
POLITECNICO DI TORINO

Dipartimento di Elettronica e Telecomunicazioni

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

Development of a University

Femtosatellite

Relatori:

Prof. Leonardo Reyneri

Prof. Claudio Sansoè

Prof. Dante Del Corso

Candidato:

Donato Russo

July 2013

Abstract

I

Abstract

Recently, the attention in designing small satellites has rapidly grown by European universities,

Politecnico di Torino has adopted several standards and put its effort in developing its own satellite.

AraMis (Architettura Modulare per Satelliti) is the evolution of previous project PiCPot and

consists in the development of nano and pico satellites orbiting in LEO (Low Earth Orbit) for

university purposes.

In particular AraMis aims to build a modular satellite configurable in different shapes in which

each module is independent from the other ones and capable of working in stand-alone mode. The

communication among the elements, known as tiles, takes place through proper buses.

Each module has a specific role and can work alone or together with other modules to improve the

performance of the system. The project is considered as low-cost since it uses COTS components

and exploit the re-usability of different units so reducing design costs.

Object of this thesis is to exploit AraMis standard to develop a femtosatellite (a satellite having a

weight lower than 100g) having features of a typical satellite with in addition some peculiarities.

The idea is to develop a constellation of femtosatellites able to communicate each other, exchange

generic messages, measure the distances inside the constellation and modify the distance according

to the user needs. To start with, we consider a constellation made of two satellites placed opposite

one to the other.

The system has a modular structure, following the AraMis philosophy, and it is made of a

magnetometer, a magnetic actuator, a solenoid and a telecommunication module as main units. It

Abstract

II

has a disk shape, where on a surface there is the RF electronics, on the other one there are solar cells

for supply system, finally the solenoid is placed around the disk.

The magnetometer and magnetic actuator are taken from AraMis project and adapted to the

particular case while the telecommunication module is entirely designed and developed customized

for the application. The communication module (named 1B35_Intersatellite_Communication in the

thesis) is realized so it can be re-utilized for future works involving a communication between two

identical nodes (placed on different satellites or on the same satellite).

The system is based on CC2510 system on chip provided by Texas Instrument and simpliciTi

protocol for telecommunication. The main reasons are:

• low cost;

• low power consumption;

• custom protocol (simpliciTi), provided by Texas Instrument easy to use;

• RSSI technique integrated;

• possibility to use 2.4GHz as working frequency;

One of the system purposes is to measure the distance between two satellites, this is achieved

through RF techniques (RSSI) and magnetic techniques (generation and measurement of magnetic

field). Another important issue is to let satellites get closer or separated, the motion is obtained

through attractive and repulsive magnetic force, generated by the actuator and electromagnet (also

used in measurement operations).

In this thesis, we are introducing for the first time a femtosatellite in the AraMis project, so no

particular initial constraints are given. During the thesis several configurations have been

considered and analyzed to find the better solution for the case study. The general structure of the

system is completely described and documented by using UML language, for a particular unit (the

telecommunication unit) we proceed instead with the hardware and software realization.

As results, we have set up the general structure of the femtosatellite, analyzed several issues and

implemented a good basis for future development. One possible application could be using the

femtosatellites to transport small objects in space environment.

Finally, another important result is the realization of the telecommunication unit, fully implemented

in hardware and software but not tested.

Summary

I

Summary

Index of tables and figures VII

I. Introduction

 I.1 AraMis 1

 I.1.1 Politecnico di Torino and Nanosatellites 1

 I.1.2 AraMis standard and specifications 2

 I.2 FemtoSat 4

 I.2.1 Operating environment 6

 I.2.2 Managing intersatellite communication 6

 I.3 1B35 Intersatellite Communication Module 8

 I.4 UML language 9

 I.4.1 Use case diagram 10

 I.4.2 Class diagram 12

 I.4.3 Sequence diagram 13

Summary

II

II. FemtoSat Specifications, Actors and Use Cases 15

 II.2 FemtoSat TX/RX use case diagram 18

 II.3 FemtoSat Get Distance RF use case diagram 18

 II.4 FemtoSat Get Distance MAG use case diagram 19

 II.5 FemtoSat Set Distance use case diagram 23

 II.6 Magnetometer Subsystem use case diagram 27

 II.7 Magnetic Actuator use case diagram 29

 II.8 FemtoSat Motion use case diagram 31

III. FemtoSat Design and Analysis 34

 III.1 Design choices 35

 II.2.1 Source power 35

 II.2.2 Magnetometer and Magnetic Actuator 37

 II.2.3 Solenoid Choice 42

 III.2 Class diagrams 46

 III.2.1 FemtoSat main class diagram 46

 III.2.2 FemtoSat Hardware class diagram 51

 III.2.3 FemtoSat Software class diagram 63

 III.2.4 Distance Controller class diagram 70

 III.3 Sequence diagrams 71

 III.4 FemtoSat Analysis 82

 III.4.1 Magnetic Force 82

 III.4.2 Dynamics Analysis 83

IV. 1B35 Specifications, Actors and Use Cases 84

 IV.1 InterSat Communication use case diagram 84

 IV.2 IntesSat Distance use case diagram 90

Summary

III

V. 1B35 Communication Module Design 92

 V.1 Design choices 93

 V.1.1 SimpliciTi Protocol 94

 V.1.2 RSSI Technique 97

 V.2 Class diagrams 46

 V.2.1 1B35 Communication Module main class diagram 98

 V.2.2 1B35 Intersatellite Communication Hardware 105

 V.2.3 1B35 Intersatellite Communication Software 109

 V.3 Sequence diagrams 115

 Conclusion 122

 Appendix I

 Appendix II

 Appendix III

 Appendix IV

 Appendix V

 Bibliography

Index of table and figures

VII

Index of tables and figures

 Figure 1.1 Possible configurations of an AraMis satellite

 Figure 1.2 Example of a parallelepiped structure

 Figure 1.3 Module with a size of 164 x 165 mm with solar cells

 Figure 1.4 Qualitative representation of the Femtosatellite

 Figure 1.5 Distribution of terrestrial magnetic field in 2009

 Figure 1.6 UML language - Actor

 Figure 1.7 UML language - Use cases

 Figure 1.8 UML language - Use case inclusion

 Figure 1.9 UML language - Use case extension

 Figure 1.10 UML language - Class example

 Figure 1.11 UML language -Sequence diagram example

 Figure 2.1 FemtoSat main use case diagram

 Figure 2.2 FemtoSat TX/RX use case diagram

 Figure 2.3 Get Distance RF use case diagram

Index of table and figures

VIII

 Figure 2.4 FemtoSat Get Distance MAF use case diagram

 Figure 2.5 FemtoSat Set Distance use case diagram

 Figure 2.6 FemtoSat Magneic Actuator use case diagram

 Figure 2.7 FemtoSat Magnetometer Subsystem

 Figure 2.8 FemtoSat Motion_MASTER

 Figure 2.9 FemtoSat motion_SLAVE use case diagram

 Figure 3.1 FemtoSat main class diagram

 Figure 3.2 TJ Solar Cell 3G28C.

 Figure 3.3 Top sight of the system under design

 Figure 3.4 Schematic of an H bridge circuit

 Figure 3.5 Current paths in a H-bridge

 Figure 3.6 Current flow through wheeling diodes.

 Figure 3.7 Solenoid charge at constant voltage and discharge

 Figure 3.8 Equivalent circuit of a H-bridge topology driving an inductor

 Figure 3.9 Simplified equivalent circuit of a H-bridge topology driving an inductor

 Figure 3.10 Solenoid representation

 Figure 3.11 Series connection on the left, parallel connection on the right

 Figure 3.12 System configuration, X is the distance between the two solenoids center, d is the

distance between the two satellites, L is the satellite lentgh, b is the thickness of HMC1002

sensor

 Figure 3.13 FemtoSat HW class diagram

 Figure 3.14 FemtoSat SW class diagram

 Figure 3.15 Distance Controller class diagram

 Figure 3.16 Get Distance MAG sequence diagram

 Figure 3.17 Process Distance MAG sequence diagram

Index of table and figures

IX

 Figure 3.18 Measure Distance MAG_MASTER sequence diagram

 Figure 3.19 Measure Distance MAG_SLAVE sequence diagram

 Figure 3.20 Estimate Distane MAG sequence diagram

 Figure 3.21 Get Distance Global sequence diagram

 Figure 3.22 Set Distance MAG sequence diagram

 Figure 3.23 Set Distance RF sequence diagram

 Figure 3.24 Set Distance Global sequence diagram

 Figure 3.25 Approach MASTER sequence diagram

 Figure 3.26 Separate MASTER sequence diagram

 Figure 3.27 Approach_Separate SLAVE sequence diagram

 Figure 3.28 Cylindrical Magnets configuration, each of them can be associated to an

equivalent solenoid

 Figure 4.1 InterSat Communication use case diagram

 Figure 4.2 InterSat Distance use case diagram

 Figure 5.1 1B35 Intersatellite Communication main class diagram

 Figure 5.2 SimpliciTI logical layers

 Figure 5.3 1B351 Intersatellite Communication Hardware class diagram

 Figure 5.4 1B351S Intersatellite Communication Software class diagram

 Figure 5.5 Send Message sequence diagram

 Figure 5.6 Send Data sequence diagram

 Figure 5.7 Read Message sequence diagram

 Figure 5.8 Receive Data sequence diagram

 Figure 5.9 Read Data sequence diagram

 Figure 5.10 Read Data sequence diagram

 Figure 5.11 Measure Distance RF sequence diagram

Index of table and figures

X

 Figure 5.12 Estimate Distance RF sequence diagram

 Figure 5.13 Set initial Frequency sequence diagram

 Figure 5.14 Change Frequency sequence diagram

 Table 3.1 Simulation results for solenoid choice

Introduction

 1

Introduction

1.1 AraMis

In this paragraph the general context of the thesis and a brief description of AraMis standard will

be presented.

1.1.1 Politecnico di Torino and Nanosatellites

In the last years aerospace and satellite market has grown in a remarkable way due to the decreasing

in launchers and launches costs used to put the satellites in orbit.

This aspect bring the Politecnico di Torino like other universities and companies worldwide to

focus on the implementation of low-cost small satellites. As a consequence different standards were

born like CUBESAT and ARAMIS in order to make easier the design and development of these

kind of space systems.

Another interesting peculiarity of these university projects is the usage of COTS (Commercial Off

The Shelf) elements, i.e. low-cost components easy to find .

Introduction

 2

1.1.2 AraMis standard and specifications

AraMis (Architettura Modulare per Satelliti) is a project started in 2006 by Politecnico di Torino

which aim to design small satellites with a modular structure in order to improve the CubSat

standard in which the system is build with an ad-hoc architecture.

