A REPORT

ON

Development of the flight model of an inertial asset control
system for ARAMIS satellite

Submitted by:-

AAKASH JAIN
Final Year Undergraduate Student
BITS Pilani, India

Guided by:-

Prof. Leonardo Reyneri
Department of Electronics,
Politecnico di Torino, Italy

Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129
Torino, ITALY
June-August 2009

1

ACKNOWLEDGEMENTS

I hereby express my deep sense of gratitude to Prof. Leonardo Reyneri, Department of Electronics,
Politecnico di Torino for providing me with a wonderful opportunity in the form of this internship

program.

I take this opportunity to express our heartfelt thanks to Marco Borri and Maurizio Tranchero for their

technical support and guidance.

I am also thankful to all the officials and my colleagues in my department for providing necessary

technical assistance and enthusiastic work environment.

ABSTRACT

The present report discusses the work carried out on the project “Development of the flight model of an
inertial asset control system for ARAMIS satellite”. ARAMIS is the second satellite being developed at
Politecnico di Torino after developing a satellite called PiCPoT (Piccolo Cubo del Politecnico di
Torino) in July 2006, which had as its main purposes the test on the operation of commercial
components (COTS) in space and the acquisition of images and spatial parameters. The present Satellite
ARAMIS will be one step ahead of PiCPoT and the central concept kept in mind is to introduce the
concept of modularity of the satellite which will significantly reduce costs of design and development of
the satellites. Defining various standard modules which are compatible with each other and then

assembling these modules in the quantities and manner required by the mission.

Among the various modules in the ARAMIS Satellite one is the Attitude and Orbit Control Systems
(AOCS) subsystem which is one of the most important subsystems of a satellite. Its main function is to
control the attitude and the orbit of the satellite. It is often the most complex of the satellite subsystems.
Its function is to control the attitude and the orbit of the satellite. This is a critical function because
without attitude or orbit control the satellite will gradually — sometimes in a matter of seconds,

sometimes after several days — become unable to fulfil its mission objectives.

AOCS' chief task is to periodically collect measurements from sensors and convert them into commands
for actuators.
There are two major Attitude Actuators Subsystem(1B21) in the ARAMIS which are:

1) Magnetic Torque Actuator (1B211)
2) Reaction Wheel Actuator (1B212)

Also there are two major Attitude Sensor Subsystem(1B22) which are:
1) Magnetometer Sensor (1B221)
2) Gyroscopic Sensor (1B222)

This project aimed towards development of all the necessary Software and Hardware for the ‘Reaction
Wheel Actuator’ and ‘Gyroscopic Sensor’. While all the necessary software and hardware for other two
module namely ‘Magnetic Torque Actuator’ and ‘Magnetometer Sensor’ are been developed in an

another project.

The basic principal which governs the control of orbit and rotation of the satellite is the law of
conservation of angular momentum. A reaction wheel placed inside the satellite is rotated at a controlled
speed for a calculated duration. This in turns rotates the satellite in opposite direction in order the

conserve the total Angular momentum of the satellite.

The code has been written for the microcontroller (TI MSP430) which reads the gyroscopic sensor,
controls the reaction wheel and communicates with the central processor of the satellite. The
verification has been done by downloading the code onto the circuit with the microcontroller TI
MSP430F2274. All the modules necessary for the communication with the central processor have been
written and tested. The modelling for the system has been done in UML through Visual Paradigm and
the compilation, simulation and assembly code generation along with downloading onto the chip has

been done by IAR Embedded Workbench for MSP430.

All the newly developed class-diagrams, Sequence diagrams and Use-case implementations have been

integrated into the overall ARAMIS satellite code and model.

TABLE OF CONTENTS

Title Page. .. oo 1
Acknowledgementsoiiiiiiii 2
ADSEIACE. .. et e 3
Table of CONtents.ovuiitiieii i 5
1. Introduction 6
2. Description of the devices 9
2.1 Micro Controller 9
2.2 Motor 13
2.3 Motor Driver 16
2.4 Gyroscope 20
3. System Specifications 24
4. System Design 29
S. Implementation 30
5.1 Description of Classes and Packages 31
5.2 Details of Major Classes 33
5.2.1 Motor Driver 33
5.2.2 Gyroscope 41
6. Conclusion 44
7. Personal Comments on Internship and Stay in Torino 45

1. INTRODUCTION

The Politecnico di Torino has developed a satellite called PiCPoT (Piccolo Cubo del Politecnico di
Torino) in 2006, which had as its main purposes the test on the operation of commercial components
(COTYS) in space and the acquisition of images and spatial parameters of . In addition to these goals of
scientific-technical, the establishment of this satellite has also had the advantage of involving many
departments of the Politecnico di Torino in the design of the modules that make up the satellite
involving teachers, researchers, students and doctoral candidates. The satellite PICPoT has a cubic shape
of side about 12 cm. In five of the six faces of PiCPoT there is a solar panels that convert solar energy
into electrical energy used by electronics on board, while the sixth face of the cube have two antennas
used for communication with the ground station and the cameras. The creation of this satellite was
completed in July 2006 with the launch of the satellite through the Russian Dnepr carrier. Due to a
problem of the hydraulic pitcher has not been possible to verify the behaviour of the satellite in orbit.
With the experience gained during the design of the satellite PICPoT have created the basis for a second
project, the satellite Aramis. The project had the main PiCPoT "defect" to be developed ad-hoc for the
mission, so we had a usability project very low which made the high cost of design. By ARAMIS
satellite we want to introduce the concept of modularity of the satellite to remedy the defects in PiCPoT.
Defining the standard modules are compatible with each other, the modules can be assembled in the
quantities and manner required by the mission. This approach reduces costs of design and development
as the modularity of design allows the use of modules in different missions with different architectures

thereby spreading the cost of the project.

ARAMIS project contains various modules which have been divided into various categories. Figure 1
shows the various modules and sub-modules defined in ARAMIS.

This report deals with the design, implementation and testing of the ‘Attitude and Orbit
Subsystem’ (1B2 in figure 1) of the satellite ARAMIS.

ARAMIS

14 System Lewel Hements

e

14- 8 System Project Cffice

1B Subsystem Elements

g

1B1 Power Management Subsyst

1A-B System Assembly, Integration and Testing

1B2 Attitude and Orbit Subsystem

1A- K Ground Support Equipment

1A-L Seftware

141_Common_Codes

1AZ Other Satellites

Figure 1: ARAMIS Modules

The detailed description of the ‘Attitude and Orbit Subsystem’” module is shown in Figure 2.

1C Cther Activities

- R

1C1 Enabling Technologies

1C2 Testing and Component Selection

o

TT&C Telecommunicaion Subsyst

AC3 Soft ware Quaity and Assurance

184 On-Board Daa Handling Subsystem

A1C4 HW and SW Dependability

185 Payload Eubsystemn

188 Mechanipsl Subsyst

AC41 Smart Watch Dog

53]

1C5 Documentation and Qualificaion

1C52 ECSS Standards

2]

18T Gortrollgrs and Supervisor Subsyst

"

1BB Power N

nt Tile

1B3 Telecommunicaion Tile

Among the various other things, the present work focuses on design and implementation of the

submodules ‘Reaction Wheel Actuator’ , ‘Gyroscopic Sensor’ and ‘Centralized Attitude Controller’ .

