparted by the hook due to the motion of the player satellite.

NOTE: there is no simulation for SPHERES satellite collision detection/avoidance. This means in

the simulation the satellites will be allowed to overlap in the same space, so teams are expected

to not make any use of this simulation simplification towards their strategies. Any intentional use

of satellite overlap in a strategy is against the spirit of the game.

2.4.3 Unhooking

The satellites will unhook when:

Points in [X, Z] body coordinates
from center of player satellite

[0.1310,

[0.1310,

0.170

Ver AL-ISS 1.0.0

 16

- The hooks are not under “tension” by pulling on each other (most unhooking will happen

when the hooks loose tension).

and at least one of three conditions are met:

- The angles between the satellites grow beyond the hooking requirements (rotation about

the X Body Axis misaligns beyond 20°, or rotation about the Y or Z Body Axes misalign

beyond 120°)

- The relative velocity along the X Body Axis of the satellites (ie, the hook main axis) is

greater than 0.005m/s.

- The virtual separation between the hook tips is beyond 0.04m (the separation is allowed

to grow due to the lag in the simulation to create the hook forces)

Unhooking does not result in any extra motion or penalty. The target satellite will free-float with

whatever motion it had at the time of un-hooking, and the player satellite can be controlled as

normal.

2.5 Towing/Return of Target SPHERES to “Safe Zone”

The goal of the fourth and final phase of the game is for the Player SPHERES to return the Target

SPHERES back to a “Safe Zone”, ie, as far as possible into the positive Y (+Y) half of the playing

field.

During towing the hook dynamics create both forces (pulling along the +X, ±Y, and ±Z body axes)

and torque (due to any misalignment of the main axis of the hooks). The hook does not impart

forces along the -X body direction.

To complete the phase it is only necessary for the center of the Target satellite to go as far as

possible into the +Y half of the playing field, regardless of its velocity (linear or angular) and

hooking status.

2.6 Scoring

Scoring includes both Time Dependent Scoring and Bonus Point Scoring. The function

game.getScore can be used to check player score.

2.6.1 Time Dependent Scoring

The primary way teams earn points is by completing different phases of the game: Debris Field

Navigation, Rendezvous, Hooking, Return to Safe Zone.

Ver AL-ISS 1.0.0

 17

Each phase has a baseline point value earned when the phase is completed. Additionally, the

faster teams complete each phase, the more points they will earn.

Phase Time

3D

Min

Score

Max

Score

Debris Field 30s 2.5 5.0

Rendezvous 60s 2.5 5.0

Hooking 90s 5.0 10.0

Return Target 30s 5.0 10.0

Time Dependent Scoring

The number of points awarded for each stage is determined by:

Symbol Description

p0,L Minimum points awarded for crossing debris field

p0,U Points awarded for crossing debris field in 0 time

ΔT0,ref Time for crossing debris field which causes minimum score

p1,L Minimum points awarded for achieving rendezvous

p1,U Points awarded for achieving rendezvous in 0 time

ΔT1,ref Time for achieving rendezvous which causes minimum score

p2,L Minimum points awarded for achieving hooking

p2,U Points awarded for achieving hooking in 0 time

ΔT2,ref Time for achieving hooking which causes minimum score

p3,L Minimum points awarded for returning target SPHERES

p3,U Points awarded for returning target SPHERES in 0 time

ΔT3,ref Time for returning target SPHERES which causes minimum score

Ver AL-ISS 1.0.0

 18

𝑝𝑛, 𝐿 + (𝑝𝑛, 𝑈 −
𝑝𝑛,𝑈−𝑝𝑛,𝐿

∆𝑇𝑛,𝑟𝑒𝑓
𝛥𝑇n)(∆𝑇n<∆𝑇n,ref)

where pn,L is the baseline score earned when phase n is complete, pn,U is the maximum

possible score that could be earned (if the phase was completed in zero time), 𝛥Tn is the

time elapsed since the phase began, and 𝛥Tn,ref is the time at which no more than the min score

will be awarded for that phase.