The satellites are classified basing on the mass in the following way:

• microsatellite : mass between 10 and 100 Kg

• nanosatellite: mass between 1 and 10 Kg

• picosatellite: mass between 100 g and 1 Kg

• femtosatellite: mass lower than 100 g

AraMis is considered as a nanosatellite, its basic architecture is based on one or more tiles placed

on the outer side of the system so that they also play a structural function. Putting together several

tiles a cubic or prismatic shape can be built as shown in Figure 1.1 and Figure 1.2.

Figure 1.1 Possible configurations of an AraMis satellite.

Introduction

 3

Figure 1.2 Example of a parallelepiped structure.

The standard modules of AraMis are:

• Power Management Tile - it is used to generate, control and store the energy necessary to

supply the whole system. In particular solar panels are chosen which supply the system and

charge the batteries through proper circuits. The batteries are used as reserve of energy if the

one coming from the sun would not be enough. The structure of the satellite is mainly built

by putting together tiles of this kind, they also have microcontrollers which manage the tile

and communicate with OBC through buses. An example is shown in Figure 1.3.

• Telecommunication Tile - it has the function to let the satellite communicate with the

ground segment, it manages the information related to the attitude control coming from the

Earth and transfer it to the Power Management Tiles to perform actuation.

• On Board Computer - it is the module containing the processor in charge to coordinate the

whole satellite operation. As an example, it makes all calculations related to attitude control

and governs the other tiles such that actuation takes place.

Introduction

 4

Figure 1.3 Module with a size of 164 x 165 mm with solar cells.

1.2 FemtoSat

The purpose of this thesis is to realize a university femtosatellite placed in a constellation of

identical satellites (at least two) able to:

• perform typical operations of a bigger satellite

• let two satellites communicate each other

• measure and control the distance between them.

The system has a modular structure as AraMis standard suggest, in particular it is made of:

• 1B35_Intersatellite_Communcation

• Bk1B221_Magnetometer_Sensor

• Bk1B222_Magnetic_Torque_Actuator

Introduction

 5

• An electromagnet (solenoid)

The first module is used to implement the communication between two satellites, the functionalities

of CC2510 System on Chip are exploited to also perform OBC functions. The magnetometer is

used to evaluate the magnetic field around the satellite in a distance measurement operation. Finally

the motion of the system is assigned to an actuator unit which has as core system the

Bk1B222_Magnetic_Torque_Actuator and an electromagnet. The

1B35_Intersatellite_Communcation is object of this thesis as well and it will be described in the

following chapters. The Bk1B221_Magnetometer_Sensor, Bk1B222_Magnetic_Torque_Actuator

are taken from the AraMis project and used for the case study so exploiting the concept of

modularity and re-usability. The electromagnet choice is described in the paragraph VI.1

The idea is to design a satellite having a disk shape, in the inner part will be placed the PCB, around

the disk there will be the coil used to generate the magnetic field, on one face there will be solar

cells while the other side will be placed the RF circuit with the antenna.

In the following picture there is a draft of the structure:

Figure 1.4 - Qualitative representation of the Femtosatellite

There are no particular constraints except the weight that shall be lower than 100g. Some of free

parameters that will be evaluated and analyzed during the design are:

Introduction

 6

• Minimum/Maximum distance

• Satellite dimension

• Solenoid dimension

• Electrical quantities

All this subjects will be presented in chapter IV.1.

1.2.1 Operating Environment

In the design of a space system the designer has to face with several issues related to the particular

environment as space is. Among them we have:

• temperature;

• pressure;

• ionizing radiotion;

• terrestrial magnetic fields;

Since the femtosatellite has to deal with magnetic field generation and measurement, for sure the

latter issue is very important to be considered.

In fact, once the current flow inside the solenoid, it generates its own dipole which forces the

system align with the terrestrial magnetic field. We adopt a particular technique to eliminate the

contribution of terrestrial magnetic field when we need to isolate the magnetic field generated by

the interlocutor satellite (See chapter ...)

Magnetic field around the Earth is of sum of more contributions [4], each one having different

origin:

• Main Field, generated by fluid nucleus of the Earth;

• Crustal Field, generated by magnetized rocks of Earth's crust;

• External Field, generated by electrical currents taking place in ionosphere and

magnetosphere;

Introduction

 7

• Field of electromagnetic induction, generated by induced currents in the crust and muntle

by the external field (it is variable in time);

Among them, the main field generate the 99% of the total magnetic field measurable on the

surface. Several studies demonstrates that this field can be compared (at 95%) with the one

generated by a magnetic dipole centered in the Earth's center and with a misalignment of 11° 30'

with respect to the Earth' s rotation axis.

Figure 1.5 - Distribution of terrestrial magnetic field in 2009 [5]

Earth' magnetic field is expressed conventionally through the vector of magnetic induction ���. Its

measurement unit is Tesla (T), but in practical applications the Gauss (G) is often use which is

equals to 10-4 T. The absolute value of the magnetic field on Earth's surface varies from 0.2 G at

equator to 0.7 G at poles (the intensity distribution is shown in Figure 1.5)

As conclusion, we assume possible values for the field in LEO orbit in the range -0.625 and

0.625G, values used as specification for the magnetometer/magnetic torque actuator chosen in this

thesis at design time (see previous chapter)

1.2.2 Managing intersatellite communication

The project started as stand-alone project, then, while the design procedure was proceeding , the

necessity to design a module dedicated to the communication between two satellites has born.

Introduction

 8

This issue is in common with all projects where the communication among more nodes has to take

place. Moreover, the two nodes can be placed on the same satellite (inter-board communication) or

different ones.

One example sharing this kind of problem is Aram-Dock project [1] developed by another student.

We decide to work together in order to design a "stand-alone" module, re-usable in other projects,

where specifications have been agreed together: the 1B35_Intersatellite_Communication module.

We decide to divide the work into two parts, hardware and software. The first steps of the design

and the description in UML are carried out together. All software contents are taken from Aram-

Dock thesis while the hardware is developed in this thesis.

1.3 1B35 Intersatellite Communication Module

1B35 module is used to govern the intersatellite communication in AraMis project.

The communication is based on SimpliciTi protocol and on the CC2510 system on chip (SoC), both

provided by Texas Instrument.

CC2510 contains a low-power transceiver, a microcontroller MCU 8051 , 32kB flash

programmable memory, 4kB RAM and works at a frequency of 2.4 GHz. The extremely reduced

size (6mm x 6mm) and power consumption makes it a perfect partner for building nano and femto

satellites.

SimpliciTi is a network protocol used in RF field which requires a very small memory cost (8 kB

maximum of flash and 1kB maximum of RAM). It implements two network topologies: pure peer-

to-peer and star topology. In 1B35 project a peer-to-peer communication is chosen, the software

drivers are based on several calls to an API (Application Programming Interface) interface which

allow the connection during run-time. Sleep mode can be applied to extend the duration of

functioning.

The main idea is to use more than one 1B35 modules to be placed on different satellites in order to

let them communicate each other. For this reason the system can act both as master and slave

depending on the use cases and operations which are carried out.

Introduction

 9

1B35 needs to be configured once by the configurator (one of main actors), operation in which the

ID is set. The ID is a necessary reference to correctly address the messages in the communication

but also to identify the modules between which a distance is measured. In fact, one of main

purposes of 1B35 is to determine the distance with respect to another interlocutor node by using

RSSI technique (which derived from Friis theory). SimpliciTi protocol has a perfect structure to

accomplish this task since in the body of any kind of message there is a field which contains RSSI

value.

1B35 module does not have an on-board system to provide the power supply,it receives power from

other modules.

1.4 UML Language

The design of AraMis has been carried on by using UML language (Unified Modeling Language)

[2].

The same language is used in this thesis to describe all modules contained in both FemtoSat and

1B35 projects, in this paragraph there is a brief introduction to the UML language.

UML is a visual language born in 1995 for designing software, but it can be optimally adapted to

the description of systems made both of hardware and software. It is based on the representation of

entities involved in the system functioning and all interactions among them. It offers several

advantages, the most important are:

• Make easier the project understanding, even by people external to the project, thanks to a

graphical/conceptual representation of the elements that make the system (components,

subsystems, signals, functions...) starting from a high level description to a specific one.

• Simplify and improve the description of system functionalities and the specification

definition providing a common basis in the approach of designing the units forming the

whole system.

• Make exportable the system building blocks (which are independent form each other) such

that they can be re-used in other projects so implementing the modularity concept.

Introduction

 10

The tool chosen to adopt UML is Visual Paradigm for UML [3] which also provides automatic code

generation.

Among all possible utilities that UML offers, there are three main types of diagrams which have

been used to make the project described in this thesis: use case diagram, class diagram and

sequence diagram.

1.4.1 Use Case Diagram

The use case diagram describes functionalities, project specifications and by what/by who those can

be played. It is the starting point in the system modeling and contains the following categories of

element:

• Actor - it is a generic entity, an human user, another system or the external environment,

which interacts with the system under design, asking for the implementation of one or more

use cases. There can be more than one actor in a use case diagram and is represented as

depicted in Figure 1.6

Figure 1.6: UML language - Actor.

• Use case - it is a task which the actor ask to the system i.e. the objectives of the project. It

can be called directly to the actor or related to other use cases as shown in Figure 1.7

Figure 1.7: UML language - Use cases

Introduction

 11

• Relations among actors - there exist several kind of relations, e.g. the generalization in

which the actor A , from which the arrow starts and points toward actor B, can execute its

use cases and all use cases related to B. In this case A is the generalization of B.

• Relations among use cases - in the following some examples:

o Generalization: similar to the one described for the actors;

o Inclusion: identified by a dashed arrow (Figure 1.8) with a label <<include>>, it

indicates that the basic use case includes also the actions that the included use case

can execute on the system;

o Extension: Graphically it is similar to the Inclusion, but with a label <<extend>> and

indicates that the extended use case is an optional functionality of the basic use case

(Figure 1.9);

Figure 1.8: UML language - Use case inclusion

Figure 1.9: UML language - Use case extension

• Association between actor and use case - it is identified by a straight line and indicates

which actor has the possibility to put in action specific use cases i.e. by which actor each use

case is required; one actor is often associated to more use cases and one uses case can be

associated to more than one actor.

Introduction

 12

Moreover, it's useful to highlight the possibility to add a documentation to each element inside the

UML project. This documentation (containing the element description, comments, information

useful for the designer) together with the diagrams, the software routines and hardware schematics

constitutes the complete description of the project.

1.4.2 Class Diagram

The class diagram is made of objects with their associations and it is used to deeply characterize the

system under project by describing all its components, hardware, mechanical, software and mixed

(hardware/software).

An object is an entity belonging to the system which interacts with objects of the same system or

other external ones. The interactions among objects is described in the sequence diagrams

(illustrated in the next paragraph).

The class is the abstraction (generalization) of an object which represents a specific instance (see

Figure 1.10). The attributes and methods (named as operations in the class) are fundamental

features of a class and its instances.

