
 1

A REPORT

ON

Development of the flight model of an inertial asset control

system for ARAMIS satellite

Submitted by:-

AAKASH JAIN
Final Year Undergraduate Student

BITS Pilani, India

Guided by:-

Prof. Leonardo Reyneri
Department of Electronics,

 Politecnico di Torino, Italy

Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129

Torino, ITALY

June-August 2009

 2

ACKNOWLEDGEMENTS

I hereby express my deep sense of gratitude to Prof. Leonardo Reyneri, Department of Electronics,

Politecnico di Torino for providing me with a wonderful opportunity in the form of this internship

program.

I take this opportunity to express our heartfelt thanks to Marco Borri and Maurizio Tranchero for their

technical support and guidance.

I am also thankful to all the officials and my colleagues in my department for providing necessary

technical assistance and enthusiastic work environment.

 3

ABSTRACT

The present report discusses the work carried out on the project “Development of the flight model of an

inertial asset control system for ARAMIS satellite”. ARAMIS is the second satellite being developed at

Politecnico di Torino after developing a satellite called PiCPoT (Piccolo Cubo del Politecnico di

Torino) in July 2006, which had as its main purposes the test on the operation of commercial

components (COTS) in space and the acquisition of images and spatial parameters. The present Satellite

ARAMIS will be one step ahead of PiCPoT and the central concept kept in mind is to introduce the

concept of modularity of the satellite which will significantly reduce costs of design and development of

the satellites. Defining various standard modules which are compatible with each other and then

assembling these modules in the quantities and manner required by the mission.

Among the various modules in the ARAMIS Satellite one is the Attitude and Orbit Control Systems

(AOCS) subsystem which is one of the most important subsystems of a satellite. Its main function is to

control the attitude and the orbit of the satellite. It is often the most complex of the satellite subsystems.

Its function is to control the attitude and the orbit of the satellite. This is a critical function because

without attitude or orbit control the satellite will gradually – sometimes in a matter of seconds,

sometimes after several days – become unable to fulfil its mission objectives.

AOCS' chief task is to periodically collect measurements from sensors and convert them into commands

for actuators.

There are two major Attitude Actuators Subsystem(1B21) in the ARAMIS which are:

1) Magnetic Torque Actuator (1B211)

2) Reaction Wheel Actuator (1B212)

Also there are two major Attitude Sensor Subsystem(1B22) which are:

1) Magnetometer Sensor (1B221)

2) Gyroscopic Sensor (1B222)

This project aimed towards development of all the necessary Software and Hardware for the ‘Reaction

Wheel Actuator’ and ‘Gyroscopic Sensor’. While all the necessary software and hardware for other two

module namely ‘Magnetic Torque Actuator’ and ‘Magnetometer Sensor’ are been developed in an

another project.

 4

The basic principal which governs the control of orbit and rotation of the satellite is the law of

conservation of angular momentum. A reaction wheel placed inside the satellite is rotated at a controlled

speed for a calculated duration. This in turns rotates the satellite in opposite direction in order the

conserve the total Angular momentum of the satellite.

The code has been written for the microcontroller (TI MSP430) which reads the gyroscopic sensor,

controls the reaction wheel and communicates with the central processor of the satellite. The

verification has been done by downloading the code onto the circuit with the microcontroller TI

MSP430F2274. All the modules necessary for the communication with the central processor have been

written and tested. The modelling for the system has been done in UML through Visual Paradigm and

the compilation, simulation and assembly code generation along with downloading onto the chip has

been done by IAR Embedded Workbench for MSP430.

All the newly developed class-diagrams, Sequence diagrams and Use-case implementations have been

integrated into the overall ARAMIS satellite code and model.

 5

TABLE OF CONTENTS

Title Page……………………………………………………………1

Acknowledgements ………………………………………………....2

Abstract…………… ………………………………………………..3

Table of Contents……………………………………………………5

1. Introduction 6

2. Description of the devices 9

 2.1 Micro Controller 9

 2.2 Motor 13

 2.3 Motor Driver 16

 2.4 Gyroscope 20

3. System Specifications 24

4. System Design 29

5. Implementation 30

 5.1 Description of Classes and Packages 31

 5.2 Details of Major Classes 33

 5.2.1 Motor Driver 33

 5.2.2 Gyroscope 41

6. Conclusion 44

7. Personal Comments on Internship and Stay in Torino 45

 6

1. INTRODUCTION

The Politecnico di Torino has developed a satellite called PiCPoT (Piccolo Cubo del Politecnico di

Torino) in 2006, which had as its main purposes the test on the operation of commercial components

(COTS) in space and the acquisition of images and spatial parameters of . In addition to these goals of

scientific-technical, the establishment of this satellite has also had the advantage of involving many

departments of the Politecnico di Torino in the design of the modules that make up the satellite

involving teachers, researchers, students and doctoral candidates. The satellite PiCPoT has a cubic shape

of side about 12 cm. In five of the six faces of PiCPoT there is a solar panels that convert solar energy

into electrical energy used by electronics on board, while the sixth face of the cube have two antennas

used for communication with the ground station and the cameras. The creation of this satellite was

completed in July 2006 with the launch of the satellite through the Russian Dnepr carrier. Due to a

problem of the hydraulic pitcher has not been possible to verify the behaviour of the satellite in orbit.