2.6.2 Bonus Points

2.6.2.1 Rendezvous Pointing Bonus Points

At the end of the rendezvous phase (when the player calls game.completeRendezvous

successfully) a bonus or penalty will be scored based on how close the hook of the target is

pointing to the center of the player.

The bonus/penalty is assessed as follows:

- Determine the “pointing vector” between the target to the player

- Take the dot product of the normalized “pointing vector” and the ZR attitude of the target

(which is itself a normalized pointing vector)

- Square the dot product magnitude (which increases the effect of misalignment)

- Scale by 2.5 (so 2.5 is the maximum bonus and -2.5 the maximum penalty)

Symbol Description Max bonus Max penalty

br Rendezvous

pointing bonus

2.5 -2.5

Note: The dot product of two normalized vectors returns 1 if the vectors are perfectly aligned, 0 if

they are 90° offset, -1 if they are pointing away from each other, and a fraction less than 1 when

they are partially aligned.

Note: the sign is maintained, only the magnitude is squared.

2.6.2.2 Fuel Bonus Points

Ver AL-ISS 1.0.0

 19

2.6.2.2 Target Distance Bonus Points

At the end of the game a bonus point of up to 5 points will be given based on the distance that

the Target has moved along the inertial Y direction towards the “safe zone” (positive Y). The

bonus will be directly proportional between the total Y distance traveled up to Y=0.75:

 bd = (-targetY_initial + targetY_final)/1.25 * 5 = (0.5 - targetY_final)/1.25*5

NOTE: if the target is pushed “backwards” so that targetY_final < -0.5m a proportional penalty will

be assessed.

2.6.3 Scoring Equation

Given the above information, the total score at the end of the game is calculated as follows:

𝑆𝑐𝑜𝑟𝑒 = ∑4
𝑛=1 [𝑝𝑛, 𝐿 + (𝑝𝑛, 𝑈 −

𝑝𝑛,𝑈−𝑝𝑛,𝐿

∆𝑇𝑛,𝑟𝑒𝑓
𝛥𝑇n)(∆𝑇n<∆𝑇n,ref)] + br + bd

Note: during the Alliance and ISS phase there is a Collision Penalty (see section 2.8.2).

2.7 End of game

The game ends after 210 seconds. Final Score is calculated.

2.8 SPHERES Satellites

Each team will write the software to command a SPHERES satellite to move in order to complete

the game tasks. A SPHERES satellite can move in all directions using its twelve thrusters. The

actual SPHERES satellites aboard the ISS, like any other spacecraft, have limited fuel (in this

case liquid carbon dioxide), power (in this case AA battery packs), and computer (a digital-signal

processor). These resources are limited and must be used wisely. Therefore, the players of Zero

Robotics are limited in the use of these resourced by virtual limits within the game. The use of

batteries is limited by having a fixed game time of 210 seconds for all competition phases. The

other limitations are detailed below.

The nominal properties of the SPHERES satellites are summarized as follows:

Property Value Units

Radius 0.11 m

Diameter 0.22 m

Ver AL-ISS 1.0.0

 20

Mass 4.0 kg

Single Thruster Force 0.11 N

These are called nominal properties because they are not exact. The Mass changes up to 0.2kg

as fuel is consumed. The single thruster force is affected by how many thrusters are open at one

time, varying up to 20% of the nominal force. In addition, while every attempt was made to align

the thrusters with the satellite body axes, there are imperfections in the alignment (within 2°),

therefore not all the force goes in the exact desired direction.

2.8.1 Fuel

Each player is assigned a virtual fuel allocation of 60 seconds of total accumulated thruster firing

time. This is calculated by summing individual thruster firing during the game. Once the allocation

is consumed, the satellite will not respond to the player SPHERES control commands. It will fire

thrusters only to avoid leaving the Interaction Zone or colliding with the other satellite.