• An attribute is a property of the object and it can be logical, physical, etc e. g. if the object

is a sensor its attributes can be the sensitivity and power consumption. While in software

field the attributes are variables and C language structures. Each attribute can be

characterized by a type (for example int for integer type), an initial value, the visibility and

other specific properties. Another emblematic case is the one in which an attribute is an

instance of another class.

• The methods indicate which operations the object can perform and how this object

interface with the other elements of the system. They are C functions for software objects or

signals (wires) for hardware objects. They can be associated to a return value (which returns

to the calling object) and to several parameters which it receives from calling object.

A class diagram illustrates the objects and classes in a specific hierarchy, connected through

different types of associations. Other than the ones described for use cases, there is another

Introduction

 13

particular example called composition, very useful in modular projects to represent father objects

made of various son objects.

Figure 1.10: UML language - Class example

1.4.3 Sequence Diagram

Sequence diagrams describe the carrying out of actions performed by the system i.e. the use cases.

Infact, each of them is split into a set of actions which follow to let the use case takes place. Then

the objects ,which make the system, implement the operations through messages containing calls to

methods. Each object can call a method of another one (if it is visible) or its own methods.

The best representation of this course of action is the sequence diagram where the messages are

listed in exact timeline through the association of a order number. Each object is related to a lifeline

in which the time increases if the line is read from the top to the bottom.

There are many other features that describe the operations in the sequence diagram e.g. to

implement loops, if-then-else constructs, nested sequence diagrams and so on, In the Figure 1.11 is

presented an example.

Introduction

 14

Figure 1.11: UML language -Sequence diagram example

Chapter II

15

Chapter II

FemtoSat Specifications, Actors and

Use Cases

FemtoSat is a very small satellite (with a weight lower than 100g) designed to implement typical

operations of bigger satellites with in addition some issues specific for the case study.

In particular, all use cases associated to FemtoSat are divided into the following sets:

• Intersatellite Communication ;
• Distance Measurement
• Distance Control ;

Each of them is shown in the following diagram and refers to several sub-use cases and sub-
diagrams described in the chapter.

Chapter II

16

Figure 2.1 FemtoSat main use case diagram

2.1.1 Use Case - Distance Measurement

One of the main function of FemtoSat is the possibility to measure the distance with respect to
another satellite (named Interlocutor Satellite). Two techniques are exploited:

• Radio Frequency;
• Magnetic;

The first one is based on RSSI technique and it is used for measurements where the satellites are far
away and with a random orientation in the space. This technique cannot be applied if the distance
between them is lower than distance threshold 1;

The second technique is suitable if the distance is not so high, (situation in which the magnetic field
become small and hard to be measured). Magnetic technique cannot be applied if the distance is
greater than distance threshold 2. Furthermore, the two satellites are supposed to be with the two
faces opposite one other.

If it is not the case, one rotation shall be applied in order to align the two systems.

In the range of distances between distance threshold 1, distance threshold 2 both techniques can be
applied.

Through Get Distance Global, the Controller combines both techniques to obtain a better
estimation.

The distance measurement based on radiofrequency technique is implemented in
1B35_Intersatellite_Communication project.

Chapter II

17

2.1.2 Use Case - Distance Control

The distance between the two satellites can be also changed according to the Controller needs.

The distance can be measured through magnetic and radiofrequency techniques depending on the
case, while the relative motion of the two system is implemented by using attractive/repulsive
magnetic force generated by two Electromagnets.

Basing on the signal which drives the actuator, we can manage the contribution of Earth magnetic
field and magnetic field generated by Interlocutor Satellite.

We can have the following situation:

• Magnetic_Actuator_Subsystem driven by a DC signal: only contribution of Earth magnetic
field which produces rotation;

• Magnetic_Actuator_Subsystem s on both satellites driven by a square wave signal with a
50% duty cycle: only contribution of magnetic field generated by Interlocutor Satellite
which produces attraction/repulsion.

• Magnetic_Actuator_Subsystem s driven by generic square wave signal: rotation and
attraction/repulsion combined;

In the thesis only the second case is implemented, but the project can be easily extended to consider
all previously described functions.

2.1.3 Use Case - Intersatellite Communication

Another important functionality of FemtoSat is the possibility to exchange messages with an
Interlocutor Satellite.

As anticipated in the Introduction, this need is a common need for all projects in which a
communication between two nodes (placed on the same satellite or on different satellites) is
implemented.

These features are implemented in 1B35_Intersatellite_Communication module, for this reason all
use cases are taken from 1B35_Intersatellite_Communication project, they are just presented in this
chapter and fully described in the previous chapter.

Chapter II

18

2.2 FemtoSat TX/RX

The diagram contains all uses cases related to the communication between FemtoSat and the
Interlocutor Satellite. Since the communication operations are performed by
1B35_Intersatellite_Communication module, most of use cases are specified in
1B35_Intersatellite_Communication and then re-used in this diagram.

Figure 2.2 - FemtoSat TX/RX use case diagram

2.3 FemtoSat Get Distance RF

The diagram contains all uses cases related to the evaluation of the distance between the FemtoSat
and Interlocutor Node by using radiofrequency techniques.

Chapter II

19

Figure 2.3 - Get Distance RF use case diagram

2.4 FemtoSat Get Distance MAG
The diagram contains all uses cases related to the evaluation of the distance between the FemtoSat
and Interlocutor Node by using magnetic techniques.

Figure 2.4 FemtoSat Get Distance MAF use case diagram

Chapter II

20

2.4.1 Use Case - Get Distance Global

The Controller combines Estimate Distance RF and Estimate Distance MAG to obtain a better
evaluation of the distance between FemtoSat and Interlocutor Satellite.

First it uses Estimate Distance RF, if dist_RF > = distance_threshold_2 then it consider that value as
better estimation so it stores the result in distance variable. If the two satellites are too far away
magnetic techniques cannot be applied.

If dist_RF distance_threshold_2 then Controller uses also Estimate Distance MAG to obtain
dist_MAG.

Finally an average between dist_RF and dist_MAG is stored in global distance variable.

If dist_RF distance threshold 1 the dist_MAG is stored in global distance variable because the
dist_RF value is meaningless.

2.4.2 Use Case - Estimate Distance MAG

First the Controller uses Measure Distance MAG_MASTER to trigger the distance measurement to
the right Interlocutor Node identified by an ID given by the actor, then starts a loop in which
periodically the value of dist_MAG and its validity are evaluated by using Get Distance MAG .

When distValid is true, it indicates a valid measurement and causes the loop termination.

The Estimate Distance MAG is implemented by calling the estimateDistanceMAG function.

2.4.3 Use Case - Measure Distance MAG_MASTER

The Controller uses Send Message to send TURN_ON_MAGNET_FORWARD command to the
Interlocutor Satellite identified by an ID given by the actor.

The Interlocutor Satellite then uses Turn ON Magnet Forward Mode to turn on its Electromagnet in
forward mode.

The Controller uses Process Distance MAG to measures the magnetic field generated by the
Interlocutor Satellite and process the value to obtain the distance dist_MAG.

Finally, to stop the procedure, the Controller uses Send Message to sends TURN_OFF_MAGNET
command to Interlocutor Satellite which uses Turn OFF Magnet for turning off its Electromagnet.

Chapter II

21

The Measure Distance MAG_MASTER is implemented by calling the measureDistaceMAG
function.

2.4.4 Use Case - Measure Distance MAG_SLAVE

The Controller using Read Message receive and interpret TURN_ON_MAGNET_FORWARD
command sent by Interlocutor Satellite then uses Turn ON Magnet Forward Mode to turn on its
Electromagnet in forward mode.

Finally, to stop the procedure, the Controller uses Turn OFF Magnet for turning off its
Electromagnet after having received the corresponding command TURN_OFF_MAGNET from the
Interlocutor Satellite.

2.4.5 Use Case - Get Distance MAG

The Controller reads the value of distValid, if true, it reads the other attributes of Distance_MAG.

The Get Distance MAG use case is implemented by calling the getDistanceMAG function.

distValid is reset at the beginning of the measurement and set to true at the end of measurement.
All other attributes of Distance_MAG are updated at the end of measurement.

2.4.6 Use Case - Process Distance MAG

First the Controller uses Get Magnetic Field to obtain magX and magY values. Then the following
formula [12] shall be manipulated to process those values and evaluate dist_MAG.

���� = 	��	
��2� � � � + 2�
��� + 2��� + 4�� + � − 2�

��� − 2��� + 4��� 10����� !

The validity of dist_MAG is indicated by distValid flag.

Process Distance MAG is implemented by using processDistanceMAG function.

Chapter II

22

2.4.7 Use Case - Get Magnetic Field

The Controller starts a sequence of operation necessary to measure the magnetic field by calling
getField.

In order to have the correct measurement of the magnetic field, the Voffset shall be evaluated.

First the Controller uses Set Magnetic Sensor HMC1002 after which Vset is read, then it uses Reset
Magnetic Sensor HMC1002 after which Vreset is read.

The Voffset is obtained as average of the last measured voltages i.e.:

Voffset = (Vset+Vreset)/2

Finally the components of magnetic field (written in the magX, magY parameters) are calculated as
follows:

magX [G]= (MAGN_X-OFFSET_MAGNETIC)[V]/SENS_MAGNETIC[V/T]*10^4;

magY [G]= (MAGN_Y-OFFSET_MAGNETIC)[V]/SENS_MAGNETIC[V/T]*10^4;

Chapter II

23

2.5 FemtoSat Set Distance

The diagram contains all uses cases related to the control of the distance between the FemtoSat and
Interlocutor Node.

Figure 2.5 - FemtoSat Set Distance use case diagram

2.5.1 Use Case - Set Distance Global

The Controller will perform all needed operations to set the distance between FemtoSat and
Interlocutor Satellite to distance_new value.

First it uses Get Distance Global use case to estimate the actual distance (stored in distance
variable).

If distance > distance_new, the two satellites shall get closer, the Approach_MASTER use case is
then used by Controller.

Chapter II

24

If distance distance_new, the two satellites shall separate, the Separate_MASTER use case is then
used by Controller.

After an Approach_MASTER/Separate_MASTER cycle there is again a Get Distance Global cycle
to measure the updated distance; the algorithm is executed in a loop until the measured distance is
close enough to distance_new (distance - distance_new distance_error).

The Set Distance Global is implemented by calling setDistanceGlobal function.

2.5.2 Use Case - Set Distance MAG

The Controller will perform all needed operations to set the distance between FemtoSat and
Interlocutor Satellite to distance_new value.

First it uses Estimate Distance MAG use case to estimate the actual distance (stored in dist_MAG
variable).

If dist_MAG > distance_new, the two satellites shall get closer, the Approach_MASTER use case is
then used by Controller.