With the experience gained during the design of the satellite PiCPoT have created the basis for a second

project, the satellite Aramis. The project had the main PiCPoT "defect" to be developed ad-hoc for the

mission, so we had a usability project very low which made the high cost of design. By ARAMIS

satellite we want to introduce the concept of modularity of the satellite to remedy the defects in PiCPoT.

Defining the standard modules are compatible with each other, the modules can be assembled in the

quantities and manner required by the mission. This approach reduces costs of design and development

as the modularity of design allows the use of modules in different missions with different architectures

thereby spreading the cost of the project.

ARAMIS project contains various modules which have been divided into various categories. Figure 1

shows the various modules and sub-modules defined in ARAMIS.

This report deals with the design, implementation and testing of the ‘Attitude and Orbit

Subsystem’ (1B2 in figure 1) of the satellite ARAMIS.

 7

Figure 1: ARAMIS Modules

The detailed description of the ‘Attitude and Orbit Subsystem’ module is shown in Figure 2.

Among the various other things, the present work focuses on design and implementation of the

submodules ‘Reaction Wheel Actuator’ , ‘Gyroscopic Sensor’ and ‘Centralized Attitude Controller’ .

The position and link between all these sub-modules can be seen in the figure 2.

 8

Figure 2: Attitude and Orbit Subsystem

 9

2. DESCRIPTION OF THE DEVICES

Various devices has been used in designing and implementing the required system. The major devices

among them are:

1) Microcontroller

2) Motor

3) Brushless Motor Driver

4) Gyroscope

2.1) Microcontroller

The controller must have the necessary features to manage the two drivers, sensors, A / D conversions and

communication with the outside (in UML called AOCS).

The controller must have the following characteristics:

• 6-pin to operate the brushless motor driver

• 5 pin to operate the solenoid driver.

• 1 timer for timed feeding of the solenoid

• 1 timer for timed circuit set / reset of the magnetometer

• 2 pin to force the signals to set and reset the magnetometer

• 1 A / D converter.

• 2-channel (pin) for ADC for the signals from the gyroscope

• 2-channel (pin) for ADC for the signals from the magnetometer

• 1 channel (pin) for ADC for the signal from the solenoid driver.

• 1 UART communication interface used for communication and testing.

• low consumption.

So the minimum features that the controller must have are:

• at least 2 timers.

• an ADC with at least 5 channels.

• 12-pin general purpose.

• A UART interface.

• low power consumption.

 10

The controller is chosen MSP430F2274 (family MSP430x2xx) of Texas Instruments, which has the following

characteristics:

• Low voltage (1.8 V to 3.6 V).

• Low Power (Active mode: 270µA at 1MHz, 2.2 V Standby mode: 0.7 µA).

CPU • 16-bit RISC.

• Configurable Clock up to 16MHz internally.

• 2 timers (Timer_A, Timer_B) to 16 bits.

• Universal Serial Communication Interface (UART, SPI, I2C).

• A / D 10-bit, 200-Ksps, internal voltage reference.

• Package 38-pin TSSOP.

The pinout of this microcontroller is in the Figure 3 below.

Figure 3: Pinout of the Microcontroller MSP430F2274

 11

The schematic of this structure is shown in the figure 4:

Figure 4: Schematic of the Microcontroller MSP430F2274

As can be seen in the schematic diagram, the microcontroller is powered with a voltage of 3.3 V via

pins 2 and 16. On pin 5 and 6 has been connected to a quartz X1 (SE2418CT) with resonance frequency

 12

of 32.768 KHz with two external capacitors (C20 and C21) of the value of 12pF, as recommended by

the datasheet of quartz.

Connectors J11 and J14 connectors are used for programming (microcontroller) via 4-wire JTAG and

JTAG 2-Wire (Spy Bi-Wire).

The J12 connector is the connector used for serial communication.

The A / D converter will be operated with a clock, using the internal oscillator to the microcontroller.

 13

2.2) Motor

In order to rotate the wheel of inertia a reaction wheel or motor is required. The motor chosen to be used

in ARAMIS is brushless motor of the EC 32 flat Maxon Motor. This motor fits best to our requirements

of high reliability, small weight, high torque and easily integrable into the satellite.

Various details of the motor is in the next diagram:

 14

Figure 5: Motor Datasheet

 15

The schematic of the connections of the overall circuit made in order to control the reaction wheel is as

shown in the figure:

Figure 6: Schematic of overall circuit

 16

2.3 Brushless Motor Driver

It is necessary to control the brushless motor so that it does rotate the wheel of inertia at a speed

imposed by the desired angular momentum. The control is imposed by the means of a Motor Driver

which can communicate with the processor and accordingly gives signals to the motor.

To drive the motor you chose to use the driver for brushless motors A8904 of Allegro Microsystems.

Its main features are :

• Typical voltage power control logic at 5V.

• Supply voltage of the load (motor) from 4 to 14V.

• Integrated three-phase bridge.

• Ability to provide output currents up to 1.4 A (3A peak)

• Programming serial speed and direction of rotation

• Serial programming of the maximum current absorbed by the load

• Programming of the serial number of poles of motor

• Integrated speed control based on back-EMF detection

• Package 24-pin SOIC.