Any action that requires firing the thrusters (rotating, accelerating, decelerating), whether it was

commanded by the player, due to activate collision avoidance or out-of-bounds breaking, or other

penalties of the game play, will consume virtual fuel allocation.

The function getFuelRemaining can be called to obtain the fraction of fuel still available during

a game. The function returns 1.00 for a full tank, and then a fractional value (e.g. 0.50 = half a

tank) until reaching 0.0. Once the function returns 0.0 all user motion commands will be ignored.

2.8.2 Collision Avoidance

Collision Avoidance is not activated for this game, since part of the goal of this year’s game is to

get close enough to hook. This means that in the simulation the satellite will be able to go across

each other, and the simulation will not stop what would be real collisions aboard ISS. It is up to

each team/alliance that advances to the finals that their code will not result in actual physical

collisions (as much as possible).

During the finals the simulation will penalize collisions in any of the following cases:

- A hook tip comes within the SPHERES radius

- The two satellites come too close to each other

If any of those cases occur, there will be a 0.25 points penalty per second that the collision takes

place. A total of 0.25 points will be deducted, regardless of how many of the conditions are met.

Ver AL-ISS 1.0.0

 21

NOTE: the score can go negative!

2.8.3 Code Size

A SPHERES satellite can fit a limited amount of code in its memory. Each project has a specific

code size allocation. When you compile your project with the “Code Size Estimate” menu option,

the compiler will provide the percentage of the code size allocation that your project is using.

Formal competition submissions require that your code size be 100% or less of the total allocation.

2.8.4 Noise

It is important to note that the SPHERES simulations create noise similar to that experienced by

the satellites aboard the ISS. This noise means two main things:

● The satellites will never know exactly where they are; their “estimate” of their location

reflects that the sensors are not perfect, so at all times even if the satellite is supposed to

be completely still, their location will vary approximately ±0.005m independently on every

axis.

● The satellites will not thrust perfectly. While the thrusters use identical designs, each

thruster has a slight variation in thrust, and the total thrust varies by the number of thrusters

used at one time. This means that the thrust of the satellites may vary in general 10% and

up to 20% in some cases.

This is fully intended as part of the challenge and reflects uncertainties in real aerospace

engineering systems, which have imperfect dynamic models, sensors, and actuators. The best

performing solutions will be those that prove to be robust to these variations and a wide variety of

different initial conditions of the gameplay features.

3 Game API
The following table lists the functions available in this year’s game. In order to use the game-

specific functions, use the following syntax depending on the editor you choose:

C: game.functionName(inputs), for example:

game.completeRendezvous()

MATLAB: game18.functionName(inputs), for example:

game18.checkRendezvous()

Ver AL-ISS 1.0.0

 22

For the general Zero Robotics functions use the syntax api.functionName(inputs), for

example:

api.setPositionTarget(posTarget)

(unless they are math functions, which can be called without reference to the instance).

The generic ZR user API (in both C and MATLAB languages) is available at:

http://static.zerorobotics.mit.edu/docs/tutorials/ZR_user_API_2017.pdf

ECO-SPHERES API Reference

Name Description
C: void getDebris(float

debris[NUM_DEBRIS][4])

MATLAB: debris = getDebris(NUM_DEBRIS)

Puts the following information into the array “debris”:
 [debris[n][0], debris[n][1], debris[n][2]] = position of the debris
 Debris[n][3] = radius of the debris

The array must be of length “NUM_DEBRIS”, which is:
3D Game: 41

It is the responsibility of the players to correctly size the array.

C: bool checkRendezvous()

MATLAB: result = checkRendezvous()

Returns true if the Rendezvous requirements are met. Returns false
otherwise.

C: bool completeRendezvous()

MATLAB: result = completeRendezvous()

If the Rendezvous requirements are met, will complete the phase
and command the target satellite to stop moving.

The first time this is called successfully is the scoring time for the
Rendezvous phase; the pointing of the target satellite to the player
at this instant is also used for bonus points.