If dist_MAG distance_new, the two satellites shall separate, the Separate_MASTER use case is
then used by Controller.

After an Approach_MASTER/Separate_MASTER cycle there is again a Estimate Distance MAG
cycle to measure the updated distance; the algorithm is executed in a loop until the measured
distance is close enough to distance_new (dist_MAG - distance_new distance_error).

The Set Distance MAG is implemented by calling setDistanceMAG function.

2.5.3 Use Case - Set Distance RF

The Controller will perform all needed operations to set the distance between FemtoSat and
Interlocutor Satellite to distance_new value.

First it uses Estimate Distance MAG use case to estimate the actual distance (stored in dist_RF
variable).

If dist_RF > distance_new, the two satellites shall get closer, the Approach_MASTER use case is
then used by Controller.

If dist_RF distance_new, the two satellites shall separate, the Separate_MASTER use case is then
used by Controller.

Chapter II

25

After an Approach_MASTER/Separate_MASTER cycle there is again a Estimate Distance RF
cycle to measure the updated distance; the algorithm is executed in a loop until the measured
distance is close enough to distance_new (dist_RF - distance_new distance_error).

The Set Distance RF is implemented by calling setDistanceRF function.

2.5.4 Use Case - Approach_MASTER

First the Controller uses Set Local Temporal Reference, Set Remote Temporal Reference (related to
the Interlocutor Satellite identified by an ID given by the actor) passing timeReference value to
provide a time reference.

The Controller uses Send Message to send TURN_ON_MAGNET_AC command and 180
(phase),0.5 (duty cycle) as parameters to the Interlocutor Satellite.

The former uses Turn ON Magnet_AC with a duty cycle of 0.5 and a phase of 0 while the latter
uses Turn ON Magnet_AC with a duty cycle of 0.5 and a phase of 180 to turn on their
Electromagnets in a synchronous way with opposite phase.

Both Electromagnets stay on for a certain amount of time (Ton_long) so that the two satellites
approach each other thanks to the attractive magnetic force. After Ton_long time period both the
Controller and Interlocutor Satellite uses Turn OFF Magnet to turn off the Electromagnets.

The two satellites shall stop, so a break cycle is executed i.e. they both use Turn ON Magnet_AC
with a duty cycle of 0.5 and a phase of 0 for a Ton_long time period after which the Turn OFF
Magnet is used.

The use case is implemented by calling the approach function.

2.5.6 Use Case - Separate_MASTER

First the Controller uses Set Local Temporal Reference, Set Remote Temporal Reference (related to
the Interlocutor Satellite identified by an ID given by the actor)passing timeReference value to
provide a time reference.

The Controller uses Send Message to send TURN_ON_MAGNET_AC command and
0(phase),0.5(duty cycle) as parameters to the Interlocutor Satellite.

Both the Controller and Interlocutor Satellite use Turn ON Magnet_AC with a duty cycle of 0.5 and
a phase of 0 to turn on their Electromagnets in a synchronous way with same phase.

Chapter II

26

The Electromagnets stay on for a certain amount of time (Ton_long) so that the two satellites
separate each other thanks to the repulsive magnetic force. After Ton_long time period both the
Controller and Interlocutor Satellite uses Turn OFF Magnet to turn off the Electromagnets.

The two satellites shall stop, so a break cycle is executed i.e. the Interlocutor Satellite uses Turn ON
Magnet_ACfor Ton_long time period with a duty cycle of 0.5 and a phase of 180, while the
Controller uses Turn ON Magnet_AC for the same time period with a duty cycle of 0.5 and a phase
of 0.

Finally, the Turn OFF Magnet is used.

The use case is implemented by calling the separate function.

Chapter II

27

2.6 FemtoSat Magnetometer Subsystem

All use cases related to the Magnetometer_Subsystem.

Figure 2.6 - FemtoSat Magnetometer Subsystem

2.6.1 Use Case - Turn OFF Magnetometer

The Controller turns off the Magnetometer_Subsystem by calling turnOFF function of
Magnetometer_Sensor_SW_Driver.

2.6.2 Use Case - Turn ON Magnetometer

The Controller turns on the Magnetometer_Subsystem by calling turnON function of
Magnetometer_Sensor_SW_Driver.

Chapter II

28

2.6.3 Use Case - Set Magnetic Sensor HMC1002

The Bk1B221_Magnetometer_Sensor autonomously starts a set procedure for
Magnetometer_2_axis_HMC1002 by calling set function.

This operation is necessary for the correct usage of Magnetometer_2_axis_HMC1002 (due to its
physical characteristics) and it consists of an impulsive current flowing through the sensor for
Tset_reset in a specific direction.

2.6.4 Use Case - Reset Magnetic Sensor HMC1002

The Bk1B221_Magnetometer_Sensor autonomously starts a reset procedure for
Magnetometer_2_axis_HMC1002 by calling resetfunction.

This operation is necessary for the correct usage of Magnetometer_2_axis_HMC1002 (due to its
physical characteristics) and it consists of an impulsive current flowing through the sensor for
Tset_reset in a specific direction.

Chapter II

29

2.7 FemtoSat Magnetic Actuator

All use cases related to the Magnetic_Actuator_Subsystem.

Figure 2.7 - FemtoSat Magneic Actuator use case diagram

2.7.1 Use Case - Set Remote Temporal Reference

The Controller uses Send Message to send SET_TIME_REFERENCE command and
timeReference as parameter to the Interlocutor Satellite identified by an ID given by the actor.

The Interlocutor Satellite then uses its own Set Local Temporal Reference passing as parameter the
received value.

The Set Remote Temporal Reference is implemented by calling setRemoteTimeReference function.

2.7.2 Use Case - Set Local Temporal Reference

The Controller creates the reference signal which is used in the motion operations of FemtoSat i.e.:

• Separate_MASTER
• Approach_MASTER
•

The reference is a periodic signal having a time period specified in timeReference and configurable
with setTimeReference function.

It shall have a period not smaller than CC2510 clock.

Chapter II

30

2.7.3 Use Case - Turn ON Magnet_AC

The Controller turns on the Magnetic_Actuator_Subsystem driving it with an AC current having a
duty cycle and phase reference specified by the actor. The use case is implemented by calling
turnON and passing the desired duty cycle and phase reference as parameter.

2.7.4 Use Case - Turn ON Magnet_DC

It is a particular case of Turn ON Magnet_AC in which the duty cycle passed as parameter is 1.

The Controller turns on the Magnetic_Actuator_Subsystem driving it with a continuous current.
The use case can be Turn ON Magnet Forward Mode, Turn ON Magnet Reverse Mode depending
on the direction of the current.

2.7.5 Use Case - Turn ON Magnet Forward Mode

The Controller turns on the Magnetic_Actuator_Subsystem in forward mode by calling in sequence
setForwardMode and turnON functions of Magnetic_Actuator_SW_Driver class.

2.7.6 Use Case - Turn ON Magnet Reverse Mode

The Controller turns on the Magnetic_Actuator_Subsystem in reverse mode by calling in sequence
setReverseMode and turnON functions of Magnetic_Actuator_SW_Driver class.

2.7.7 Use Case - Turn OFF Magnet

The Controller turns off the Magnetic_Actuator_Subsystem by calling turnOFF function of
Magnetic_Actuator_SW_Driver class.

Chapter II

31

2.8 FemtoSat Motion_MASTER

The diagram contains all uses cases related to the motion of the FemtoSat and Interlocutor Node
needed to set a proper value of distance.

Here the FemtoSat is the master (it starts the use cases) while Interlocutor Node is the slave (it
collaborates with the FemtoSat to complete the use cases).

Figure 2.8 - FemtoSat Motion_MASTER

2.9 FemtoSat Motion_SLAVE

The diagram contains all uses cases related to the motion of the FemtoSat and Interlocutor Node
needed to set a proper value of distance.

Here the Interlocutor Node is the master (it starts the use cases) while FemtoSat is the slave (it
collaborates with the Interlocutor Node to complete the use cases).

Chapter II

32

Figure 2.9 - FemtoSat motion_SLAVE use case diagram

2.9.1 Use Case - Approach_SLAVE

The Controller using Read Message receive and interpret SET_TIME_REFERENCE which triggers

Set Local Temporal Reference use case.

Then the Controller, using again Read Message receive and interpret TURN_ON_MAGNET_AC
command and 0.5,180 as parameters (duty cycle and phase displacement respectively) sent by
Interlocutor Satellite then uses Turn ON Magnet_AC accordingly.

Meantime the Interlocutor Satellite uses Turn ON Magnet_AC with 0.5 as duty cycle and 0 as phase
reference.

The two Electromagnets stay on for a certain amount of time (Ton_long) so that the two satellites
approach each other thanks to the attractive magnetic force. After Ton_long time period both the
Controller and Interlocutor Satellite use Turn OFF Magnet to turn off the Electromagnets.

The two satellites shall stop, so a break cycle is executed i.e. they both use Turn ON Magnet_AC
with 0.5 as duty cycle and 180 as phase reference for a Ton_long time period after which the Turn
OFF Magnet is used.

Chapter II

33

2.9.2 Use Case - Separate_SLAVE

The Controller using Read Message receive and interpret SET_TIME_REFERENCE which triggers

Set Local Temporal Reference use case.

Then the Controller, using again Read Message receive and interpret TURN_ON_MAGNET_AC
command and 0,0.5 as parameters (phase displacement and duty cycle respectively) sent by
Interlocutor Satellite then uses Turn ON Magnet_AC accordingly.

Meantime the Interlocutor Satellite uses Turn ON Magnet_AC with 0.5 as duty cycle and 0 as phase
reference.

The two Electromagnets stay on for a certain amount of time (Ton_long) so that the two satellites
separate each other thanks to the repulsive magnetic force. After Ton_long time period both the
Controller and Interlocutor Satellite use Turn OFF Magnet to turn off the Electromagnets.

The two satellites shall stop, so a break cycle is executed i.e. the Interlocutor Satellite uses Turn ON
Magnet_AC with 0.5 as duty cycle and 0 as phase reference for Ton_long time period, while the
Controller uses Turn ON Magnet_AC with 0.5 as duty cycle and 180 as phase reference for the
same time period.

Finally, the Turn OFF Magnet is used.

Chapter III

34

Chapter III

FemtoSat Design and Analysis

As stated in previous paragraphs, FemtoSat has a modular structure following AraMis philosophy
in which both pre-designed blocks and blocks developed customized for the application are used
together.

In particular we can logically divide the whole system into the following units:

• 1B35_Intersatellite_Communication
• Distance Controller

 Magnetometer_Subsystem
 Magnetic_Actuator_Subsystem

• Supply Subsystem
The actual implementation of the system is divided into hardware and software:

• FemtoSat_HW
• FemtoSat_SW

The root classes contains all hardware and software classes which are described into corresponding
diagrams in the following paragraphs.