The position and link between all these sub-modules can be seen in the figure 2.

Figure 2: Attitude and Orbit Subsystem

2. DESCRIPTION OF THE DEVICES

Various devices has been used in designing and implementing the required system. The major devices

among them are:
1) Microcontroller
2) Motor
3) Brushless Motor Driver

4) Gyroscope

2.1) Microcontroller

The controller must have the necessary features to manage the two drivers, sensors, A / D conversions and
communication with the outside (in UML called AOCS).

The controller must have the following characteristics:

* 6-pin to operate the brushless motor driver

* 5 pin to operate the solenoid driver.

* 1 timer for timed feeding of the solenoid

* 1 timer for timed circuit set / reset of the magnetometer

* 2 pin to force the signals to set and reset the magnetometer

* 1 A/ D converter.

* 2-channel (pin) for ADC for the signals from the gyroscope

* 2-channel (pin) for ADC for the signals from the magnetometer
* 1 channel (pin) for ADC for the signal from the solenoid driver.
* 1 UART communication interface used for communication and testing.

* low consumption.

So the minimum features that the controller must have are:
* at least 2 timers.

» an ADC with at least 5 channels.

* 12-pin general purpose.

* A UART interface.

* low power consumption.

The controller is chosen MSP430F2274 (family MSP430x2xx) of Texas Instruments, which has the following
characteristics:

* Low voltage (1.8 Vto 3.6 V).

* Low Power (Active mode: 270uA at IMHz, 2.2 V Standby mode: 0.7 pA).

CPU -« 16-bit RISC.

* Configurable Clock up to 16MHz internally.

* 2 timers (Timer A, Timer B) to 16 bits.

* Universal Serial Communication Interface (UART, SPI, 12C).

* A/ D 10-bit, 200-Ksps, internal voltage reference.

* Package 38-pin TSSOP.

The pinout of this microcontroller is in the Figure 3 below.

TEST/SEWTCK |I
Do E
P2.5/Rose [

O 28 [I] P1.7/TA2/TDO TDI
17 () P1.6/TA1/TDI
26 [IJ P1.5/TA 0/TMS
ovss (I 25 [I) P1.4/SMCLK/TCK
XouT/P2.7 I 2 [P1.37TA2
XIN/Pz.& [I] 6 23 [[J P1.2TAA
RST/NMI/SBWTDIO [T} 7 22 [P1.1TAD
P2.0/ACLK /A0/0A0I0 [T] # 31 [J] P1.0TACLK /ADC 10CLK
P2 A/TAINCLK /SMCLK /A1/0A00 [T} 20 [T] P2.4/TA 2/A4/VREF +/VeREF +/0A 110
P2.2/TA 0/A2/0A011 [T] 10 o [T] P2.3/TA1/A3/VREF +VeREF OA 111/0A10
P3.0/UCB 0STE /UCA OCLK /A5 [T 11] P2.7/A7/0A112
Pa.1/UCB OSIMOYUCB 0SDA [} 12) Pa.6/AB/0ADI2
P3.2/UCE 0SOMIUCE0SCL)12] P2.5/UCA ORXD /UCASOMI
P3.3/UCEoCLK /UCAOSTE [T 14] P2.4/UCA 0TXD /UCAOSIMO
Avss [I] 15) P4.7/TECLK
avce [T e M) FP4.6TEOUTHATS/0AL 12
P4.0/TRBO [T 17 T] P4.5TE2/A14/0A013
P4.4/TB1 [T} 18 1] P4.4TB1/A13/0410
P4.2/TB2 [T} 19 0 [J] P4.3TB0O/A12/0A00

w ko =
)
-

S
i)
n

bt = =]

o

|4}

= a2

| L I e B) IL.I [T T R B

Figure 3: Pinout of the Microcontroller MSP430F2274

10

The schematic of this structure is shown in the figure 4:

.w ¥2=A Y IZH
13343 | 3771
_ d 030sSI
2 0N 9M0) ON W8 41371
IENRETR]
8J0||0JJU0D Odli)leje BlBYDS NMYH
aLvd STVAQUddY
02§32URIH ODIA | BIOINY
SINVAY OL1ISSY.A OT104LNOD I YIWILSIS ON LIvdINGD
519769 -
. w ud g sy soxey U VSN
T FLIZI0ETEEH
|z] | [E
Z W[z End [N 13
m Tz 7w Tod eTfer |
b Ttz s ond o
g TXLO7 N ez 9vd ary] Q
5 K AR S5AY
s x0T ST[57 0xLovan £ed
ar dzt
T [57 Oxuevan 7ed
~ | |=
FEd 9Ed |l ved TEd
LEd 1Ed BC[8¢ LEd ved — uzz nE _ _
o ™ eZ6z v o 2] 1Z]
v T Wfoc vv Ty >
K . VS5V
T1d T TE|1E 0Td ov 8[8 s - e 7 -
TTd TTd (e T1d oloLmgss* sy L[L MAA |7 dzt - ? no
Z1d Z1d EE|EE 77d NX 9] 9 1 ~ _ _.L uoor,
€1d €1 TE|TE ETd nox s[s " | 93]
54 [SRRIVE R] ssaa o7 EEST Av 077 . 7
m SHL/51d SAL/STd szd €[€
51d 51d M 2[T AEE " Y
vaimgs 1T |
iz 524 (-
1T
[wm% foud sad
- 0IZaWwolbodd Jad aJojisuund
a1 |n | st JHIM AT ADS
[B
T T 7
E] T
3
W B
*\ 3 T Z
w72 |
T
I
03A04ddv 31v0 NOILdIHIS30 A3
SNOISIAJY
_ el ﬁ_ a g%_ *

Figure 4: Schematic of the Microcontroller MSP430F2274

As can be seen in the schematic diagram, the microcontroller is powered with a voltage of 3.3 V via

pins 2 and 16. On pin 5 and 6 has been connected to a quartz X1 (SE2418CT) with resonance frequency

11

of 32.768 KHz with two external capacitors (C20 and C21) of the value of 12pF, as recommended by
the datasheet of quartz.

Connectors J11 and J14 connectors are used for programming (microcontroller) via 4-wire JTAG and
JTAG 2-Wire (Spy Bi-Wire).

The J12 connector is the connector used for serial communication.

The A / D converter will be operated with a clock, using the internal oscillator to the microcontroller.

12

2.2) Motor

In order to rotate the wheel of inertia a reaction wheel or motor is required. The motor chosen to be used
in ARAMIS is brushless motor of the EC 32 flat Maxon Motor. This motor fits best to our requirements
of high reliability, small weight, high torque and easily integrable into the satellite.