Returns true if the Rendezvous completes successfully (or had
already completed in the past); returns false if the requirements are
not met.

C: bool getRendezvous()

MATLAB: result = getRendezvous()

Returns true if the rendezvous phase is complete.

C: bool getHooked()

MATLAB: result = getHooked()

Returns true if the satellites are currently hooked.

C: bool getHookCollision()

MATLAB: result = getHookCollision()

Returns true if the simulation is currently overriding forces/torque
due to collision of the hooks.

C: int getThrusterHealth()

MATLAB: result = getThrusterHealth()

Returns the thruster health of the player satellite between 0 to 100
%.

http://static.zerorobotics.mit.edu/docs/tutorials/ZR_user_API_2017.pdf

Ver AL-ISS 1.0.0

 23

C: int getGamePhase()

MATLAB: result = getGamePhase()

Returns the phase of the player satellite. Phase changes when the
player satellite meets the requirements for each phase. Phases
cannot be completed out of order.

● 1 = Debris avoidance
● 2 = Rendezvous
● 3 = Hooking
● 4 = Towing.

C: float getScore()

MATLAB: myScore = getScore()

Returns the player’s score.

C: float getFuelRemaining()

MATLAB: fuel = getFuelRemaining()

Returns remaining fuel as a fraction of total fuel allowed (1.00 = full
tank; 0.50 = 50% remaining; 0.00 = empty tank).

C: void getMyEulerState(float *state);

MATLAB: myState = getMyEulerState()

Returns the state of the satellite representing the attitude with Euler
angles of [roll, pitch, yaw] as follows:

state[0][1][2] = pos X, pos Y, pos Z [m]
state[3][4][5] = vel X, vel Y, vel Z [m/s]
state[6][7][8] = roll, pitch, yaw [rad]

state[9][10][11] = rate X, rate Y, rate Z [rad/s]

The output variable must be a float array of length 12.

The rotations are defined as follows:

- roll = rotation about the X axis in Radians
- pitch = rotation about the Y axis in Radians
- yaw = rotation about the Z axis in Radians

C: void getOtherEulerState(float

*state);

MATLAB: myState = getOtherEulerState()

Returns the state of the other satellite (the “target”) representing the
attitude with Euler angles of [roll, pitch, yaw] as follows:

state[0][1][2] = pos X, pos Y, pos Z [m]
state[3][4][5] = vel X, vel Y, vel Z [m/s]
state[6][7][8] = roll, pitch, yaw [rad]

state[9][10][11] = rate X, rate Y, rate Z [rad/s]

The output variable must be a float array of length 12.

C: void eulerToQuaternion(float*

euler, float* quaternion);

MATLAB: quaternion =

eulerToQuaternion(euler)

Converts the given Euler angle array of [roll, pitch, yaw] into a
quaternion.

euler = [roll, pitch, yaw] (floats) [rad]
quaternion = [q.x, q.y, q.z, w] (floats)

C: void quaternionToEuler(float*

quaternion, float* euler);

MATLAB: euler =

quaternionToEuler(quaternion)

Converts the given quaternion [q.x, q.y, q.z, w] into an Euler angles
rotation of [roll, pitch, yaw].

quaternion = [q.x, q.y, q.z, w] (floats)
euler = [roll, pitch, yaw] (floats) [rad]

C: void setEulerTarget(float* euler);

MATLAB: setEulerTarget(euler)

Sets the target attitude of the satellite to point towards the [roll, pitch,
yaw] angles commanded in the input Euler angles vector.

Ver AL-ISS 1.0.0

 24

euler = [roll, pitch, yaw] (floats)

C: void enableHookGT();

 void disableHookGT();

MATLAB:

enableHookGT()

disableHookGT()

These functions enable and disable “detailed” Game Trace
messages that help while the game is in phase 3 (hook) or 4 (tug)
to understand how the simulation is determining the hook status and
actions. The following GT messages will appear every second, in
addition to the regular traces:

NOTE: these tests are done 10 times per second, interpolating
between the previous position and the current position, so there are
up to 10 of these traces each loop cycle.