The pin driver is shown in Figure 7.

 17

Figure 7: Pin Driver A8904

Serial Programming of the Brushless Motor Driver

The commands are sent from the microcontroller through the serial 29 bit.

When CHIP SELECT is low, the data is placed on the serial port on the rising edge of the clock with the MSB

(D28) first.

At the end of the programming of the driver CHP SELECT returns to the logical value high.

The timing to be observed are given in the following figure 8.

 18

Figure 8: Timing for programming driver A8904

Through the 29-bit (D0. .. D28) programming, you can set the maximum current that can absorb the engine, the

number of poles of the motor, the direction and speed of rotation and more.

The programming of the desired speed is achieved using 14-bit (D5. .. D18), these bits are used to set the total

count expresses the number of oscillations must count the speed control to the desired speed, i.e. :

To set this speed should be set to logical high value bits D14, D13, D11, D10, D9, D8, D7, D6 and D5.

Figure 9: bit values associated with the programming

 19

The schematic of the Brushless Motor Driver is as follows:

Figure 10: Schematic of the Brushless Motor Driver

 20

2.4 Gyroscope

Gyroscope measure the temperature of the system and the angular rate of the satellite.

The gyro sensor must be able to measure the angular velocity around the axis perpendicular to the tile of

PowerSupply. Maintaining the same system of reference of the magnetometer, i.e., assuming that the

solenoid and then printed lies at x, y, the gyroscope must acquire the angular velocity around the z axis

as shown in following figure 11.

Figure 11: Axis measuring gyro sensor

This sensor must be capable of measuring speed of rotation of the satellite equal to ± 2 rpm (± 12 ° / s).

2.4.1) Gyro sensor

The characteristics that the required sensor must have are:

• Measuring z axis (yaw-rate).

• Low consumption.

• Measuring range greater than or equal to ± 12 ° / s.

The sensor chosen is the ADXRS401 Analog Device.

Its main features are:

• Measurement of the angular velocity around the z axis, i.e. the axis perpendicular to the surface

mounting of the sensor.

• Supply Voltage 5V typical.

• Measuring range ± 75 ° / s.

• Output voltage at 0 ° / s typical 2.5 V.

• Typical Sensitivity 15mV / ° / s.

• Integrated temperature sensor.

• Package 7mm x 7mm x 3mm 32-pin BGA surface mount.

• Consumption of up to about 8MA.

The pinout of this sensor is shown in following figure which represents the component side seen from

the bottom:

 21

Figure 12: Gyroscopic sensor seen from the bottom

The 32-pin BGA component are reported in pairs in 16-pin logic is 12-pin physical interior is a replica

of the external pin.

This solution probably has been adopted to make the PCB mounting more stable, without increasing the

footprint of the component.

Referring to the pinout above, the gyro sensor output will be::

where:

• represents the sensitivity of the gyro sensor in mV / ° / s.

• is the angular velocity in ° / s, which varies from -12 ° / s at +12 ° / s.

• is the tension with

Built in gyro sensor is a temperature sensor, whose output voltage is:

where:

• represents the sensitivity of the temperature sensor in mV / ° C.

• is the temperature expressed in ° C ranging from -40 ° C to +85 ° C. 85°C.

 22

2.4.2) Conditioning circuit

The schematic circuit packaging is the figure below.

Figure 13: Gyroscopic schematic

 23

The output voltages of the sensor must be scaled so that it can be acquired from the converter analog / digital

controller.

It is therefore necessary to constrain the two voltages so that they remain in a range between 0 and 2.5 V.

The 0V represent the minimum output of the gyroscope and the 2.5V represents the maximum output of

the gyroscope.

The above is an important condition as the code in the Gyroscope Class has been written assuming the above

condition is fulfilled.

 24

3. SYSTEM SPECIFICATIONS

Use Case Diagram

ATTITUDE CONTROL SUBSYTEM

(1B232 CENTRALIZED ATTITUDE CONTROLLER)

The following Use-Case diagram shows the use-cases which has to be implemented in the ‘Centralized Attitude

Controller’ subsystem.

Various Use-Cases has been categorized in terms of the action they perform, i.e. send a command to the module,

get the satellite housekeeping data from the module containing the information, send a command to read / write

some data, set the configuration of the module etc.

Figure 14: Use Case Diagram

 25

The detail/purpose of each Use-case is as follows :

Name Documentation

 1B232 Centralized Attitude

Controller

The object running on the On-Board Computer which controls

the attitude of the whole satellite.

 Module Commands The CPU actor sends a data-less command to the System.

The CPU can use up to 8 different Module Command

commands, to issue as many commands to the system.

It uses the SPI Protocol - Command Only use case, by issuing

the CMD_COMMAND_x command, where x (0..7) identifies

the command type; x does not identify the sequence in which

messages are written, but the Designer-defined type (therefore

the effect of the command).

The Designer can use as many message types he wants.

This use case is optional, therefore the Configurator shall

#define an identifier whose name is contained in the tagged

value define.

 EnableWheel Enables reaction wheel. Any further action of reaction wheel

will be carried on.