1B351_Intersatellite_Communication hardware class and 1B351S_Intersatellite_Communication
software class with all subclasses are taken from 1B35_Intersatellite_Communication project [6].

Chapter III

35

.

Figure 3.1 - FemtoSat main class diagram

3.1 Design choices

We can start the design procedure by fixing the available power on-board the satellite. The PCB

dimensions are not specified so one can considered an quasi-arbitrary case as starting reference:

9X9 cm.

3.1.1 Source Power

Regardless the actual implementation of supply system, we can assume a reasonable solution

adopting solar cells at least for a rough estimation of the power available in the system.

Chapter III

36

We consider triple junction GaAs solar cells provided by AzurSpace (illustrated in Figure 3.2)

which have the following feature:

• Model: TJ Solar Cell 3G28C;

• Efficiency (η = 28%);

• Vmax = 2.87 V;

• Standard dimensions = 80 mm X 40 mm;

Figure 3.2- TJ Solar Cell 3G28C.

In a 9X9 cm PCB we can use two cells having standard dimensions obtaining a total cells surface of

60.35 cm2 (Figure 3.3). The power can be estimated by the following formula:

���� = �� ∗ 	
� ∗ � ∗ ��

where Ks is the solar constant (1366 W/m2), Sup is the solar cells surface, η is the solar cells

efficiency and ηs is the efficiency of regulation circuits (we can assume an efficiency of 90%).

Chapter III

37

Figure 3.3 - Top sight of the system under design.

The maximum power available in the femtosatellite is then estimated as Pmax = 2.077 W ≈ 2 W with

a voltage supply of about 6 V (if we connect in series two solar cells).

Notice that the actual voltage supply depends on the choice of regulation circuit, anyway the values

just derived are a good starting point for the design and analysis procedures.

3.1.2 Magnetometer and Magnetic Actuator

The magnetometer is a module based on 2 axis HMC1002 sensor , with all signal conditioning

circuits to provide a magnetic field measurement. To exploit modularity and re-usability which are

the main goals of AraMis project, we choose to adopt the magnetometer used in AraMis, the

Bk1B221_Magnetometer_Sensor. The module provide a measurement of the magnetic field along

X,Y axis expressed in Tesla. More details are shown in Chapter V.

The electronic module used to drive the electromagnet is chosen among the modules available in

the AraMis repository, that is Bk1B222_Magnetic_Torque_Actuator.

Chapter III

38

The power dissipated by Bk1B222_Magnetic_Torque_Actuator is not fixed a priori by the

electronic module, but depends on the voltage supply and on the equivalent resistance made of

solenoid and other resistances as showed in the prosecution of this paragraph.

Let's consider the solenoid as an inductive passive load having two connectors through which it is

connected to the circuit. This circuit (called driver) has to drive the load such that the current can

flow in both directions (from connector 1 to connector 2 and viceversa).

Figure 3.4 - Schematic of an H bridge circuit

The driver will have a typical configuration called H bridge (Figure 3.4) which allows to drive the

solenoid in bidirectional way (thanks to the bridge topology) and discharge the stored current

through wheeling diodes.

In Figure 3.5 (on the left) we can see how, activating transistor Q1 and Q3, the current flow from

left to the right in the solenoid while, when Q2 and Q4 are closed, it flows in the opposite direction

(Figure 3.5 on the right).

Chapter III

39

Figure 3.5 - Current paths in a H-bridge

In Figure 3.6 is shown the path of the current through the wheeling diodes D2 and D4 once all

transistors are interdicted, in case the solenoid was previously driven by transistors Q1 and Q3

Figure 3.6 - Current flow through wheeling diodes.

On the other hands the current would flow in D1 and D3 if the solenoid had been charged through

Q2 and Q4.

Chapter III

40

Figure 3.7 - Solenoid charge at constant voltage and discharge

The current and voltage trends are shown in Figure 3.7 where T is the time in which the solenoid is

driven (charged), following a discharge period assumed to be 5τ.

In Figure 3.8 is showed the equivalent circuit of the H-bridge topology, for t<T, where Rdson and

Rsol are respectively the resistive contributions of each MOS in conduction and of the solenoid.

Figure 3.8 - Equivalent circuit of a H-bridge topology driving an inductor

Chapter III

41

If we call Rtot the equivalent series resistance equals to 2Rdson+Rsol, the circuit becomes the one

illustrated in Figure 3.9

Figure 3.9 - Simplified equivalent circuit of a H-bridge topology driving an inductor

The expression of the current for t<T (graphically shown in Figure 3.7) will be :

�� ≤ �� = ��� − ������ �−�
�� �

where Imax = VL / RTOT is the maximum current flowing in that circuit and τr = L/RTOT is the time

constant related to the inductor charging. Now we can evaluate the average current flowing inside

the solenoid in the time interval [0,T] by integrating from time 0 to time T and dividing by T:

�̅��� = 1
� � ����� = ��� − ��� −�����!−� ��" # + ��%

�
&

'

The equivalent circuit for the discharge (t>T) is similar to the one related to the charge but the

equivalent resistance will be RTOT =2RD+Rsol , where RD is the resistance of a diode in conduction.

The expression of the current for t>T is:

�� > �� = ������)−�
�* +

then we have:

*̅�,, = 1
� � �� > ���� = -��� − ������ .−� �*" /0 −�* exp�−5� + �*%

�
567

'

Having that τr and τf are negligible, the average currents which the solenoid has to sustain are:

�̅��� ≅ ��� = 9:;&<&

Chapter III

42

*̅�,, ≅ 0

In the following paragraph there is the analysis carried out to choose the solenoid.

3.1.3 Solenoid Choice

In order to choose the solenoid parameters different simulations are carried out by using some

Matlab routines available in Appendix 1.

Figure 3.10 - Solenoid representation

Since there are many variables at stake we need to fix some of them and evaluate the other ones, in

particular we fixed:

• Solenoid orientation (see Figure 3.10)

• Source Power : 2W

• Solenoid Radius : 5.5cm

• Wire diameter : 0.15mm

The elements that we can change in the simulations are

• Number of coils

• Number of solenoids

• Type of connection (series/parallel, see Figure 3.11 for more details)

Chapter III

43

Figure 3.11 - Series connection on the left, parallel connection on the right

The formula for the magnetic field evaluation is:

>��� = ?'@AB�,2D E D + 2�
�D + 2��F + 4;F + D − 2�

H�D − 2��F + 4;FI 10J				LMN
OOP

where B is the magnetic field value expressed in Gauss, N is the number of coils, I the current

flowing in the solenoid, L the length of the solenoid, R the radius of the solenoid, X the distance

from the center of the solenoid.

Since we have to evaluate the distance between the two satellites, in the B function we need to pass

as parameter the distance value adding an offset X0 which consider the dimensions of the solenoid

and thickness of HMC1002 sensor as illustrated in Figure 3.12. X0 is then calculated as 2a-b (refer

to Figure 3.12 for the notations).

Figure 3.12 - System configuration, X is the distance between the two solenoids center, d is the distance between the two satellites, L

is the satellite lentgh, b is the thickness of HMC1002 sensor

Chapter III

44

Varying the free elements described before, for each simulation we evaluate:

• B(dmin): magnetic field at dmin=1cm;

• B(dmax):magnetic field at dmax=20cm;

• Voltage supply (having fixed the power supply);

• Current flowing in one solenoid;

• Solenoid length;

Finally, the results are shown in Table 3.1

Table 3.1 - Simulation results for solenoid choice.

As we can see, considering one solenoid, as the number of coils increases (up to 150), the magnetic

field close to the solenoid increases. If the number of coils continue to increases from 150 coils on,

the magnetic field in the solenoid proximity becomes low while increases the distance at which

there is a magnetic field not negligible.

Number of

Solenoids
Connection

Wire

diameter [m]

Radius of

Solenoid [m]

Ncoils [per

solenoid]

Length of a single

Solenoid[m]

Power

Source [W]

Voltage

[V]

Current [A] (flowing in

one solenoid)

B|d=dmin=1cm

[G]

B|d=dmax=20cm

[G]

1 1,50E-04 0,055 50 0,008 2 6,01 0,333 1,705 0,033

1 1,50E-04 0,055 100 0,015 2 8,357 0,239 2,163 0,043

1 1,50E-04 0,055 150 0,023 2 10,176 0,197 2,283 0,048

1 1,50E-04 0,055 200 0,03 2 11,716 0,171 2,223 0,051

1 1,50E-04 0,055 300 0,045 2 14,307 0,14 1,918 0,053

2 Series 1,50E-04 0,055 50 0,008 2 8,357 0,239 2,163 0,043

2 Series 1,50E-04 0,055 100 0,015 2 11,716 0,171 2,223 0,051

2 Series 1,50E-04 0,055 150 0,023 2 14,307 0,14 1,918 0,053

2 Parallel 1,50E-04 0,055 50 0,008 2 4,388 0,228 2,059 0,041

2 Parallel 1,50E-04 0,055 100 0,015 2 6,01 0,166 2,174 0,05

2 Parallel 1,50E-04 0,055 150 0,023 2 7,278 0,137 1,885 0,052

4 Parallel 1,50E-04 0,055 50 0,008 2 3,291 0,152 1,985 0,045

4 Parallel 1,50E-04 0,055 75 0,011 2 3,879 0,129 1,769 0,049

Geometrical Parameters Electrical ParametersConfiguration Magnetic Parameters

Chapter III

45

Connecting together two or more solenoids in series is meaningless because we have the same

performance as the case of one solenoid (unless the total number of coils is the same).

Considering more solenoids in parallel implies a change in the voltage and current provided by the

supply (having fixed the power), while for the magnetic behavior there is a degradation of the

performance.

One explanation of this behavior can be that as the solenoids resistance decreases (due to the

increasing of solenoids connected in parallel) the contributions of parasitics like Rs and Rdson

become more significant.

As conclusion, after all considerations preaviously stated, the solenoid parameters are chosen and

summarized in the following:

• 2 Solenoids connected in parallel;

• Total number of coils: 200 (100 per solenoid);

• Total length of solenoids (consequently of the satellite) : 3cm;

• Solenoid resistance: Rsol=33.716 Ω ;

• Equivalent resistance of the system: Req=18.058 Ω (Rs=0.2Ω, Rds_on =1Ω);

• Voltage supply: 6V;

• Dissipated power : 2W ;

• Current flowing in one solenoid : IL =0.166 A;

• Magnetic field at dmin =1cm : B(dmin)=2.174G ;

• Magnetic field at dmax = 20cm : B(dmax)=0.05G ;

Chapter III

46

3.2 Class Diagrams

3.2.1 FemtoSat main class diagram

Class - FemtoSat
Development of a FemtoSat i.e a satellite with a weigh less than 100g, but having the main features
of a bigger one:

• at least one battery with related circuits
• a transceiver system to communicates with an Interlocutor Satellite
• an on-board processor
• a system for determination and control of the distance with respect to an Interlocutor

Satellite
Template Parameters: FemtoSat_ID

References

Type Value

Folder ${Aramis_Progetto}\FemtoSat

Attributes
Signature: driver : FemtoSat_SW

Signature: -distance threshold 1

The threshold under which RF techniques cannot be applied to measure the distance between
satellites (Estimate Distance RF use case).