- HOOK too FAR (i): actual_dist > ref_dist {y_diff

= [active_y - target_y = y_diff]}

where:

- actual_dist is the 3d distance between the two hook

contact points

- ref_dist is the reference distance between hooks

needed to achieve hooking

- y_diff, active_y, target_y are only the Y distances

of the difference, which should account for most of the
distance when the hook is approximately aligned with the
Y axis (as in the initial conditions)

- Hook angles test TOO LARGE:: alpha = [bool] =
[alpha_act > alpha_ref] beta = [bool] = [beta_act

> beta_ref] gamma = [bool] = [gamma_act <

gamma_ref]

- Hook angles test OK: alpha = [bool] = [alpha_act
> alpha_ref] beta = [bool] = [beta_act > beta_ref]

gamma = [bool] = [gamma_act < gamma_ref]

where:

- [alpha, beta, gamma] are the Euler angles rotations

between the satellites
- for hooking there are three tests to determine if things

UNhook (ie, true if they will UNhook, false if angles are
correct for hooking; all three tests must be false for hooking
to either take place or to remain hooked):

- alpha [bool] = alpha_act > alpha_ref:

alpha angle in radians (about the red X axis),
which should be near 0

- beta [bool] = beta_act > beta_ref: beta

angle in radians (about the red Y axis), which
should be near 0

- gamma[bool] = gamma_act < gamma_ref:

gamma angle in radians (about the red Z axis),
which should be near PI

- Relative velocity 1vs2 X body axis =

vel_x_rotaSat2 < max_vel_x

- Relative velocity 2vs1 X body axis = vel_x_rotSat1
< max_vel_x

Ver AL-ISS 1.0.0

 25

where

- vel_x_rotSat1 and vel_x_rotSat2 are the relative

X velocities, in blue and red body coordinates respectively,
between the two satellites, which must remain small for the
satellites to remain hooked

NOTE: the following GT appears only once per loop cycle

- Hook collision force override: F[3]

where:

- F[3] = [Fx, Fy, Fz] is the new force commands in

the inertial reference frame sent to the satellite when hook
collisions cause the game to override any user commands
(in [N])

C: void enableTugGT();

 void disableTugGT();

MATLAB:

enableTugGT()

disableTugGT()

- Hook Dynamics: forces = [Freq + Faug = Fout],
torque = [Treq - Taug = Tout]

where:

- Freq, Treq are the requested 3D forces/torque by the

user

- Faug, Taug are the augmented 3D forces/torque

calculated by the hook dynamics

- Fout, Tout are the final 3D forces/torque requested to

the satellite control system
- The individual components of the forces/torque are shown

as [X, Y, Z]
- Forces are in [N] and torque are in [Nm]

4 The Leaderboard for ECO-SPHERES

4.1 Introduction

This year’s leaderboard has been modified to support single player games.

The Leaderboard calculates rankings daily from the beginning of a competition until the

submission deadline. Results from prior days have no impact on current days rankings. Only the

final standings on the Leaderboard at the end of each competition phase will determine which

teams advance to the next phase.

4.2 Daily Rankings

Each day, at 21:59:59 UTC, (except on competition deadlines where posted times apply) your

most recently submitted code is collected by an automated system and played as the Blue

Ver AL-ISS 1.0.0

 26

SPHERES. Each team’s code is played a total of ten (10) times. Scores from the 10 games are

averaged to determine rankings. Results are posted on the website after rankings are complete.

While the daily competition is ongoing the leaderboard will not be visible and clicking on the

Leaderboard will return the message: “Results will be posted once the daily leaderboard run is

complete”. Multiple games are completed to provide teams with more game data given the

random elements in the game. Ranking data is refreshed daily.