Various details of the motor is in the next diagram:

13

maxon flat motor

EC 32 Flat motor 32 mm, brushless, 6 Watt

A with Hall sensors B sansorless [*]

El

@11+

ol |

N
._+
_69/

1065 1
==t

PR

Sp-a-clalprugruml:on ezt)
with Hall sansars m

senzorico: [

Eq el T8 -
0.5 !l R0] W5 e e
;
i . _::I\Jx__ﬁ
ok vl
| —1
S
MIREET
03 mn

M1:2

1 Assignad powsar raling

2 Mominal vokage ".l'nt 'D.l.'l D.l:l

2 Moload spesd =1} 2500 BECD

4 Stal wrague mim 20 =

5 Speed Morque graden e midm 470.0 4700

& Maload ourrent mé 110 110

7 Tamminal resistarcs phoss to phase O 4.50 4.5

& Max. permizsibls spesd [=y] 12000 12000

@ Max. confiruous curnent at 5000 pm A 103 1.03

10 Max. confirucus forque at 5000 mm midm 270 B0

11 Max. efficiency % 0.0 BiLG

12 Torue constanl rmim A o5 0.5

12 Speed conslant pmi 1007 1007

14 Mechanicaltime constant ms 0.0 T

1% Fabeor inerlia g 13.0 129

1€ Tamminalinductance phass bo phase mH 1070 1.070

17 Thermal resislance housingrambient Kiw £.8 6.8

18 Thermal resilance winding-housing KW T4 T4

12 Thermal time constart windings H 3.7 a7

20 Thermal lime constart siaar 5 181 181

pe cifications Datalls on page

* Auial praload =5H Curve of constant assigned powsr mting

* M ballbearing lads i i
aial [chynamic 28N I Continucus operation
radial 7.5 mm from flangs] 55N In obseration of abowe listed thermal resisiances
Faonza for prass fils (static) o H flinas 17 and 13{1hn maximum pamissible winding
(startic, shaft supporbed) ino0 H temperaiure wil ba raadhed during confinuous oper

® Arrbiort tempsraiurs ranga 40 . 410000 ation &l 25°C ambiant.

* Max permisble winding termpsrature 4125700

® 'Weight of motor izg

* arsion with and without Hall sersors

* 2ok permarent magnat

3 phased coil sater with 2 poke shees each

* ‘abses lizhed in the tble are nomiral.

#* Connection with Hall senscrs sensorless
Fin 1 5. 20VDE Malorwinding 1 02 04 08
Fin 2 Halzerzora Motorwinding 2
Fin 3 Hall zarzer 1 Motor winding 2
Fin 4 Hallzerzora L reutral poirk
Fins GHD
Fin g Motor winding 2
Fin 7T Motor winding 2
Fing Motor winding 1

* Adopter Order rumber Crdar numbser
seep. 275 EE0G00 230810

#* Connector Article number Artick numbser
ANF 1-487251 1 457251-4
MCLEX SEET-1100 SEROT- DD
MICLEX Eee-1110 s B)

Fin for -dwﬂin with Hall sensoms:
FPZ, 11 poka, pitch 1.0 mmy, bop contact stde
Far winrg dingram for Hall sensars, see p. 28

184 muon EC mobor

Figure 5: Motor Datasheet

14

= Thammal limit.

Shart term oparation
Tha mator may ba briefly cvadoaded {racuming).

Recemmended Electronios:
AECS 353

DEC 241 Puggzss
DEC mois 54
DECY 50/% 265
EPCS 241 ol
Noites 17

Apil 2205 edban; subject 1o change

The schematic of the connections of the overall circuit made in order to control the reaction wheel is as

shown in the figure:

TPLB

s
T

1
T

Pl
PLG/TH:

TPZL

TEST_POIF TEST_POIN TEST_POINT

il

DRTE0T

TEST_POINT

= gt)mmr
L
= @

o

P22
e Test.pomT
TP
=] @TESLPDW
™

VBB

BRake

Solenoide

™

BRAKE
MODE

§®: g::m:ﬁ&%{:z}f g
. ::2§||§ E&:
= g
be o 3 <>_j|_%_<> .
#TEg TR

GH

EEN]

33v]
OTmentazion

N

connettore_batt

connettore_bott

1
— L |ns

JE P
zlz

[an] J <C
¢ T 1
= =
i =
- 1
g e 5 2
= = 27 s 9
= NI Lo Q
o2& [o N~ g 2
L WA} < S
i v 7 tJ <) s —
2 - o 2 [5
5 S g B, 0 Elg| |&
ER e W ~ A7 2| 2 =
o—= []40 o N~ @q g
2 L =0 Nv[f 58 5
— = = = =
28 5
4 = E 2d «
> = [F] 7 E8 E B
[2> F—
HE o—&) N F g
= LI - T 2 3
I g 2
& o+ b
) o = < =
7 o = E
w 2 £ N =
5 E o 27 i =
EE o2 MDWJ NN 5 2 .
B = 2 2
E S P e
3 K
= B2
=
5
> kel =
& g
EE v
EE 2 |2
g N
H = EEEE
E & (o Bl EE
e O e‘ .
= g5 8 . B
A m
™ z g

HethD; V=4La

Figure 6: Schematic of overall circuit

15

2.3 Brushless Motor Driver

It is necessary to control the brushless motor so that it does rotate the wheel of inertia at a speed
imposed by the desired angular momentum. The control is imposed by the means of a Motor Driver
which can communicate with the processor and accordingly gives signals to the motor.

To drive the motor you chose to use the driver for brushless motors A8904 of Allegro Microsystems.

Its main features are :

* Typical voltage power control logic at 5V.

* Supply voltage of the load (motor) from 4 to 14V.

* Integrated three-phase bridge.

* Ability to provide output currents up to 1.4 A (3A peak)

* Programming serial speed and direction of rotation

* Serial programming of the maximum current absorbed by the load
* Programming of the serial number of poles of motor

* Integrated speed control based on back-EMF detection

* Package 24-pin SOIC.

The pin driver is shown in Figure 7.

16

LOAD COMMUTATION

SUPFLY Kl Veg Cpi
GOz DATAIN
T
&) S cLOCK
1
I
. ¥ 121 | CHIP SELECT
ol
oUTy RESET
GROUND GROUND
GROUND GROUNMD
ouUTg DATAQUT
oUTe OSCILLATOR:
CENTERTAP ;Bgfm
BRAKE SE%IOR
CRES FILTER

Dug. PP-0408

Figure 7: Pin Driver A8904

Serial Programming of the Brushless Motor Driver

The commands are sent from the microcontroller through the serial 29 bit.

When CHIP SELECT is low, the data is placed on the serial port on the rising edge of the clock with the MSB
(D28) first.

At the end of the programming of the driver CHP SELECT returns to the logical value high.

The timing to be observed are given in the following figure 8.