Signature: -distance threshold 2

The threshold under which magnetic techniques can be applied to measure the distance between
satellites (Estimate Distance MAG use case).

Class - FemtoSat_HW
Hardware implementation of FemtoSat.

References

Type Value

Folder R:\Progetto\FemtoSat

Operations
Signature: DEBUG()

Chapter III

47

Debug bus for CC2510. Contains: RESET, DEBUG_DATA, DEBUG_CLOCK, 3V3_SUPPLY.

Signature: MODULE_A()

Class - FemtoSat_SW
The class contains all the software design of FemtoSat .

Attributes
Signature: -distance : float

The value of the actual distance between FemtoSat and Interlocutor Satellite. It is the best
estimation obtained as a combination of dist_MAG and dist_RF.

The value is expressed in meters.

Signature: -distance_new : float

The value of the new distance between FemtoSat and Interlocutor Satellite provided by the
Controller.

The value is expressed in meters.

Signature: -distance_error : float

The accepted difference between distance and distance_new.

The value is expressed in meters.

-distance_threshold_1 : float const = 0.11

The threshold under which RF techniques cannot be applied to measure the distance between
satellites (Estimate Distance RF use case).

The value is expressed in meters.

-distance_threshold_2 : float const = 0.2

The threshold under which magnetic techniques can be applied to measure the distance between
satellites (Estimate Distance MAG use case).

The value is expressed in meters.

Signature: -Ton_long : float

The time in which the Magnetic_Actuator_Subsystem keeps on the Electromagnet in a motion
operation (Approach_MASTER, Separate_MASTER).

Signature: -Ton_short : float

Chapter III

48

The time in which the Magnetic_Actuator_Subsystem keeps on the Electromagnet in a distance
measurement operation (Measure Distance MAG_MASTER).

Signature: -magX : float

Magnetic field component measured along X-axis.

The value is expressed in Gauss.

Signature: -magY : float

Magnetic field component measured along Y-axis.

The value is expressed in Gauss.

Signature: -magAct : Magnetic_Actuator_SW_Driver

An instance of Magnetic_Actuator_SW_Driver

Signature: -magSens : Magnetometer_Sensor_SW_Driver

An instance of Magnetometer_Sensor_SW_Driver

Signature: -distance_MAG : Distance_MAG

An instance of Distance_MAG

Signature: -1B35_driver : 1B351S_Intersatellite_Communication

An instance of 1B351S_Intersatellite_Communication

Signature: command : Commands

An instance of Commands

Signature: mess : Message

An instance of Message.

In FemtoSat_SW the 1B35_Intersatellite_Communication will be used to send a generic Message to
the Interlocutor Satellite. This means that the message_body is considered as a generic array of
chars to be filled depending on the case.

The basic structure of the message will be:

- a command chosen among Commands, placed in the first byte;

- one or more parameters, typically float number, having a meaning depending on the type of
command.

Chapter III

49

Operations
Signature: init()

Initializes all attributes and calls the initialization functions of the following objects:

- 1B35_driver

- distance_MAG

- magSens

- magAct

Moreover, it sets all attributes to:

- distance = 0.0

- distance_error = 0.0

- distance_new = 0.0

- magX = 0.0

- magY = 0.0

Signature: getDistanceMAG(distance_MAG : Distance_MAG) : void

Returns the instance of Distance_MAG class containing all the following attributes:

• dist_MAG
• ID_MASTER
• ID_SLAVE
• time_MASTER
• time_SLAVE
• distValid

The reference of the Distance_MAG is passed as parameter to the function.

Signature: getDistanceGlobal() : float

It implements Get Distance Global use case. When the distance estimation is completed it is written
in distanceattribute.

Signature: measureDistaceMAG(distance_MAG : Distance_MAG)

It implements Measure Distance MAG_MASTER use case. The instance of Distance_MAG
attribute is passed as parameter so that all attributes can be set after a distance measurement is
carried out.

Signature: processDistanceMAG(distance_MAG : Distance_MAG)

Chapter III

50

It implements Process Distance MAG use case. The instance of Distance_MAG attribute is passed
as parameter so that all attributes can be set after a distance measurement is carried out.

Signature: setDistanceGlobal(dist : float)

It implements Set Distance Global use case. The value of new distance is passed as parameter.

Signature: setDistanceMAG(dist : float)

It implements Set Distance MAG use case. The value of new distance is passed as parameter.

Signature: setDistanceRF(dist : float)

It implements Set Distance RF use case. The value of new distance is passed as parameter.

Signature: waitRoutine(waiting_time : float)

The function uses the timer to provide a waiting cycle of waiting_time seconds.

Signature: setRemoteTimeReference(timeReference : float)

The function used to communicate the value of local timeReference to Interlocutor Satellite in order
to change the remote reference accordingly.

Signature: prepareMessage()

Signature: interpretCommand()

Signature: estimateDistanceMAG(distance_MAG : Distance_MAG)

It implements Estimate Distance MAG use case. The instance of Distance_MAG attribute is passed
as parameter so that all attributes can be set after a distance measurement is carried out.

Signature: approach()

It implements Approach_MASTER use case.

Signature: separate()

It implements Separate_MASTER use case.

Class - Distance Controller
The system which allows the satellite to modify the distance from the Interlocutor Satellite.

References

Type Value

File C:\Users\Donato\Desktop\Sistemi ELT per applicazioni spaziali\Final
Project\Report and presentation\Tesina finale.pptx

Chapter III

51

Class - Magnetic_Actuator_Subsystem
It is the module which allows the generation of a magnetic field for motion and distance
measurement purposes.

It is made of some electronic circuits (Bk1B222_Magnetic_Torque_Actuator) used to drive an
Electromagnet.

Furthermore, there is a software class containing the driver routines which govern
Magnetic_Actuator_Subsystem operations.

Class - Magnetometer_Subsystem
The module which allows the measurement of magnetic field around the FemtoSat. It is based on
Bk1B221_Magnetometer_Sensor and a software driver (Magnetometer_Sensor_SW_Driver).

The magnetic field is measured along two directions (magX, magY) and it is made of both
contributions of Earth and Interlocutor Satellite.

A procedure shall be implemented to isolate the Interlocutor Satellite field contribution and
eliminate the one of the Earth.

Class - Supply Subsystem
All hardware subsystems and components which provide power supply to the FemtoSat.

3.2.2 FemtoSat_HW

The diagram contains all hardware classes of FemtoSat which are:

• FemtoSat_HW
• Bk1B222_Magnetic_Torque_Actuator
• Bk1B221_Magnetometer_Sensor
• 1B351_Intersatellite_Communication
• Electromagnet
• Solenoid
• Antenna

The Bk1B222_Magnetic_Torque_Actuator, Bk1B221_Magnetometer_Sensor are taken from
1B22_Magnetic_Attitude_Subsystem project [7]; the 1B351_Intersatellite_Communication is taken
from 1B35_Intersatellite_Communication project [6]; the last components are designed in the
current project.

Chapter III

52

In the root class FemtoSat_HW, we can see the system interface toward the external environment,
i.e. two modules MODULE_A and DEBUG which can be used for testing purposes.

For more details refers to schematics in Appendix IV.

Figure 3.13 - FemtoSat HW class diagram

Class - Bk1B221_Magnetometer_Sensor
The Bk1B221_Magnetometer_Sensor is a 2-axis magnetic sensor for space applications based on a
Magnetometer_2_axis_HMC1002 from Honeywell. The bridge-based reading of magnetic field for
each of the two orthogonal axes is converted to a single ended voltage signal for each axis, available
on the MAGN_X and MAGN_Y outputs.

The circuit operates with two supply voltage (3V3, 5V) and it requires a reference voltage REF_3V.

The Bk1B221_Magnetometer_Sensor can be disabled by pulling down the signal EN_MAGN both
to reduce power consumption and to isolate the circuit in case of faults.

Chapter III

53

The two inputs notSET and RESET are used to trigger the so-called set-reset operation of the
magnetic field transducer Magnetometer_2_axis_HMC1002, as detailed in the corresponding
datasheet.

References

Ty
pe

Value

Fil
e

R:\Tesi\Tesi Vico AOCS\Tesi Vico\tesi\AOCS_MagnetometroHW_080416_Vico.doc

Fol
der

${Aramis_Progetto}\1B_Subsystem_Elements\1B2_Attitude_and_Orbit_Subsystem\1B22_Magneti
c_Attitude_Subsystem\1B221_Magnetometer

Attributes
-sensor : Magnetometer 2-axis HMC1002

Biaxial magnetic field sensor.

-reference : LM4128AMF-4V1

Voltage reference which supplies magnetic sensing bridge.

-opamp : AD623_instrumentation_OPAMP[2]

Instrumentation Amplifier used for conditioning circuit of magnetometer.

-GAIN : float const = 31.303

Gain of magnetic field components conditioning circuits.

-OFFSET_MAGNETIC : float const = 1.5

Offset of magnetic field components conditioning circuits, applied on opamp REF pins, in V.

+MAGN_OFFSET : float const = sensor.V_BIAS_RELATIVE*reference.REF_VOLTAGE*GAIN
+ OA_OFFSET

Global offset of magnetometer sensor on both axes [V], in typical conditions. It depends on sensor
typical offset and conditioning circuit gain and offset.

-PDB_MAX : short const = 18

Maximum possible Power Distribution Bus voltage [V].

-P_REF_MAX : float const = 4.5e-3

Maximum dissipated power by each voltage divider on REF_3V, in W (see electric scheme in par.
6.1.6). Calculated value.

-PowerConsumption_Avg_SR : float const = 3.3e-3

Chapter III

54

Average power consumption of Set/Reset circuit, in W. Theoric value. Based on sensor's datasheet
declared value of maximum S/R effective current from power supply (1 mA).

-PowerConsumption_Peak_SR : float const = TBD

Set/Reset circuit peak power consumption, in W.

-PowerConsumption_Avg_Max : float const =
(reference.REF_VOLTAGE*reference.REF_VOLTAGE*2/sensor.R_BRIDGE_MIN) +
(reference.I_SUPPLY_MAX*PDB_MAX) + 2*(opamp[1].I_SUPPLY_MAX*5) +
(2*P_REF_MAX) + PowerConsumption_Avg_SR

Maximum average power consumption of Magnetometer Sensor block, in W. Calculated from
maximum values declared in components' datasheet.