Uses Module_Commands use case of 1B45 package, with the

CMD_COMMAND_0 command.

 DisableWheel Disables reaction wheel. Any further action of reaction wheel

will be disregarded. If the reaction wheel is in process of

rotation while the DisableWheel command is given, the wheel

is stopped immediately.

Uses Module_Commands use case of 1B45 package, with the

CMD_COMMAND_1 command.

 deactivateGyroscope Disables gyroscope (removing power supply).

Uses Module_Commands use case of 1B45 package, with the

CMD_COMMAND_2 command.

 activateGyroscope Enables gyroscope (giving power supply and sampling its

output).

Uses Module_Commands use case of 1B45 package, with the

CMD_COMMAND_3 command.

 26

 Get Module Housekeeping Returns last measured housekeeping data (see use case

Housekeeping for details).

It uses the SPI protocol - Read Data use case by issuing the

CMD_GET_HOUSEKEEPING command.

This use case is optional, therefore the Configurator shall

#define an identifier whose name is contained in the tagged

value define.

 getSpin It measures and returns the rotational speed around z axis with a

signed 16-bits integer; unit is 0.0001 rad/s.

It provides housekeeping data (spin) toGet Module

Housekeeping use case of 1B45 package, in the

Housekeeping_commons[0] variable.

 getTemperature It measures and returns the temperature with a signed 16-bits

integer; unit is 0.01°C.

It provides housekeeping data (temperature) toGet Module

Housekeeping use case of 1B45 package, in the

Housekeeping_commons[1] variable.

 Read Module Data The CPU actor reads up to 256B of Designer-defined data from

the System.

The CPU can use up to 8 different Read Module Data

commands, to read messages from as many different

subsystems. It uses the SPI Protocol - Read Data use case, by

issuing the CMD_READ_DATA_x command, where x (0..7)

identifies the message type; x does not identify the sequence in

which messages are read, but the Designer-defined type

(therefore the source subsystem).

The Designer can use as many message types he wants.

This use case is optional, therefore the Configurator shall

#define an identifier whose name is contained in the tagged

value define.

 isRotating Checks whether the reaction wheel is in process of rotation with

respect to satellite or is stopped.

Returns 1 if the motor is running and returns 0 if the motor is

stopped.

Uses Read Module Data use case of 1B45 package, with the

CMD_READ_DATA_0 command which returns a 1-byte

message containing the status of the reaction wheel.

 27

 Write Module Data The CPU actor sends up to 256B of Designer-defined data to

the System.

The CPU can use up to 8 different Write Module Data

commands, to issue messages to as many different subsystems.

It uses the SPI Protocol - Write Data use case, by issuing the

CMD_WRITE_DATA_x command, where x (0..7) identifies

the message type; x does not identify the sequence in which

messages are written, but the Designer-defined type (therefore

the destination subsystem).

The Designer can use as many message types he wants.

This use case is optional, therefore the Configurator shall

#define an identifier whose name is contained in the tagged

value define.

 actuateReactionWheel It generates a user-defined angular momentum by means of the

reaction wheel. The momentum is generated around z axis.

Positive momentum will push x axis towards y axis

If angular momentum is zero, the wheel is stopped.

If momentum is higher than max allowed, wheel will rotate at

max speed.

If momentum is lower than min allowed, wheel will rotate at

min speed.

Angular momentum is signed 16-bits integer in units of 10

gcm2/s.

Uses Write Module Data use case of 1B45 package, with the

CMD_WRITE_DATA_0 command with a 2-byte message

containing the angular momentum with MSB first/last (TBD).

 rotateReactionWheel rotates reaction wheel by a user-defined number of turns.

Angle is a signed 16-bits integer; unit is 0.1kgcm2rad

Uses Write Module Data use case of 1B45 pacvkage, with the

CMD_WRITE_DATA_1 command with a 2-byte message

containing the speed (in rpm) at which the reaction wheel has to

be rotated, with MSB first/last (TBD).

 onflightCalibration Allows to change value of wheel inertia, offset and sensitivity

of gyroscope, using three signed 16-bits integers. Units are:

TBD, TBD, TBD.

Uses Set Module Configuration use case of 1B45 package,

with:

• gyroscope spingain in field gysoscope_gain_s,

• gyroscope spin offsetin field gysoscope_offset_s,

 28

• gyroscope temperature gain in field gysoscope_gain_T,

• gyroscope temperature offsetin field gysoscope_offset_T,

• Moment of Inertia of the reaction wheel in Inertia_motor.

 Set Module Configuration Changes some TBD Designer-defined configuration parameter

(if any).

The Designer shall define all configurable parameters (if any)

in the type t_Configuration.

This use case is different from the Configure Module use case,

as the latter allows a compile-time configuration, while this use

case allows run-time configuration changes (if foreseen).

This use case is optional, therefore the Configurator shall

#define an identifier whose name is contained in the tagged

value define.

 29

4. SYSTEM DESIGN

Sequence Diagram

MOTORDRIVER - ROTATE

Figure 15: Timing Diagram: Rotate

 30

5. IMPLEMENTATION

1B21 Class Diagram :

The following is the class diagram developed for implementing the system. The details for each specific

class can be found in the next section.