17

CHIP SELECT

Serial Port Timing Conditions

Crwg. i1
A. Minimum CHIP SELECT setup time before CLOCK rising edge 100 ns
B. Minimum CHIP SELECT hold time after CLOCK rising edge 150 ns
C. Minimum DATA setup time before CLOCK rising edge ... 150 ns
D. Minimum DATA hold time after CLOCK rising edge ... 150 ns
E. Minimum CLOCK low time before CHIP SELECT 50 ns
F. Maximum CLOCK frequanty ... 3.3 MHz
G. Minimum CHIP SELECT hightime ... 500 ns

Figure 8: Timing for programming driver A8904

Through the 29-bit (DO. .. D28) programming, you can set the maximum current that can absorb the engine, the

number of poles

of the motor, the direction and speed of rotation and more.

The programming of the desired speed is achieved using 14-bit (D5. .. D18), these bits are used to set the total
count expresses the number of oscillations must count the speed control to the desired speed, i.e. :

(60 fosc)

total count =

desidered motor speed (rpm)

To set this speed should be set to logical high value bits D14, D13, D11, D10, D9, D8, D7, D6 and D5.

Bit number Count humber

D5 16

De 32

D7 64

D& 128

Dg 256

D10 512

D11 1,024

D12 2,048

D13 4096

D14 8,192

D15 16,384
D16 32,768
D17 65,536
D18 131.072 Figure 9: bit values associated with the programming

18

The schematic of the Brushless Motor Driver is as follows:

]
3
-
e}
¢
5]
B
=
|5
5
B
L
=
=
‘*_3
o=
g
]
=
»
s |2
EN E
- |8
— al kE
= [EEBE
= <EEBE
= E
5 E E
& EL R

=
=
] §U
w q
w 5
S g <
g £)
m |
B = =
A (]
& ©
2 3
>
=
0
o o
4 g
=] o
= g -
& E =
|| 7%
< |8 e
GHE e
3 |8 0 péEs
a % <
<‘ E
=) El
ERE s |
g Em [N
o~
o
—
m 2
02
| |
™ 5=
o 1
df B¢
§
3 | |
=~ -
§ 5 E
4 {
= =
=
e
| E
] < = E
s 5
=3 L El £
=3 £l . H
- % 7 S”Efi
g 11 =
g
& %—H'\/\/VTL}—
& E@:ni S EE
g s
& o YVYVTS
8= g8 g9
g A3
ﬁﬁWV—jNﬂ |—N
ES g
5
e

HeaND: v=6La

Figure 10: Schematic of the Brushless Motor Driver

19

2.4 Gyroscope

Gyroscope measure the temperature of the system and the angular rate of the satellite.

The gyro sensor must be able to measure the angular velocity around the axis perpendicular to the tile of
PowerSupply. Maintaining the same system of reference of the magnetometer, i.e., assuming that the
solenoid and then printed lies at x, y, the gyroscope must acquire the angular velocity around the z axis
as shown in following figure 11.

Figure 11: Axis measuring gyro sensor

This sensor must be capable of measuring speed of rotation of the satellite equal to + 2 rpm (£ 12 ° / s).

2.4.1) Gyro sensor

The characteristics that the required sensor must have are:
* Measuring z axis (yaw-rate).

* Low consumption.

* Measuring range greater than or equal to + 12 ° /s.

The sensor chosen is the ADXRS401 Analog Device.

Its main features are:

* Measurement of the angular velocity around the z axis, i.e. the axis perpendicular to the surface
mounting of the sensor.

* Supply Voltage 5V typical.

* Measuring range + 75 ° /s.

* Output voltage at 0 ° /s typical 2.5 V.

* Typical Sensitivity 15mV /°/s.

* Integrated temperature sensor.

* Package 7mm x 7mm x 3mm 32-pin BGA surface mount.

» Consumption of up to about SMA.

The pinout of this sensor is shown in following figure which represents the component side seen from
the bottom:

20

PEND ™ PDD PS5 CP - cPa

‘Bboood’/
00

000 e
00|~ -

00 M4+ 00|
O O e s
p 500 z
A1 000004

AGND / 2.5V CMID SUMJ \ RATEQUT
G F E D c B

ST

ST

r

Figure 12: Gyroscopic sensor seen from the bottom

The 32-pin BGA component are reported in pairs in 16-pin logic is 12-pin physical interior is a replica
of the external pin.

This solution probably has been adopted to make the PCB mounting more stable, without increasing the
footprint of the component.

Referring to the pinout above, the gyro sensor output will be::

VaADXRS401 4 4rpour — Vo +5 Ks

where:
e K5 represents the sensitivity of the gyro sensor inmV /°/s.

e 5 is the angular velocity in ° / s, which varies from -12 ° /s at +12 ° / s.

e Va is the tension V-‘;-DXRS‘I'U'IRATFGHT with § = 0.

Built in gyro sensor is a temperature sensor, whose output voltage is:
Vapxrsaoipgye = K1 (T —25) + 2,5V

where:
e K7 represents the sensitivity of the temperature sensor in mV / ° C.

e T is the temperature expressed in ° C ranging from -40 ° C to +85 ° C. 85°C.

21

22

t

10ning circui

it

2.4.2) Cond

The schematic circuit packaging is the figure below.

& vIz=A YIZH
1331] | ERVAE
_ 9 1305S1 w
AdY ON 9Mal ON WISJIF7]
AENREITRI FEST] =
01d0os04IB 0oLNBIe BSOS NI 1
EIR ST7A0Hdd Y T 154
00S80UBIH DJIA : BI0INY mNMN —
SINVYY OL13SSV.A OTIONLNOD IQ VWALSIS OGN 1IvHINGD T AT
4] < S AAY
3 91 z b EEEN
-oy| ™ - 054
770410 T
10d1n0 9 Sd
I+ NMNVN T ey I s mN@D<+§ ry a3 —
954 ¥ Moge £5Y
€
~ 199 AE %
a—
vSSYIW
Z
UOOT 7y Z PR
T07SHXY 7
uze VAl
o [0 rns |37 uooT 612
EBST VA
—Jszn 1noatvy =
AHILTT0YSHXOY Ed il TA031vY T07SaX07 T
not al UpoT L1713
aNgv v
@ — VSTV T Ve -
T T EESD (5]
AS OF | diaL 1d) [V uzz 7473
B e Z o7|zLs zd] §|_||_M
O < w LJ' ¥SSYH
e —
S 7S 001—— 8] 95115 2 ED uzz)
—_ T "
T T |onad LE 1
T
T
3 I|oud sd) [0
9T
03A0HddY Lv0 NOILAIHIS30 A3d
SNOISIATY

nga_ 4

Figure 13: Gyroscopic schematic

The output voltages of the sensor must be scaled so that it can be acquired from the converter analog / digital
controller.
It is therefore necessary to constrain the two voltages so that they remain in a range between 0 and 2.5 V.

The 0V represent the minimum output of the gyroscope and the 2.5V represents the maximum output of
the gyroscope.