Contributions to power dissipation are Magnetometer_2_axis_HMC1002, REF02_5V_Reference,
2x AD623_instrumentation_OPAMP, 2x REF_3V voltage dividers and Set/Reset circuit.

+PowerConsumption_Peak : float const = PowerConsumption_Peak_SR +
PowerConsumption_Avg_Max - PowerConsumption_Avg_SR

Peak power consumption of Magnetometer Sensor block in W, including Set/Reset contribution ->
PowerConsumption_Peak_SR.

-Max supply current : float const = 0.0128

Maximum supply current of Magnetometer Sensor block (when enabled) in A. Tested with (model
element not found) voltage = 14 V.

+SENS_MAGNETIC : float const = (reference.REF_VOLTAGE * sensor.SENS * GAIN)

Sensitivity of conditioned magnetic sensor, in V/T.

+SETRESET_PERIOD : short const = 600

The repetition rate of the System SR Magnetometer, in s.

Operations
Signature: EN_MAGN()

Enables magnetometer, by providing supply to bridge and opamp. Active high. TTL input.

Signature: MAGN_X()

Output voltage for magnetic field along X-axis.

Output voltage is

OFFSET_MAGNETIC [V] + SENS_MAGNETIC [V/T] * MagneticField(x) [T]

Signature: MAGN_Y()

Chapter III

55

Output voltage for magnetic field along Y-axis.

Output voltage is

OFFSET_MAGNETIC [V] + SENS_MAGNETIC [V/T] * MagneticField(x) [T]

Signature: 3V3()

3.3V supply voltage. Supplies Set/Reset circuit.

Signature: 5V()

5 V supply voltage. Supplies differential OpAmps.

Signature: REF_3V()

3V voltage reference. It feeds a voltage divider whose output is connected to REF pin of each
AD623.

Signature: AGND()

Analog ground

Signature: GND()

Power and digital ground.

Signature: notSET()

Triggers a SET pulse on both magnetometer channels when transitioning from high to low. TTL
input.

Signature: RESET()

Triggers a RESET pulse on both magnetometer channels when transitioning from low to high. TTL
input.

Class - Magnetometer_2_axis_HMC1002
Transit To: Magnetometer_2_axis_HMC1002

References

Typ
e

Value

File R:\Progetto\1C_Other_Activities\1C5_Documentation_and_Qualification\1C54_Datasheets\hmc1
002.pdf

Operations
Signature: Vbridge (A)()

Chapter III

56

High stability IN supply voltage of 5V for magnetic sensor. Connected to REF_5V.

Signature: GND (A)()

IN/OUT analog GND signal

Signature: OUT + (A)()

OUT Differential magnetic signal x-axis

Signature: OUT - (A)()

OUT Differential magnetic signal x-axis

Signature: OFFSET + (A)()

Signature: OFFSET - (A)()

Signature: S/R + A()

IN to SR_A signal from Set/Reset circuit.

Signature: S/R - A()

OUT signal to GND

Signature: Vbridge (B)()

High stability IN supply voltage of 5V for magnetic sensor. Connected to REF_5V.

Signature: GND (B)()

IN/OUT analog GND signal

Signature: OUT + (B)()

OUT Differential magnetic signal y-axis

Signature: OUT - (B)()

OUT Differential magnetic signal y-axis

Signature: OFFSET + (B)()

Signature: OFFSET - (B)()

Signature: S/R + B()

IN to SR_B signal from Set/Reset circuit.

Signature: S/R - B()

Chapter III

57

OUT signal to GND

Class - Bk1B222_Magnetic_Torque_Actuator
This is the part of the circuitry that implements generation of a magnetic momentum to execute a
command of ACTUATE_MAGNETIC.

Template Parameters: coil

References

Ty
pe

Value

Fol
de
r

R:\Progetto\1B_Subsystem_Elements\1B2_Attitude_and_Orbit_Subsystem\1B22_Magnetic_Attitu
de_Subsystem\1B222_Magnetic_Torque_Actuator

Fil
e

R:\Tesi\Tesi Vico AOCS\Tesi Vico\tesi\AOCS_ScelteProgettuali_Ruota d’inerzia_080416_Vico.doc

Attributes
-Rsense : Bk1B2221_Rsense

Resistor used to sense coil current.

-gain : Bk1B137A_10x_Differential_Voltage_Sensor

Differential amplifier used for coil current conditioning.

driver : A3953_PWM_Driver

-I_SUPPLY_DISABLED : float const = 3.23e-3

Maximum supply current (A) when disabled. Tested. Maybe due to faulty switch on PDBINT
voltage.

-I_SUPPLY_STDBY : float const = 16.34e-3

Maximum supply current (A) when enabled (driver in standby mode) but not active, tested.

-I_SUPPLY_SLEEP : float const = 4.94e-3

Maximum supply current (A) when enabled (driver in sleep mode) but not active, tested.

-I_SUPPLY_ON_MAX : float const = coil::V_SUPPLY_MAX/coil::COIL_RESISTANCE

Maximum supply current (A) when enabled and active, over all operating conditions.

-I_SUPPLY_ON_MIN : float const = coil::V_SUPPLY_MIN/coil::COIL_RESISTANCE

Minimum supply current (A) when enabled and active, over all operating conditions.

Chapter III

58

+SENS_CURRENT : float const = (Rsense.VALUE * gain.GAIN)

Sensitivity of SENSE output (conditioned coil current), in V/A

+P_SENSE_MAX : float const = Rsense.VALUE*I_SUPPLY_ON_MAX*I_SUPPLY_ON_MAX

Maximum power dissipated by coil current sensing resistor.

+P_TOT_MAX : float const = P_SENSE_MAX + coil::P_MAX

Maximum power dissipated by Bk1B222_Magnetic_Torque_Actuator block.

+CRITICAL_PDB : ushort const = (ushort)(coil::V_SUPPLY_MIN*0.9)

Critical value of PDB voltage [V]. It is used for error Supervision Xxx use case.

Operations
Signature: PDBINT()

IN supply voltage for solenoid.

Signature: 5V()

IN supply voltage for logic part of solenoid driver

Signature: GND()

IN/OUT ground voltage for digital and power signals

Signature: AGND()

IN/OUT analog groung voltage signal

Signature: REF_3V()

IN reference voltage signal necessary to coil driver to limit maximum load current

Signature: EN_COIL()

When high, enables the whole Bk1B222_Magnetic_Torque_Actuator block by providing both
power supplies. When low, both power supplies are removed internally from all analog and digital
circuits, by means of PMOS devices.

Signature: notBRAKE()

IN signal to drive solenoid driver. Active low. If low, connects coil wires to ground (turns off both
source drivers and turns on both sink drivers), discharging the energy previously cumulated into
coil. Used to dynamically brake brush DC motors.

Signature: MODE()

IN signal to drive solenoid driver.

Chapter III

59

When ENABLE and BRAKE are high ('1'):

 - if MODE = '1' driver is in "Sleep Mode" (reduced power consumption)

 - if MODE = '0' driver is in Standby

When ENABLE='0' and BRAKE='1':

 - if MODE = '1' coil is driven in fast current decay mode

 - if MODE = '0' in slow current decay mode (not used)

When BRAKE='0':

 - if MODE = '1' coil is discharged in fast current decay mode

 - if MODE = '0' coil is discharged without current control

Signature: PHASE()

IN signal to drive solenoid driver. It determines current-flow direction. If PHASE='1' coil is driven
forward (current flows from COIL1 output to COIL2 output), if PHASE='0' coil is driven reverse
(current flows from COIL2 to COIL1).

Signature: notENABLE()

IN signal to drive solenoid driver. Active low. If low, enables coil driving by allowing current flow
into it.

Signature: SENSE()

OUT Current into solenoid signal from driver, conditioned.

Signature: COIL1()

OUT signal to drive the solenoid

Signature: COIL2()

OUT signal to drive the solenoid

Class - Electromagnet
It is the load of the (model element not found) and it is made of the parallel connection of two
Solenoids.

When a current flows through it, a magnetic field is produced having a magnitude and sign in
accordance to the current itself.

The component of the magnetic field that is meaningful for the case study is the one parallel to the
longitudinal axis of the magnet.

Chapter III

60

Concerning the mechanical arrangement, the component is placed with its longitudinal axis
orthogonal with respect to the plane where the PCB lies and it is fixed on the PCB in the middle of
the magnet, where there are the terminations of the two Solenoids.

More details are shown in the following picture.

Comments

Current flowing in the magnet

Documentation In order to evaluate the current flowing in the
Electromagnet (Im) an equivalent circuit has to be
considered which is made of a voltage generator (Val)
supplying a resistance made of the series of R_eq,
(model element not found) and (model element not
found).

This value is useful to evaluate the power
consumption, but to evaluate the magnetic field
generated, the current flowing in one Solenoid shall
be considered (one half of Im).

Author Donato

Date Time 15-lug-2012 9.04.21

Attributes
Signature: Sol1 : Solenoid

Signature: Sol2 : Solenoid

-Val : float const = 6

Supply voltage (measurement unit: V).

-R_eq : float const = 18.058

Equivalent resistance (measurement unit: Ohm).

-Im : float = 0.332

Supply current asked by the Electromagnet (measurement unit: A).

-N_coils : int const = 200

Total number of coils.

-Length : float const = 3

Electromagnet length (measurement unit: cm).

-Diameter : float const = 11

Electromagnet diameter (measurement unit: cm).

Chapter III

61

Operations
Signature: VAL()

Supply voltage.

The signal is connected to LEAD1 pin of Sol1 and LEAD1 pin of Sol2.

Signature: GND()

Ground.

The signal is connected to LEAD2 pin of Sol1 and LEAD2 pin of Sol2.

Class - Solenoid
Solenoid made of a certain number (N_coils) of windings of copper wire.

Attributes
-Material const = copper

Constituting material.

-N_coils : int const = 100

Total number of coils.

-Length : float const = 1.5

Solenoid length (measurement unit: cm).

-Diameter : float const = 11

Solenoid diameter (measurement unit: cm).

-D_wire : float const = 0.15

Wire diameter (measurement unit: mm).

-R_sol : float const = 33.716

Solenoid equivalent resistance (measurement unit: Ohm).

Operations
Signature: LEAD1()

One lead of the Solenoid.

Signature: LEAD2()

One lead of the Solenoid.

Chapter III

62

Class - Antenna
The antenna is designed for 2.45 GHz applications but, as the datasheet shows, if a proper matching
circuit is inserted between the feeding line and the antenna, the S1.1 parameter is smaller than -
10dB.

The radiation pattern shows a quasi-isotropic behaviour.

Comments

How to buy

Documentation It is available on Digi-key website.

Author S176277

Date Time Jun 20, 2013 5:07:25 PM

References

Type Value

URL http:\\www.johansontechnology.com\images\stories\ip\rf-
antennas\JTI_Antenna-2450AT18A100_10-03.pdf

Attributes
-freq_min : float const = 2400

The measurement is expressed in MHz.