Figure 16: Class Diagram

 31

5.1 Description of Classes and Packages

The description of various classes and packages used in the implementation of the system is as follows:

Name Documentation

 Common

 MotorDriver Controls the motor by setting the desired speed to the motor. It

generates and sends necessary signals to the motor driver 8904

which in turns control the motor.

 Bk1B45_Slave This package contains all specifications of the Peripheral

(slave) side of the Bk1B45 Subsystem Serial Data Bus. In these

diagrams, the System is the Peripheral side.

It comprises two Use Case diagrams:

• Housekeeping Use Case Diagram, which incorporates

all use cases related to reading from the slave its

housekeeping data and the related history and statistics,

system status; to issue commands to the system like

wake-up, standby and reset, and to read/write application-

specific (Designer-defined) data.

• Supply, Enable, Configuration Use Case Diagram,

which incorporates use cases related to power supply,

static configuration and testing of the system.

The document only describes commonly-used functions of a

Peripheral (slave), and the Designer may add as many

functions as he requires. Yet any added function should comply

as much as possible to the basic protocol described herein.

Furthermore,not all functions described in these use case

diagrams need be implemented. Most use cases are optional. If

used, they shall be implemented as specified. If not used, they

can be disabled by removing appropriate attributes from the

relevant classes, as indicated in the Configure Module use

case.

 Buffers This class implements a set of fixed-length buffers, to be used

for Write Module Data and Read Module Data use cases,

respectively. Up to MAXBUFFERS buffers of 256 bytes each

can be allocated (provided that the processor has enough

memory).

Each buffer can be used for either Write or Read operation,

although the class guarantees that at least one buffer is allocated

for both Write and Read use case.

In particular, for either Write (if command =

 32

CMD_WRITE_DATA_x) or Read (for command =

CMD_READ_DATA_x):

• throws away any buffer of that type still being written but

not yet complete (namely, for which the ready() operation

has not yet been called, if any)

• finds the first available buffer of that type

• locks it and declares it being written; the user shall then

fill the buffer and call the ready() operation when

finished. After that, the buffer is queued...

• returns a pointer to it

Returns null if no buffer of the chosen type is available or

command is not supported.

 t_Commands Lists all available command codes and the corresponding value.

There is one command for each use case,

Removing a command from this class removes the

corresponding use case.

Adding additional commands requires adding the appropriate

code to properly interpret and execute the command.

 Test for testing the motordriver class. It sends various commands to

the motordriver class.

 t_sensor The type to be used to store sensor data

 CommandInterpreter Interprets various commands.

 Housekeeping Does the housekeeping related activities, constantly monitors

housekeeping parameters.

 Gyroscope Measures the spin and the temperature.

 ADC Converts analog signals into Digital signals capable of being

read/write by processor.

 t_Configuration Defines various on-flight configurable parameters.

 TimerA Timer for measuring and calculating time.

 33

5.2 Details of major classes

Some of the classes like MotorDriver have been newly developed, some other classes like

Housekeeping, CommandInterpreter etc. have been derived from 1B45 project and redefined or

extended, while few classes like Timer, ADC & Buffer have been simply used from 1B45 project.

The classes which have been newly developed are:

1) MotorDriver

2) Gyroscope

5.2.1 MotorDriver

Controls the motor by setting the desired speed to the motor. It generates and sends necessary signals to the motor

driver 8904 which in turns control the motor.

MotorDriver Class consists of :

1) Attributes

2) Operations

MotorDriver ->Attributes

private PORT_RESET : port_address = &P3OUT

Documentation Selects the port on which the reset signal will be sent to the motor driver 8904.

private BIT_RESET : byte = BIT3

Documentation Select the pin for the BIT_RESET function on the PORT specified.

private PORT_CHIP_SELECT : port_address = &P3OUT

Documentation Selects the port on which the chip select signal will be sent to the motor driver

8904.

private BIT_CHIP_SELECT : byte = BIT6

Documentation Select the pin for the CHIP_SELECT function on the PORT specified.

private PORT_CLOCK : port_address = &P1OUT

Documentation Selects the port on which the clock signal will be sent to the motor driver 8904.

private BIT_CLOCK : byte = BIT5

Documentation Select the pin for the CLOCK function on the PORT specified.

private PORT_DATA_OUT : port_address = &P1OUT

Documentation Selects the port on which the data out signal will be sent to the motor driver 8904.

private BIT_DATA_OUT : byte = BIT6

Documentation Select the pin for the DATA_OUT function on the PORT specified.