The above is an important condition as the code in the Gyroscope Class has been written assuming the above
condition is fulfilled.

23

3. SYSTEM SPECIFICATIONS

Use Case Diagram

ATTITUDE CONTROL SUBSYTEM
(1B232 CENTRALIZED ATTITUDE CONTROLLER)

The following Use-Case diagram shows the use-cases which has to be implemented in the ‘Centralized Attitude
Controller’ subsystem.

Various Use-Cases has been categorized in terms of the action they perform, i.e. send a command to the module,

get the satellite housekeeping data from the module containing the information, send a command to read / write
some data, set the configuration of the module etc.

EnahblevWheel

DisableVWheel

»

==pptional=>
i odule Comm ands
W,

deactivate yroscope

activateGyroscope
tmet Module Housekeeping
25 P

getSpin

getT emperature

isRotating

1B232 Centralized At

Cortroller

==pptional==>
Read Module Datag
»>
==optional==
fdrite Module D ata
>

actuateReactionWWheel

retateR eactionWheel

onflightC alibration

7 ==pptional==
Sgt Module Configuratiop

Figure 14: Use Case Diagram

24

The detail/purpose of each Use-case is as follows :

Name Documentation

2 1B232 Centralized Attitude The object running on the On-Board Computer which controls
Controller the attitude of the whole satellite.
@ Module Commands The CPU actor sends a data-less command to the System.

The CPU can use up to 8 different Module Command
commands, to issue as many commands to the system.

It uses the SPI Protocol - Command Only use case, by issuing
the CMD_COMMAND_x command, where x (0..7) identifies
the command type; x does not identify the sequence in which
messages are written, but the Designer-defined type (therefore
the effect of the command).

The Designer can use as many message types he wants.

This use case is optional, therefore the Configurator shall
#define an identifier whose name is contained in the tagged
value define.

@ EpableWheel Enables reaction wheel. Any further action of reaction wheel
will be carried on.

Uses Module_Commands use case of 1B45 package, with the
CMD_COMMAND_0 command.

@ DisableWheel Disables reaction wheel. Any further action of reaction wheel
will be disregarded. If the reaction wheel is in process of
rotation while the DisableWheel command is given, the wheel
is stopped immediately.

Uses Module_ Commands use case of 1B45 package, with the
CMD_COMMAND _1 command.

@ geactivateGyroscope Disables gyroscope (removing power supply).

Uses Module_Commands use case of 1B45 package, with the
CMD_COMMAND_2 command.

@ activateGyroscope Enables gyroscope (giving power supply and sampling its
output).

Uses Module_Commands use case of 1B45 package, with the
CMD_COMMAND_3 command.

25

@ Get Module Housekeeping

Returns last measured housekeeping data (see use case
Housekeeping for details).

It uses the SPI protocol - Read Data use case by issuing the
CMD_GET_HOUSEKEEPING command.

This use case is optional, therefore the Configurator shall
#define an identifier whose name is contained in the tagged
value define.

> getSpin

It measures and returns the rotational speed around z axis with a
signed 16-bits integer; unit is 0.0001 rad/s.

It provides housekeeping data (spin) toGet Module
Housekeeping use case of 1B45 package, in the
Housekeeping commons|0] variable.

> getTemperature

It measures and returns the temperature with a signed 16-bits
integer; unit is 0.01°C.

It provides housekeeping data (temperature) toGet Module
Housekeeping use case of 1B45 package, in the
Housekeeping_commons|1] variable.

@ Read Module Data

The CPU actor reads up to 256B of Designer-defined data from
the System.

The CPU can use up to 8 different Read Module Data
commands, to read messages from as many different
subsystems. It uses the SPI Protocol - Read Data use case, by
issuing the CMD_READ_ DATA_x command, where x (0..7)
identifies the message type; x does not identify the sequence in
which messages are read, but the Designer-defined type
(therefore the source subsystem).

The Designer can use as many message types he wants.

This use case is optional, therefore the Configurator shall
#define an identifier whose name is contained in the tagged
value define.

> isRotating

Checks whether the reaction wheel is in process of rotation with
respect to satellite or is stopped.

Returns 1 if the motor is running and returns 0 if the motor is
stopped.

Uses Read Module Data use case of 1B45 package, with the
CMD_READ DATA_0 command which returns a 1-byte
message containing the status of the reaction wheel.

26

@ Write Module Data

The CPU actor sends up to 256B of Designer-defined data to
the System.

The CPU can use up to 8 different Write Module Data
commands, to issue messages to as many different subsystems.

It uses the SPI Protocol - Write Data use case, by issuing the
CMD_WRITE DATA x command, where x (0..7) identifies
the message type; x does not identify the sequence in which
messages are written, but the Designer-defined type (therefore
the destination subsystem).

The Designer can use as many message types he wants.

This use case is optional, therefore the Configurator shall
#define an identifier whose name is contained in the tagged
value define.

@ ,ctuateReactionWheel

It generates a user-defined angular momentum by means of the
reaction wheel. The momentum is generated around z axis.
Positive momentum will push x axis towards y axis

If angular momentum is zero, the wheel is stopped.

If momentum is higher than max allowed, wheel will rotate at
max speed.

If momentum is lower than min allowed, wheel will rotate at
min speed.

Angular momentum is signed 16-bits integer in units of 10
gem?2/s.

Uses Write Module Data use case of 1B45 package, with the
CMD_WRITE_DATA_0 command with a 2-byte message
containing the angular momentum with MSB first/last (TBD).

@ rotateReactionWheel

rotates reaction wheel by a user-defined number of turns.
Angle is a signed 16-bits integer; unit is 0.1kgem2rad

Uses Write Module Data use case of 1B45 pacvkage, with the
CMD_WRITE_DATA_1 command with a 2-byte message
containing the speed (in rpm) at which the reaction wheel has to
be rotated, with MSB first/last (TBD).

@ 5nflightCalibration

Allows to change value of wheel inertia, offset and sensitivity
of gyroscope, using three signed 16-bits integers. Units are:
TBD, TBD, TBD.

Uses Set Module Configuration use case of 1B45 package,
with:

e gyroscope spingain in field gysoscope gain s,

e gyroscope spin offsetin field gysoscope offset s,

27

e gyroscope temperature gain in field gysoscope gain T,
e gyroscope temperature offsetin field gysoscope offset T,

e Moment of Inertia of the reaction wheel in Inertia_motor.

@ Set Module Configuration

Changes some TBD Designer-defined configuration parameter
(if any).

The Designer shall define all configurable parameters (if any)
in the type t_Configuration.

This use case is different from the Configure Module use case,
as the latter allows a compile-time configuration, while this use
case allows run-time configuration changes (if foreseen).

This use case is optional, therefore the Configurator shall
#define an identifier whose name is contained in the tagged
value define.