4.3 Elimination Rankings

On the last day of each competition period, each team’s code will be run (10 + n) times until the

ranking stops changing or n=15 (every team has played 25 games), whichever comes first. Each

iteration every teams’ top 10 scores (only) will be averaged to determine rank.

4.4 Tips

The team with the highest average score will be rank 1 on the leaderboard. The best way to

improve your rank is the most logical way: keep working at your algorithms. There are no surefire

alternatives. Also, don’t let fear of a bad game keep you from submitting early. Results of past

competitions demonstrate that teams that make many submissions tend to perform better.

Finally, it is important to note that ranking data is refreshed and teams start from scratch daily.

5 Tournament Structure

5.1 Semifinal Simulation Competition

All teams that complete a valid registration are eligible to participate in the semifinal phase of the

Italian Championship.

5.2 Final Competition

The top 6 teams on the leaderboard at the end of semifinal play will advance to the Finals

Competition.

The finals will take place in simulation during an event which will be held in April in Sicilia. All

finalists will be invited to participate at the final event.

Ver AL-ISS 1.0.0

 27

5.5.1 Overview and Objectives

6 Season Rules

6.1 Tournament Rules

All participants in the Zero Robotics Italian Tournament 2018 must abide by these tournament

rules:

● The Zero Robotics team (MIT / Aurora/ ILC/ Italian Guide Committee) can

use/reproduce/publish any submitted code.

● In the event of a contradiction between the intent of the game and the behavior of the

game, MIT or Italian Guide Committee will clarify the rule and change the manual or code

accordingly to keep the intent.

● Teams are expected to report all bugs as soon as they are found.

● A “bug” is defined as a contradiction between the intent of the game and behavior of the

game.

○ The intent of the game shall override the behavior of any bugs up to code freeze.

○ Teams should report bugs through the online support tools. ZR reserves the right

to post any bug reports to the public forums (If necessary, ZR will work with the

submitting team to ensure that no team strategies are revealed).

● Code and manual freeze will be in effect 3 days before the submission deadline of a

competition.

● Within the code freeze period the code shall override all other materials, including the

manual and intent.

● There will be no bug fixes during the code freeze period. All bug fixes must take place

before the code freeze or after the competition.

● Game challenge additions and announcement of TBA values in the game manual may be

based on lessons learned from earlier parts of the tournament.

6.2 Ethics Code

● The ZR team will work diligently upon report of any unethical situation, on a case by case

basis.

● Teams are strongly encouraged to report bugs as soon as they are found; intentional

abuse of an unreported bug may be considered as unethical behavior.

● Teams shall not intentionally manipulate the scoring methods to change rankings.

Ver AL-ISS 1.0.0

 28

● Teams shall not attempt to gain access to restricted ZR information.

● We encourage the use of public forums and allow the use of private methods for

communication.

● Vulgar or offensive language, harassment of other users, and intentional annoyances are

not permitted on the Zero Robotics website.

● Code submitted to a competition must be written only by students.

● Players may not access the implementation instance of the game or modify any variables

of the object. In particular, the api and game objects should not be duplicated or modified

in any capacity.

● Simulation requests may only be done manually via the website interface, API calls for

simulation are not allowed (even if doable).

● Comments may not be used to add executable code in order to bypass the codesize limits

or for any other reason not explicitly approved by the ZR team.

Ver AL-ISS 1.0.0

 29

7 Appendix: Euler Angles Explanation

Eco SPHERES introduces the use of Euler Angles to control the attitude of the SPHERES. Like

the api.setAttiudeTarget and api.setQuatTarget functions, the new

game.setEulerTarget function controls the direction in which the satellite points. Only one of

those functions should be call in each “loop” cycle, since they all try to control the same property

(attitude) of the satellite1.

Why do you need Euler Angles for Eco SPHERES?