 34

private OSC_FREQ : ulong = 2000000

Documentation Frequency of Oscillator used in Hz.

private POLES : ushort = 4

Documentation Number of poles of motor. Shall be either 4, 8, 12 or 16.

private CURRPROG : short = 0

Documentation Current limitation and transconductance gain:

0:1.2A; 500mA/V

1:0.6A;250mA/V

2:1A; 500mA/V

3:0.5A;250mA/V

4:0.6A; 500mA/V

5:0.3A;250mA/V

6:0.25A; 500mA/V

7:0.125A;250mA/V

private CURRWATCHDOG : ushort = 40

Documentation Absolute value of charge current (in uA) for the watchdog timer. Shall be either 10,

20, 30 or 40.

public motor_running_time : long = 0

Documentation this variable stores the time remaining in ms for which the motor has to be rotated.

private motor_enable : byte

Documentation it decides where the motor is enabled or disabled.

motor_enable==0 means that motor is disabled and any command given to motor

will be disregarded.

motor_enable==1means that motor is enabled and any command given to motor

will be executed.

private SPEED : short = 3000

Documentation speed in rpm at which of the motor should be rotated by the commands

rotateReactionWheel() and actuateReactionWheel().

presently choosen as 3000

More efficient decision of the motor speed according to the running time can be

taken at a later stage by the Designer.

public BIT_MOTOR_ROTATING : byte const = BIT4

Documentation set the bit in t_Status:statusWord which corresponds to the state of the

motor(rotating/stop).

 35

MotorDriver ->Operations

public init_motor()

Code *(PORT_CHIP_SELECT + (&P1DIR-&P1OUT)) |= BIT_CHIP_SELECT;

*(PORT_CLOCK + (&P1DIR-&P1OUT)) |= BIT_CLOCK;

*(PORT_DATA_OUT + (&P1DIR-&P1OUT)) |= BIT_DATA_OUT;

*(PORT_RESET + (&P1DIR-&P1OUT)) |= BIT_RESET;

clock(0);

chip_select(1);

reset();

EnableWheel();

motor_running_time=0;

status.statusWord = status.statusWord & (~BIT_MOTOR_ROTATING);

//set the MOTOR_ROTATING status to stop

config.Inertia_motor = 413.9;

Documentation Initializes the signals necessary to run the motor.

public rotate(speed : short)

Parameter speed

Multiplicity Unspecified

Documentation the speed in rpm at which the motor should be rotated.

Type short

Direction in

Code

if(speed==0)

 status.statusWord = status.statusWord & (~BIT_MOTOR_ROTATING);

else

 status.statusWord = status.statusWord | BIT_MOTOR_ROTATING;

generatepattern(speed);

Documentation Drives the motor to rotate clockwise (if speed is positive) or counterclockwise

(ifspeed is negative) at angular speed equal to speed rpm.

The routine terminates immediately, while the motor keeps on rotating until next

command.

public actuateReactionWheel(moment : long) : void

Parameter moment

 36

Multiplicity Unspecified

Documentation the moment which the motor should provide. it is used for

calculating the time at which the motor has to be rotated at

SPEED rpm.

motor_running_time =1000* moment / ((config.Inertia_motor

+ Inertia_Satellite) * SPEED * (2 * 3.14 / 60));

Type long

Direction in

Code //computer the time in ms for which motor has to be rotated.

motor_running_time =1000* moment / (config.Inertia_motor * SPEED * (2 *

3.14 / 60));

rotate(SPEED);

Documentation turns the satellite by the specified moment using the rotation of motor.

the motor speed is set to SPEED rpm.

If doesn't check if the motor is already running or not, which has to be checked by

the processor giving the command.

The routine terminates immediately, while the motor keeps on rotating for the

required time.

public rotateReactionWheel(turns : short)

Parameter turns

Multiplicity Unspecified

Documentation Number of turns the wheel should rotate.

Type short

Direction in

Code motor_running_time = 1000 * turns / (SPEED *60);

rotate(SPEED);

Documentation Rotates the reaction wheel by a user-defined number of turns specified in the

parameter turn.

The routine terminates immediately, while the motor keeps on rotating for the

required time.

 37

public stopRotation()

Code rotate(0);

Documentation Drives the motor to stop immediately.

public generatepattern(speed : short)

Parameter speed

Multiplicity Unspecified

Documentation speed is the angular speed in rpm with which the motor should

be rotated.

Type short

Direction in

Code unsigned long prog=0, count=0;

char stop, direction;

//init_motor();

if (speed == 0) {

 stop = 1;

 count =0;

 direction = 0;

 }

else if (speed > 0) {

 count = 60*OSC_FREQ/speed;

 direction = 0;

 stop = 0;

}

else {

 count = 60*OSC_FREQ/ (- speed);

 direction = 1;

 stop = 0;

}

// compute the programming word

prog = (((count/16) & 0x1FFF) << 5) | ((long) direction) << 25 | ((long) stop) <<

2 | (motor_enable & 0x1);

prog |= (CURRPROG & 0x4) << 1 | (CURRPROG & 0x2) << 3 |

((long)CURRPROG & (long)0x1) << 28;

switch (CURRWATCHDOG) {

case 10: break;

case 20: prog |= (long)0x2 << 26; break;

case 30: prog |= (long)0x1 << 26; break;

case 40: prog |= (long)0x3 << 26; break;

 38

}

switch (POLES) {

case 4: prog |= (long)0x1 << 21; break;

case 8: break;

case 12: prog |= (long)0x3 << 21; break;

case 16: prog |= (long)0x2 << 21; break;

}

clock(0);

chip_select(0);

sendpattern(prog);

chip_select(1);

Documentation This function generates a 29-bit pattern code and using sendpattern() send it to the

8904(motor driver) in order to program it to rotate the motor at the specified speed.

public sendpattern(pattern : long)

Parameter pattern

Multiplicity Unspecified

Documentation pattern is the 29-bit programming word which is

sent to the motor driver(8904) in order to set various

parameters of the motor.