28

4. SYSTEM DESIGN

Sequence Diagram

MOTORDRIVER - ROTATE

Actor2

1: rotate{speed): speed

<=Spy=>
: Motrpriver

==HW==
:1B2121 Driver

compute 259 bits:
set direction, set count from speed, set other parameters

like charging current, motor poles, gain, step mode, braking mode ete.
prog = ({count & 0x1FFF) <= &) | {{long) direction) == 25| 1 [({long) 0x00000001) << 28;

2: chip_select(value)
; 3 CHIP _SELECT(): 1

4 reset() 5 RESET(} 0

6 clock(value = 0)
7 CLOCK() 0

8: chip_seled{value = 0)
G'CHIP_SELECT() O

-

==HW==

1182123
Maxon

flat motor

[1o08)

[i=28; i>=0; i--]

10: zend_bit(value = prog & (([{long) 0x1) == i)} void

11: data_out{value = value)
12: DATA_IN(: BIT_DATA_OUT
»
Be
13 clockivalue = 1)
14: CLOCK(): 1
-
>
15 clock{value = 0)
16: CLOCK{): 0
-
>

25 stopRotation()

17: clock(value ?E?:)CLOCK[): 1

19: chip _select(value = 1)
;‘ 20: CHIP _SELECT{: 1

Figure 15: Timing Diagram: Rotate

26 rotate(speed = 0x 0

29

21:10)

222()

7330

TE W)

5. IMPLEMENTATION

1B21 Class Diagram :

The following is the class diagram developed for implementing the system. The details for each specific
class can be found in the next section.

gyroscope

amcgmicr UM, Standan Etin{Poiteics & Tofma 0 Betsorca)

rrrrr

vvvvv

rrrrr

Figure 16: Class Diagram

30

5.1 Description of Classes and Packages

The description of various classes and packages used in the implementation of the system is as follows:

Name Documentation
& common
& MotorDriver Controls the motor by setting the desired speed to the motor. It

generates and sends necessary signals to the motor driver 8904
which in turns control the motor.

1 Bk1B45 Slave This package contains all specifications of the Peripheral
a (slave) side of the Bk1B45 Subsystem Serial Data Bus. In these
diagrams, the System is the Peripheral side.

It comprises two Use Case diagrams:

¢ Housekeeping Use Case Diagram, which incorporates
all use cases related to reading from the slave its
housekeeping data and the related history and statistics,
system status; to issue commands to the system like
wake-up, standby and reset, and to read/write application-
specific (Designer-defined) data.

e Supply, Enable, Configuration Use Case Diagram,
which incorporates use cases related to power supply,
static configuration and testing of the system.

The document only describes commonly-used functions of a
Peripheral (slave), and the Designer may add as many
functions as he requires. Yet any added function should comply
as much as possible to the basic protocol described herein.

Furthermore,not all functions described in these use case
diagrams need be implemented. Most use cases are optional. If
used, they shall be implemented as specified. If not used, they
can be disabled by removing appropriate attributes from the
relevant classes, as indicated in the Configure Module use
case.

B Buffers This class implements a set of fixed-length buffers, to be used
for Write Module Data and Read Module Data use cases,
respectively. Up to MAXBUFFERS buffers of 256 bytes each
can be allocated (provided that the processor has enough
memory).

Each buffer can be used for either Write or Read operation,
although the class guarantees that at least one buffer is allocated
for both Write and Read use case.

In particular, for either Write (if command =
31

CMD_ WRITE DATA x) or Read (for command =
CMD_READ DATA x):

e throws away any buffer of that type still being written but
not yet complete (namely, for which the ready() operation
has not yet been called, if any)

o finds the first available buffer of that type

e locks it and declares it being written; the user shall then
fill the buffer and call the ready() operation when
finished. After that, the buffer is queued...

e returns a pointer to it

Returns null if no buffer of the chosen type is available or
command is not supported.

=] t Commands

Lists all available command codes and the corresponding value.
There 1s one command for each use case,

Removing a command from this class removes the
corresponding use case.

Adding additional commands requires adding the appropriate
code to properly interpret and execute the command.

B Test for testing the motordriver class. It sends various commands to
the motordriver class.
B ¢ sensor The type to be used to store sensor data

=] CommandInterpreter

Interprets various commands.

=] Housekeeping

Does the housekeeping related activities, constantly monitors
housekeeping parameters.

=] Gyroscope

Measures the spin and the temperature.

& ADC

Converts analog signals into Digital signals capable of being
read/write by processor.

= t Configuration

Defines various on-flight configurable parameters.

= TimerA

Timer for measuring and calculating time.

32

5.2 Details of major classes

Some of the classes like MotorDriver have been newly developed, some other classes like
Housekeeping, CommandInterpreter etc. have been derived from 1B45 project and redefined or
extended, while few classes like Timer, ADC & Buffer have been simply used from 1B45 project.

The classes which have been newly developed are:
1) MotorDriver
2) Gyroscope

5.2.1 MotorDriver

Controls the motor by setting the desired speed to the motor. It generates and sends necessary signals to the motor
driver 8904 which in turns control the motor.

MotorDriver Class consists of :
1) Attributes
2) Operations

MotorDriver ->Attributes

Documentation Selects the port on which the reset signal will be sent to the motor driver 8904.

Documentation Select the pin for the BIT_RESET function on the PORT specified.

Documentation Selects the port on which the chip select signal will be sent to the motor driver
8904.

Documentation Select the pin for the CHIP_SELECT function on the PORT specified.

Documentation Selects the port on which the clock signal will be sent to the motor driver 8904.

Documentation Select the pin for the CLOCK function on the PORT specified.

Documentation Selects the port on which the data out signal will be sent to the motor driver 8904.

Documentation Select the pin for the DATA_OUT function on the PORT specified.

33

Documentation

Frequency of Oscillator used in Hz.

Documentation

Number of poles of motor. Shall be either 4, 8, 12 or 16.

Documentation

Current limitation and transconductance gain:
0:1.2A; 500mA/V

1:0.6A;250mA/V

2:1A; 500mA/V

3:0.5A;250mA/V

4:0.6A; 500mA/V

5:0.3A;250mA/V

6:0.25A; 500mA/V

7:0.125A;250mA/V

Documentation

Absolute value of charge current (in uA) for the watchdog timer. Shall be either 10,
20, 30 or 40.

Documentation

this variable stores the time remaining in ms for which the motor has to be rotated.

Documentation

it decides where the motor is enabled or disabled.

motor_enable==0 means that motor is disabled and any command given to motor
will be disregarded.

motor_enable==1means that motor is enabled and any command given to motor
will be executed.

Documentation

speed in rpm at which of the motor should be rotated by the commands
rotateReactionWheel() and actuateReactionWheel().

presently choosen as 3000

More efficient decision of the motor speed according to the running time can be
taken at a later stage by the Designer.

Documentation

set the bit in t_Status:statusWord which corresponds to the state of the
motor(rotating/stop).