The commonly used api.setAttitudeTarget function represents the “pointing” of the satellite

using a “pointing unit vector”. It indicates where the reference axis of the satellite points. In the

case of EcoSPHERES the reference is the +X body axis of the satellite, which is the same body

axis as where the hook is. However, the pointing unit vector does not control rotation about the

reference axis, in this case the hook. This means that the satellite can rotate about the body axis

any amount, and still be pointing in the same valid pointing unit vector. The following figures

illustrate this (pay attention to the pointing vectors [nx, ny, nz] in the state information box, and

the resulting pointing in the visualization):

Figure 7.1 - Blue satellite pointing to “origin” pointing vector [1,0,0] (note the X,Y,Z axes orientation

like in the game, with Z pointing “down”). In this “initial condition” case, the body axes of the

SPHERES satellite are completely aligned with the inertial axes of the game field. This is the

“origin” of all the rotations for SPHERES.

1 For completeness, it must be understood that, only one of [api.setAttitudeTarget,

api.setQuatTarget, game.setEulerTarget, api.setAttRateTarget, api.setTorques]

should be used in each loop cycle, since they all need to use the same set of thruster commands to actually
move the satellite. Any mixed use of those functions will result in unknown behavior.

Ver AL-ISS 1.0.0

 30

Figure 7.2 - Blue satellite pointing its +X face to [0.7071, 0.7071, 0] unit vector (in this case due

to noise to [0.673, 0.739, 0.032], but close enough to the intended angle).

Figure 7.3 - Blue satellite still has a pointing unit vector of approximately [0.7071, 0.7071, 0].

However, its tank is now pointing “sideways” along on the XY plane, instead of “up down” on the

Z axis. The same pointing unit vector allows different attitudes of the satellite, and it is not possible

to control them.

Figure 7.4 - Blue satellite still has a pointing unit vector of approximately [0.7071, 0.7071, 0], but

now its tank is pointing opposite of the original orientation.

Ver AL-ISS 1.0.0

 31

How to think about Euler Angles

Euler angles represent rotations about the reference axes in a pre-specified order, in such a way

that it is possible to fully define the attitude of the system, including rotation about all three body

axes. Euler angles do not need a reference vector; instead, they need a predefined reference

axes with respect to which all rotations occur.

In the SPHERES implementation of Euler angles, we always do the rotation in the following order:

 1 - Roll Rotation about the X Reference Axis

 2 - Pitch Rotation about the Y Reference Axis

 3 - Yaw Rotation about the Z Reference Axis

Note: Euler angles do not rotate about the body axes of the vehicle.

The following figures illustrate the examples above, but with Euler angles defining the pointing of

the SPHERES satellite.

NOTE: the following examples show progressive “roll - pitch - yaw” steps of pointing in a specific

direction. However, it is not necessary to command in those steps. Once the correct full Euler

angles vector of [roll, pitch, yaw] that ends in the desired attitude is obtained, it is possible to

directly command to go to that attitude.

Euler angle: [0,0,0]

Figure 7.5 - Euler angles “origin”: the vehicle is rotated 0 radians about all the axes, so its own

body axes are fully aligned with the reference frame.

Euler angle: [0,0,pi/4]

Ver AL-ISS 1.0.0

 32

Figure 7.6 - Euler angles that results in the basic rotation to pointing vector [0.7071, 0.7071, 0],

but with all the axis being controlled. In this case Euler angles command: 0 roll (no rotation about

the X reference axis), 0 pitch (no rotation about the Y reference axis, and pi/4 yaw (rotation about

the Z reference axis).

Note: pi/4 = 45 degrees

Recall that Euler angles are applied in order about the reference frame, therefore it is not

possible to think about the current pointing of the satellite and think about the body rotation you

would do in order to reach a new pointing target. The Euler angle rotation is referenced always

from the origin to the final pointing.

The next example shows how when followed in order, it is possible to visualize the rotation of the

vehicle with respect to the reference axis.

[0,0,0]

Origin - the hook is pointing on the +X
reference axis direction, the tank to the -Z
axis, and the control panel to the -Y axis. This
are the SPHERES body axes aligned to the
reference frame.