Type long

Direction inout

Code for(i = 28; i >= 0; i--) send_bit(pattern & (((long) 0x1) << i));

Documentation Send the 29 bit programming word pattern to 8904 motor driver. This 29-bit word

controls various parameters of reaction wheel like: rotation speed, direction,

watchdog current, brake, sleep mode, step mode etc.

public send_bit(value : long)

Parameter value

Multiplicity Unspecified

Type long

Direction in

Code data_out(value);

clock(1);

clock(0);

Documentation Send a bit to the motor driver's data_in port.

 39

private data_out(value : long)

Parameter value

Multiplicity Unspecified

Documentation valuewill be checked for zero or non-zero condition.

Type long

Direction in

Code *PORT_DATA_OUT =(*PORT_DATA_OUT & ~ BIT_DATA_OUT) | (value

? BIT_DATA_OUT: 0);

Documentation Send the data (29-bit programming word) serially to the motor driver (8904).

private chip_select(value : byte)

Parameter value

Multiplicity Unspecified

Documentation valuewill be checked for zero or non-zero condition.

Type byte

Direction in

Code *PORT_CHIP_SELECT = (*PORT_CHIP_SELECT & ~

BIT_CHIP_SELECT) | (value ? BIT_CHIP_SELECT: 0) ;

Documentation Controls the chip select signal on the motor driver (8904).

Sets chip select to 1 when value<>0; else sets chip select to 0.

private clock(value : byte)

Parameter value

Multiplicity Unspecified

Documentation valuewill be checked for zero or non-zero condition.

Type byte

Direction in

Code

*PORT_CLOCK = (*PORT_CLOCK & ~ BIT_CLOCK) | (value ?

BIT_CLOCK: 0) ;

Documentation Send the Clock signal to the motor driver (8904).

private reset()

Code *PORT_RESET = (*PORT_RESET & ~BIT_RESET) | 0;

*PORT_RESET = (*PORT_RESET & ~BIT_RESET) | BIT_RESET;

 40

Documentation Controls the reset signal on the motor driver (8904).

public motor_running_time_decrease() : void

Code if(motor_running_time>0) {

 motor_running_time--;

}

else if (motor_running_time==0) {

 stopRotation();

}

Documentation Decreases the motor_running_time by 1 ms.

public EnableWheel() : void

Code motor_enable = 0x1;

Documentation Enables reaction wheel. Any further action of reaction wheel will be carried on.

public DisableWheel() : void

Code motor_enable = 0x0;

Documentation Disables reaction wheel. Any further action of reaction wheel will be disregarded.

 41

5.2.2 Gyroscope

Controls the motor by setting the desired speed to the motor. It generates and sends necessary signals to

the motor driver 8904 which in turns control the motor.

Gyroscope Class consists of :

1) Attributes

2) Operations

Gyroscope ->Attributes

private Temp_Min : short = -40

Documentation This is the temperature corresponding to which the ADC10 temperature

output is 0 (minimum).

This is the minimum temperature in °C which the Gyroscope (ADXRS401)

can read.

private Temp_Max : short = 85

Documentation This is the temperature corresponding to which the ADC10 temperature

output is 1023/4095(maximum).

The maximum temperature in °C which the Gyroscope (ADXRS401) can

read.

private Speed_Min : short = -75

Documentation This is the spin corresponding to which the ADC10 spin output is 0

(minimum).

This is the minimum spin in °/s which the Gyroscope (ADXRS401) can read.

private Speed_Max : short = 75

Documentation This is the spin corresponding to which the ADC10 spin output is 1023/4095

(maximum).

This is the maximumspin in °/s which the Gyroscope (ADXRS401) can read.

private GYROSCOPE_Z : int = INCH_2

Documentation the ADC channel on which gyroscope spin output is connected.

 42

private GYROSCOPE_T : int = INCH_3

Documentation the ADC channel on which gyroscope temperature output is connected.

public ADC_max_value : short = 1023

Documentation Maximum output of ADC. 1023 for 10-bit ADC. 4095 for 12-bit ADC.

Gyroscope ->Operations

public init_GYRO()

Code config.gyroscope_gain_s = (unsigned short) (1000.0 * (Speed_Max -

Speed_Min) / ADC_max_value) ;

config.gyroscope_offset_s = (unsigned short) (1000.0 * (0 - Speed_Min) /

config.gyroscope_gain_s) ;

config.gyroscope_gain_T = (unsigned short) (1000.0 * (Temp_Max -

Temp_Min) / ADC_max_value) ; // ADC_max_value = 1023 for 10-bit ADC

config.gyroscope_offset_T = (unsigned short) (1000.0 * (0 - Temp_Min) /

config.gyroscope_gain_T) ; //gyroscope_offset_T is 327 which is the ADC o/p

for 0°C

//adc.ADC();

Documentation It initializesgyroscope_gain_s,gyroscope_gain_T,gyroscope_offset_s and

gyroscope_offset_T to the required value. These values should be adjusted

with correct ones obtained by calibration process.

public read_spin() : t_sensor

Code t_sensor val;

t_sensor spin;

adc.select(GYROSCOPE_Z,4);

adc.start();

while (adc.isReady()==false) ;

val=adc.read();

spin = (t_sensor)((val - config.gyroscope_offset_s) * (long)

config.gyroscope_gain_s) ;

return spin;

Documentation It measures and returns the rotational speed around z axis with a signed 16-

bits integer; unit is 0.0001 rad/s.