34

MotorDriver ->Operations

public init motor()

Code

*(PORT_CHIP_SELECT + (&P1DIR-&P10UT)) |= BIT CHIP SELECT;
*(PORT_CLOCK + (&P1DIR-&P10UT)) |= BIT CLOCK;
*(PORT DATA_OUT + (&P1DIR-&P10UT)) |= BIT DATA OUT;

*(PORT_RESET + (&P1DIR-&P10UT)) |= BIT _RESET;

clock(0);

chip_select(1);

reset();

EnableWheel();

motor running_time=0;

status.statusWord = status.statusWord & (~BIT_MOTOR_ROTATING);
/set the MOTOR_ROTATING status to stop

config.Inertia motor =413.9;

Documentation

Initializes the signals necessary to run the motor.

public rotate(speed :

Parameter

short)

speed

Multiplicity Unspecified
Documentation the speed in rpm at which the motor should be rotated.
Type ~ short
Direction in
Code
if(speed==0)
status.statusWord = status.statusWord & (~BIT_MOTOR_ROTATING);
elsst(eeltus.sta‘fusWOrd = status.statusWord | BIT._ MOTOR ROTATING;
generatepattern(speed);
Documentation Drives the motor to rotate clockwise (if speed is positive) or counterclockwise

(ifspeed is negative) at angular speed equal to speed rpm.

The routine terminates immediately, while the motor keeps on rotating until next
command.

public actuateReactionWheel(moment : long) : void

Parameter

35

Multiplicity Unspecified

Documentation the moment which the motor should provide. it is used for
calculating the time at which the motor has to be rotated at
SPEED rpm.

motor_running_time =1000* moment / ((config.Inertia_motor
+ Inertia_Satellite) * SPEED * (2 * 3.14 / 60));

Type / long
Direction in
Code /computer the time in ms for which motor has to be rotated.

motor_running_time =1000* moment / (config.Inertia_motor * SPEED * (2 *
3.14 / 60));

rotate(SPEED);

Documentation turns the satellite by the specified moment using the rotation of motor.

the motor speed is set to SPEED rpm.

If doesn't check if the motor is already running or not, which has to be checked by
the processor giving the command.

The routine terminates immediately, while the motor keeps on rotating for the
required time.

public rotateReactionWheel(turns : short)

Parameter

Multiplicity Unspecified
Documentation Number of turns the wheel should rotate.
Type “ short
Direction in
Code motor_running_time = 1000 * turns / (SPEED *60);
rotate(SPEED);
Documentation Rotates the reaction wheel by a user-defined number of turns specified in the

parameter turn.

The routine terminates immediately, while the motor keeps on rotating for the
required time.

36

public stopRotation()

Code

rotate(0);

Documentation

Drives the motor to stop immediately.

public generatepattern(speed : short)

Parameter

Multiplicity Unspecified

Documentation speed is the angular speed in rpm with which the motor should
be rotated.

Type) short

Direction in

Code

unsigned long prog=0, count=0;
char stop, direction;

/init_motor();

if (speed == 0) {
stop=1;
count =0;
direction = 0;
}
else if (speed > 0) {
count = 60*OSC_FREQ/speed;
direction = 0;

stop = 0;
}
else {
count = 60*OSC_FREQ/ (- speed);
direction = 1;
stop = 0;
}

/ compute the programming word

prog = (((count/16) & 0x1FFF) <<'5) | ((long) direction) << 25 | ((long) stop) <<
2 | (motor_enable & 0x1);

prog |= (CURRPROG & 0x4) << 1 | (CURRPROG & 0x2) << 3 |

((long) CURRPROG & (long)0x1) << 28;

switch (CURRWATCHDOG) {

case 10: break;

case 20: prog |= (long)0x2 << 26; break;
case 30: prog |= (long)0x1 << 26; break;
case 40: prog |= (long)0x3 << 26; break;

37

}

switch (POLES) {

case 4: prog |= (long)0x1 << 21; break;
case 8: break;

case 12: prog |= (long)0x3 << 21; break;
case 16: prog |= (long)0x2 << 21; break;

}

clock(0);
chip_select(0);
sendpattern(prog);

chip select(1);

Documentation

This function generates a 29-bit pattern code and using sendpattern() send it to the
8904(motor driver) in order to program it to rotate the motor at the specified speed.

Parameter

public sendpattern(pattern : long)

pattern

Multiplicity Unspecified
Documentation pattern is the 29-bit programming word which is
sent to the motor driver(8904) in order to set various
parameters of the motor.
Type “/ long
Direction inout
Code for(i=28;1>=0;i--) send bit(pattern & (((long) 0x1) << 1));
Documentation Send the 29 bit programming word pattern to 8904 motor driver. This 29-bit word

controls various parameters of reaction wheel like: rotation speed, direction,

watchdog current, brake, sleep mode, step mode etc.

public send bit(value : long)

Parameter

Multiplicity Unspecified
Type long
Direction in
Code data_out(value);
clock(1);
clock(0);
Documentation Send a bit to the motor driver's data_in port.

38

private data out(value : long)

Parameter

Multiplicity Unspecified
Documentation valuewill be checked for zero or non-zero condition.
Type long
Direction in
Code *PORT DATA OUT =(*PORT _DATA OUT & ~ BIT DATA OUT) | (value
? BIT DATA OUT: 0);
Documentation Send the data (29-bit programming word) serially to the motor driver (8904).

private chip select(value : byte)

Parameter

Multiplicity Unspecified
Documentation valuewill be checked for zero or non-zero condition.
Type 9 byte
Direction in
Code *PORT_CHIP SELECT = (*PORT_CHIP SELECT & ~
BIT CHIP SELECT) | (value ? BIT CHIP SELECT:0);
Documentation Controls the chip select signal on the motor driver (8904).

Sets chip select to 1 when value<>0; else sets chip select to 0.

private clock(value : byte)

Parameter

Multiplicity Unspecified
Documentation valuewill be checked for zero or non-zero condition.
Type o byte
Direction in
Code
*PORT_CLOCK = (*PORT CLOCK & ~BIT CLOCK) | (value ?
BIT CLOCK:O0);
Documentation Send the Clock signal to the motor driver (8904).

private reset()

*PORT _RESET =
*PORT RESET =

Code

(*PORT RESET & ~BIT RESET) | 0;
(*PORT RESET & ~BIT RESET)| BIT RESET;

39

Documentation Controls the reset signal on the motor driver (§904).

public motor_running_time decrease() : void

Code if(motor running_time>0) {
motor_running_time--;
}

else if (motor_running_time==0) {
stopRotation();

}

Documentation Decreases the motor_running_time by 1 ms.

ublic EnableWheel() : void

Code motor_enable = 0x1;

Documentation Enables reaction wheel. Any further action of reaction wheel will be carried on.

public DisableWheel() : void

Code motor_enable = 0x0;

Documentation Disables reaction wheel. Any further action of reaction wheel will be disregarded.

5.2.2 Gyroscope

Controls the motor by setting the desired speed to the motor. It generates and sends necessary signals to

the motor driver 8904 which in turns control the motor.