The next step is to do a roll about the
reference body axis...

[pi/4,0,0] This rotation should be simple to visualize,
the hook rotated pi/4 about the X axis.

Ver AL-ISS 1.0.0

 33

An Euler roll rotation does not mean that the
X axis moves, it means the satellite rotates
about the original reference X axis.

Now a combined roll & pitch attitude...

 To understand this rotation, one must think
about the reference axis for pitch - in this
case the Y axis in the figure.

From the pointing it had in its original roll, the
vehicle rotates about the Y reference axis.
Note that the Y reference axis is no longer the
same as the body Y axis, because of the first
rotation.

The Euler pitch rotation happens about the Y
reference axis, so in this example imagine
putting a stick between the two SPHERES flat
panels that are intersecting the Y reference
axis, and rotating about it:

[pi/4,pi/4,0] Resulting Euler angles rotation of
- Roll: pi/4
- then Pitch: pi/4

Ver AL-ISS 1.0.0

 34

 The next rotation will be about the Z
reference axis.

Therefore, the next rotation does not mean
that the satellite will turn on its tank axis (the
body Z axis), but that it will start with its
rotation of [pi/4, pi/4, 0] and then rotate the
body along the Z reference axis, which
crosses a new set of panels on the
SPHERES satellite.

[pi/4,pi/4,pi/4]

Final pointing with Euler angles of:
- Roll: pi/4
- Pitch: pi/4
- Yaw: pi/4

The following example shows how the order of the Euler angles does affect the pointing, and the

need to think about Euler angles always from the origin of the reference frame in that order.

[0,0,0] Start at the Origin.

Ver AL-ISS 1.0.0

 35

[0,0,pi/4]

Apply in order:
- Roll 0
- Pitch 0
- Yaw pi/4

results in an expected rotation about the Z
axis of both the reference frame and original
body axis. This one should be simple to
understand.

[0,pi/4,pi/4]

This new rotation requests:
- Roll 0
- Pitch pi/4
- Yaw pi/4

While it is only “adding” the Y axis pitch, it is
not rotating the previous attitude of [0,0,pi/4]
along the Y reference axis.

Instead, it is starting from the origin and
applying roll, pitch, yaw in that order.

 Note: if the order was applied as Yaw first,
then Pitch, this would be the resulting
attitude:

Ver AL-ISS 1.0.0

 36

[pi/4,pi/4,pi/4]

The final rotation is the same as in the
previous example. Note that it does not show
the [0,pi/4,pi/4] vehicle rotated about the
reference X axis, because that would be the
wrong order. To get here the attitude is
calculated in order: roll, pitch, yaw.

Potential issues with Euler Angles (aka, why you may want to use

Quaternions)

Euler angles have been used heavily in the field, including many control systems for airplanes

and other vehicles. However, Euler angles have a problem with full 3D motion (not common in

airplanes): when the angle points “straight up/down” (the pitch is ±pi/2) there is an issue called

“gimbal lock”. The simplified explanation is: when pointing straight up/down either the yaw and

the roll or the yaw and the pitch cannot be distinguished from each other and control systems

easily go unstable. Satellites and other vehicles in space do point straight up (or in any direction);

airplanes and cars usually do not.

Ver AL-ISS 1.0.0

 37

Fortunately for EcoSPHERES this is not a serious problem, because the pointing requirements

will be mostly in the XY plane, with only small offsets towards the Z axis direction. Therefore Euler

angles should not be a problem for EcoSPHERES.

It is of course still possible to use quaternions; obtain references for them online. Use the

api.setQuatTarget function.

Ver AL-ISS 1.0.0

 38

8 Revision History

Revision Date Changes Made By

Italian 1.0 Feb 1st, 2019 Adapted to Italian Championship L. Reyneri

1.1 Feb 13th, 2019 Removed section Scoring at pag. 21 L. Reyneri