 This operation uses the ADC(from Common) that returns a digital value.

 This value is software adjusted, offsetted by gyroscope_offset_s and then

multiplied by gyroscope_gain_s and to obtain correct value for spin measure.

 43

public read_temp() : t_sensor

Code t_sensor val;

t_sensor temperature;

adc.select(GYROSCOPE_Z,4);

adc.start();

while (adc.isReady()==false) ;

val=adc.read();

temperature = (t_sensor)(((val - config.gyroscope_offset_T) * (long)

config.gyroscope_gain_T) / 10) ;

return temperature;

Documentation It measures and returns the temperature with a signed 16-bits integer; unit is

0.01°C.

 This operation calls ADC that returns a value between 0 and

ADC_max_value(1023 or 4095).

 This value is software adjusted, divided by gyroscope_gain_T after being

offset by gyroscope_offset_T which is the ADC output for temperature =

0°C.

 44

CONCLUSION

All the modules for ‘Reaction Wheel Actuator’ and ‘Gyroscopic Sensor’ have been successfully coded

using UML in C++. The verification has been done by downloading the code onto the circuit with the

microcontroller TI MSP430F2274. All the modules necessary for the communication with the central

processor have been written and tested. The modelling for the system has been done in UML through

Visual Paradigm and the compilation, simulation and assembly code generation along with downloading

onto the chip has been done by IAR Embedded Workbench for MSP430.

 45

Personal Comments on Internship and Stay in Torino

I was fortunate enough to get this offer to come to Politecnico di Torino, Italy for a summer internship.

This internship has increased my technical, interpersonal and communication skills significantly through

the enriching exposure of the technology, culture and society. The technology and infrastructure present

here is as expected ‘great’. Working on the development of a satellite is quite interesting. The thought

that ‘you are among the team which is developing a satellite, which is going to be launched soon’ is

itself great and motivating.

I learnt many new software, tools , techniques and analysed various circuits. Further I developed

modules and programmed the microcontroller to control the spin of the satellite. I gained a much better

understanding of the satellites and how they are developed. The meetings which I attended(even though

quite a few) gave me an idea of professional discussions and how multi-disciplinary projects are

coordinated and handled. All these things will surely help me in my future.

My stay at Torino, Italy has been very comfortable and pleasant. I have been living at Borsellino

Residence near Politecnico. The residence is quite nice providing all the necessary facilities including

well furnished room, Internet, Game Room, TV Room, 24 hrs Reception, Laundry etc.

Also the transport system of the city is nice and convenient to use. The railway station Torino Porta

Nuova have trains to all major places in Italy and in Europe. Due to it, very few of my weekends have

been in Torino, mostly I went for some visit to some good place on the weekends. I liked this country a

lot(as I did a lot of travelling) and even the people are quite friendly.

I will surely like to come here again in future if I get a chance (for Masters or another internship).

Actually the way I got this internship was little amazing and surprising.

I was in my final year of my graduation B.E. (Hons) Electrical & Electronics from BITS Pilani, India. I

applied to the professor long back for a 6-months internship from January-June 2009, but unfortunately

didn’t get through. No regrets, I did the internship in a company in New Delhi, India near my home.

Fortunately I have also got a Job in a reputed multinational company in Bangalore (CISCO Systems

Inc., Bangalore, www.cisco.com). I was just waiting for the starting of the job and came to know that it

will be probably from 1
st
 July, 2009 while my current internship would be ending by 14

th
 June, 2009.

I was just waiting for the internship to end and job to begin. Suddenly one morning I checked my mail

and was surprised to see an email from the Professor Leonardo which said that he has got extra funding

and wants to call me for an internship and asked if I am still available?? ☺

The first thought that came to my mind is… ‘ohhh no, how is this possible’. Alas, I can’t go, because

my job joining is just after the current internship and I don’t have any time in between.� I tried to

postpone my joining, but that wasn’t an option I had. Still I told the professor that I am interested and

asked for the details. But unluckily didn’t get any reply for many days. I simply interpreted that I can’t

go for this and should better forget it.

But suddenly few days after I came to know(unofficially) that the job joining is getting postponed

(because of recession, or company policy or whatever) and simultaneously got a confirmed reply from

 46

the professor about the internship. There I was: everything getting rearranged automatically and paving

way for me to go Italy. Few more formalities and discussion over the dates of internship and ‘All set’.

Finishing previous internship in Delhi on 13
th
 June, fly to Italy on 14

th
 June, back to home from Italy on

13
th
 August and fly to Bangalore for job on 16

th
 August , everything well, internship fits exactly in the

time which otherwise would have been vacations.

A trip to Italy (and even to Switzerland, Spain, Belgium, France….) and that too officially , along with

a nice experience with the latest technology in the field and chance to work on the Satellites, what else

can be better than this??….