Gyroscope Class consists of :

1) Attributes
2) Operations

Gyroscope ->Attributes

Documentation

This is the temperature corresponding to which the ADC10 temperature
output is 0 (minimum).

This is the minimum temperature in °C which the Gyroscope (ADXRS401)
can read.

Documentation

This is the temperature corresponding to which the ADC10 temperature
output is 1023/4095(maximum).

The maximum temperature in °C which the Gyroscope (ADXRS401) can
read.

Documentation

This is the spin corresponding to which the ADC10 spin output is 0
(minimum).

This is the minimum spin in °/s which the Gyroscope (ADXRS401) can read.

Documentation

This is the spin corresponding to which the ADC10 spin output is 1023/4095
(maximum).

This is the maximumspin in °/s which the Gyroscope (ADXRS401) can read.

Documentation

the ADC channel on which gyroscope spin output is connected.

41

Documentation

the ADC channel on which gyroscope temperature output is connected.

Documentation

Maximum output of ADC. 1023 for 10-bit ADC. 4095 for 12-bit ADC.

Gyroscope ->Operations

public init GYRO()

Code config.gyroscope gain s = (unsigned short) (1000.0 * (Speed Max -
Speed Min) / ADC max_value) ;
config.gyroscope offset s = (unsigned short) (1000.0 * (0 - Speed Min) /
config.gyroscope gain s) ;
config.gyroscope gain T = (unsigned short) (1000.0 * (Temp Max -
Temp Min)/ ADC max value); //ADC max value = 1023 for 10-bit ADC
config.gyroscope offset T = (unsigned short) (1000.0 * (0 - Temp Min) /
config.gyroscope gain T); //gyroscope offset T is 327 which is the ADC o/p
for 0°C
/adc. ADC();
Documentation It initializesgyroscope gain_s,gyroscope gain_T,gyroscope_offset s and
gyroscope_offset T to the required value. These values should be adjusted
with correct ones obtained by calibration process.

public read_spin() : t_sensor

Code

t sensor val;
t sensor spin;

adc.select(GYROSCOPE Z.4);
adc.start();

while (adc.isReady()==false) ;
val=adc.read();

spin = (t_sensor)((val - config.gyroscope offset s) * (long)
config.gyroscope gain s) ;
return spin;

Documentation

It measures and returns the rotational speed around z axis with a signed 16-
bits integer; unit is 0.0001 rad/s.

This operation uses the ADC(from Common) that returns a digital value.

This value is software adjusted, offsetted by gyroscope_offset s and then
multiplied by gyroscope gain s and to obtain correct value for spin measure.

42

public read temp() : t_sensor

Code t sensor val;
t sensor temperature;

adc.select(GYROSCOPE Z.4);
adc.start();

while (adc.isReady()==false) ;
val=adc.read();

temperature = (t_sensor)(((val - config.gyroscope offset T) * (long)
config.gyroscope gain T)/ 10) ;
return temperature;

Documentation It measures and returns the temperature with a signed 16-bits integer; unit is
0.01°C.

This operation calls ADC that returns a value between 0 and
ADC_max_value(1023 or 4095).

This value is software adjusted, divided by gyroscope gain T after being
offset by gyroscope offset T which is the ADC output for temperature =
0°C.

43

CONCLUSION

All the modules for ‘Reaction Wheel Actuator’ and ‘Gyroscopic Sensor’ have been successfully coded
using UML in C++. The verification has been done by downloading the code onto the circuit with the
microcontroller T MSP430F2274. All the modules necessary for the communication with the central
processor have been written and tested. The modelling for the system has been done in UML through
Visual Paradigm and the compilation, simulation and assembly code generation along with downloading

onto the chip has been done by IAR Embedded Workbench for MSP430.

44

Personal Comments on Internship and Stay in Torino

I was fortunate enough to get this offer to come to Politecnico di Torino, Italy for a summer internship.
This internship has increased my technical, interpersonal and communication skills significantly through
the enriching exposure of the technology, culture and society. The technology and infrastructure present
here is as expected ‘great’. Working on the development of a satellite is quite interesting. The thought
that ‘you are among the team which is developing a satellite, which is going to be launched soon’ is
itself great and motivating.

I learnt many new software, tools , techniques and analysed various circuits. Further I developed
modules and programmed the microcontroller to control the spin of the satellite. I gained a much better
understanding of the satellites and how they are developed. The meetings which I attended(even though
quite a few) gave me an idea of professional discussions and how multi-disciplinary projects are
coordinated and handled. All these things will surely help me in my future.

My stay at Torino, Italy has been very comfortable and pleasant. I have been living at Borsellino
Residence near Politecnico. The residence is quite nice providing all the necessary facilities including
well furnished room, Internet, Game Room, TV Room, 24 hrs Reception, Laundry etc.

Also the transport system of the city is nice and convenient to use. The railway station Torino Porta
Nuova have trains to all major places in Italy and in Europe. Due to it, very few of my weekends have
been in Torino, mostly I went for some visit to some good place on the weekends. I liked this country a
lot(as I did a lot of travelling) and even the people are quite friendly.

I will surely like to come here again in future if I get a chance (for Masters or another internship).

Actually the way I got this internship was little amazing and surprising.

I was in my final year of my graduation B.E. (Hons) Electrical & Electronics from BITS Pilani, India. I
applied to the professor long back for a 6-months internship from January-June 2009, but unfortunately
didn’t get through. No regrets, I did the internship in a company in New Delhi, India near my home.

Fortunately I have also got a Job in a reputed multinational company in Bangalore (CISCO Systems
Inc., Bangalore, www.cisco.com). | was just waiting for the starting of the job and came to know that it
will be probably from 1% July, 2009 while my current internship would be ending by 14™ June, 2009.

I was just waiting for the internship to end and job to begin. Suddenly one morning I checked my mail
and was surprised to see an email from the Professor Leonardo which said that he has got extra funding
and wants to call me for an internship and asked if I am still available?? ©

The first thought that came to my mind is... ‘ohhh no, how is this possible’. Alas, I can’t go, because
my job joining is just after the current internship and I don’t have any time in between.® 1 tried to
postpone my joining, but that wasn’t an option I had. Still I told the professor that I am interested and
asked for the details. But unluckily didn’t get any reply for many days. I simply interpreted that I can’t
go for this and should better forget it.

But suddenly few days after I came to know(unofficially) that the job joining is getting postponed
(because of recession, or company policy or whatever) and simultaneously got a confirmed reply from

45

the professor about the internship. There I was: everything getting rearranged automatically and paving
way for me to go Italy. Few more formalities and discussion over the dates of internship and ‘All set’.

Finishing previous internship in Delhi on 13™ June, fly to Italy on 14™ June, back to home from Italy on
13™ August and fly to Bangalore for job on 16" August , everything well, internship fits exactly in the
time which otherwise would have been vacations.

A trip to Italy (and even to Switzerland, Spain, Belgium, France....) and that too officially , along with
a nice experience with the latest technology in the field and chance to work on the Satellites, what else
can be better than this??....

46