-freq_max : float const = 2500

The measurement is expressed in MHz.

-peak_gain : float const = 0.5

The measurement is expressed in dBi.

-power_input_max const = 500

The measurement is expressed in mW.

-input_impedance : float const = 50

The measurement is expressed in ohm.

Operations
Signature: IN_OUT()

Chapter III

63

3.2.3 FemtoSat_SW

The diagram contains all software classes of FemtoSat, the main ones are:

• FemtoSat_SW
• 1B351S_Intersatellite_Communication
• Magnetic_Actuator_SW_Driver
• Magnetometer_Sensor_SW_Driver

The 1B351S_Intersatellite_Communication is taken from 1B35_Intersatellite_Communication
project [6]; the last components are simplified drivers designed in the current project for pre-
existing blocks Bk1B222_Magnetic_Torque_Actuator, Bk1B221_Magnetometer_Sensor described
in the hardware section of the chapter.

Figure 3.14 - FemtoSat SW class diagram

Chapter III

64

Class - FemtoSat_main
The class of the FemtoSat which contains the main.

Transit From: FemtoSat_main

Attributes
Signature: -femtoSat1S : FemtoSat_SW

An instance of FemtoSat_SW.

Operations
Signature: main()

The function which is called at the FemtoSat bootstrap.

Class - Distance_MAG
The class contains all information related to a distance measurement performed with magnetic
techniques.

The measurement value is stored in dist_MAG variable, other data are stored in the other attributes:

• distValid
• ID_MASTER
• ID_SLAVE
• time_MASTER
• time_SLAVE

Attributes
Signature: +ID_MASTER : unsigned char

This is the FemtoSat_ID of the FemtoSat master which has requested the measurement.

Signature: +ID_SLAVE : unsigned char

This is the FemtoSat_ID of the Interlocutor Node slave which helps the master in the measurement.

Signature: +dist_MAG : float

Signature: +distValid : bool

The flag which indicates if the dist_MAG value is valid i.e. the measurement is carried out
correctly.

Signature: +time_MASTER : float

This is the time relative to the internal clock of the FemtoSat, the value is updated at the end of the
measurement.

Chapter III

65

Signature: +time_SLAVE : float

This is the time relative to the internal clock of the Interlocutor Node, the value is updated at the
end of the measurement.

Operations
Signature: init()

Initialises the attributes of the class to:

• dist_MAG = 0.0
• distValid = false
• ID_MASTER = 0
• ID_SLAVE = 0
• time_MASTER = 0.0
• time_SLAVE = 0.0

Class - Message
Is the set of data that can be exchanged between 1B35_Intersatellite_Communication and
Interlocutor Node.

Attributes
Signature: +preamble_length : unsigned short

Indicates the length of the preamble of the message, that is to say the length of that part of the
message which contains information about the message, not the real message body.

Signature: +sourceID : unsigned char

It's the ID of the source of the message. It's a value chosen among one of the ID present in ID_List.

Signature: +destID : unsigned char

It's the ID of the destination of the message. It is a value among the ones present in ID_List.

Signature: +message_length : unsigned short

It's the length of the message itself.

Signature: +message_body : unsigned char

This attribute contains the main body of the message.

It can contain

• Distance_RF
• one of t_Commands
• a generic message

Signature: +message_valid : bool

Chapter III

66

It is a flag which specifies if the message is valid or not.

The variable assumes "true" as value when there is an incoming message and the data are correct.

The variable assumes "false" as value either when the incoming message is read by the OBC (Read
Message use case) so data become obsolete or when data are corrupted.

It's a boolean value which indicates if the message is correct or corrupted.

• its value is 1 if message is valid
• its value is 0 instead when the message is corrupted

Signature: +power : float

This is power_TX. expressed in Watt.

Signature: +frequency : S-band_channels

Indicates the frequency of transmission.

It's one of the values among the ones listed in S-band_channels

Signature: +RSSI_value : float

Class - Commands

Attributes
Signature: -TURN_ON_MAGNET_FORWARD

Stereotypes: Constant

It is used to trigger Turn ON Magnet Forward Mode use case.

The command doesn't involve any parameter.

Signature: -TURN_ON_MAGNET_REVERSE

Stereotypes: Constant

It is used to trigger Turn ON Magnet Reverse Mode use case.

The command doesn't involve any parameter.

Signature: -TURN_ON_MAGNET_AC

Stereotypes: Constant

It is used to trigger Turn ON Magnet_AC use case.

The command shall be followed by two float parameter which are the dutyCycle and
phaseReference.

Chapter III

67

Signature: -TURN_OFF_MAGNET

Stereotypes: Constant

It is used to trigger Turn OFF Magnet use case.

The command doesn't involve any parameter.

Signature: -SET_TIME_REFERENCE

Stereotypes: Constant

It is used to trigger Set Remote Temporal Reference use case.

The command shall be followed by one float parameter which is timeReference.

Class - Magnetometer_Sensor_SW_Driver
The software driver to govern Magnetometer_Subsystem operations.

Attributes

Attributes
Signature: -Tset_reset : float

Time period in which current flows through Magnetometer_2_axis_HMC1002 in Set Magnetic
Sensor HMC1002/Reset Magnetic Sensor HMC1002 use cases. It is measured in us.

Signature: -Vset : float

The voltage read after a Set Magnetic Sensor HMC1002 operation.

Signature: -Vreset : float

The voltage read after a Reset Magnetic Sensor HMC1002operation.

Signature: -Voffset : float

The voltage offset evaluated after a Set Magnetic Sensor HMC1002/ Reset Magnetic Sensor
HMC1002 operation.

Signature: -magX : float

Magnetic field component measured along X-axis

The value is expressed in Gauss.

Signature: -magY : float

Magnetic field component measured along Y-axis.

Chapter III

68

The value is expressed in Gauss.

Operations
Signature: init()

It initializes all attributes of the class to:

• Tset_reset = 0.0;
• Vset = 0.0;
• Vreset = 0.0;
• Voffset = 0.0;
• magX = 0.0;
• magY = 0.0;

Signature: getField(magX : float, magY : float)

Getter method for magX and magY.

Signature: measureField()

The function triggers the field measurement.

Signature: turnON()

The function is used to turns ON the Magnetometer_Subsystem.

Signature: turnOFF()

The function is used to turns ON the Magnetometer_Subsystem.

Signature: set()

The function triggers a set operation to let Magnetometer_2_axis_HMC1002 sensor work properly.

Signature: reset()

The function triggers a reset operation to let Magnetometer_2_axis_HMC1002 sensor work
properly.

Class - Magnetic_Actuator_SW_Driver
The software driver to govern Magnetic_Actuator_Subsystem operations.

Attributes
Signature: -timeReference : float

It is the time reference period used in motion operation of FemtoSat, it shall not be lower than
CC2510 clock period.

Signature: -phaseReference : float

Chapter III

69

The phase displacement with respect to the reference signal provided by the master satellite. It is 0
if the master is FemtoSat, it can have a value between 0 and 2pi if the master is the Interlocutor
Satellite.

The value is expressed in radiants.

Operations
Signature: turnON(dutyCycle : float, phaseReference : float)

It is used to implement both Turn ON Magnet_AC, Turn ON Magnet_DC use cases basing on the
value of dutyCycle that is passed as parameter.

Another parameter passed to the function is the phaseReference with respect to reference signal
generated by the master (FemtoSat or Interlocutor Satellite depending on the operation that is
running)

Signature: turnOFF()

It is used to turn off the Magnetic_Actuator_Subsystem.

Signature: setForwardMode()

It implements Turn ON Magnet Forward Mode use case.

Signature: setReverseMode()

It implements Turn ON Magnet Reverse Mode.

Signature: getTimeReference() : float

Getter method for timeReference.

Signature: setTimeReference(timeReference : float) : void

The function set the timeReference.

Chapter III

70

3.2.4 Distance_Controller

The diagram contains a logical arrangement of hardware and software classes in order to identify
Magnetic_Actuator_Subsystem and Magnetometer_Subsystem units.

Figure 3.15 - Distance controller class diagram

Class - Magnetic_Actuator_Subsystem
It is the module which allows the generation of a magnetic field for motion and distance
measurement purposes.

It is made of some electronic circuits (Bk1B222_Magnetic_Torque_Actuator) used to drive an
Electromagnet.

Furthermore, there is a software class containing the driver routines which govern
Magnetic_Actuator_Subsystem operations.

Chapter III

71

Class - Magnetometer_Subsystem
The module which allows the measurement of magnetic field around the FemtoSat. It is based on
Bk1B221_Magnetometer_Sensor and a software driver (Magnetometer_Sensor_SW_Driver).

The magnetic field is measured along two directions (magX, magY) and it is made of both
contributions of Earth and Interlocutor Satellite.

A procedure shall be implemented to isolate the Interlocutor Satellite field contribution and
eliminate the one of the Earth.

3.3 Sequence Diagrams

3.3.1 Get Distance MAG

Figure 3.16 - Get Distance MAG sequence diagram

Chapter III

72

3.3.2 Process Distance MAG

Figure 3.17 - Process Distance MAG sequence diagram

3.3.3 Measure Distance MAG_MASTER

Figure 3.18 - Measure Distance MAG_MASTER sequence diagram

Chapter III

73

3.3.4 Measure Distance MAG_SLAVE

Figure 3.19 - Measure Distance MAG_SLAVE sequence diagram

Chapter III

74

3.3.5 Estimate Distance MAG

Figure 3.20 - Estimate Distance MAG sequence diagram

Chapter III

75

3.3.6 Get Distance Global

Figure 3.21 - Get Distance Global sequence diagram

Chapter III

76

3.3.7 Set Distance MAG

Figure 3.22 - Set Distance MAG sequence diagram

Chapter III

77

3.3.8 Set Distance RF

Figure 3.23 - Set Distance RF sequence diagram

Chapter III

78

3.3.9 Set Distance Global

Figure 3.24 - Set Distance Global sequence diagram

Chapter III

79

3.3.10 Approach_MASTER

Figure 3.25 - Approach MASTER sequence diagram

Chapter III

80

3.3.11 Separate_MASTER

Figure 3.26 - Separate MASTER sequence diagram

Chapter III

81

3.3.12 Approach_Separate_SLAVE

Figure 3.27 - Approach_Separate SLAVE sequence diagram

Chapter III

82

3.4 FemtoSat Analysis

3.4.1 Magnetic Force

The Attraction and Repulsion between the satellites is the consequence of Attractive/Repulsive

force due to magnetic field generated by the electromagnets mounted on the two systems.

In order to analyze the dynamics of the system when the electromagnets are ON it is necessary to

estimate the amplitude of magnetic force.

The solenoids can be seen as cylindrical magnets, in the Figure 3.28 more details are shown.

Figure 3.28 - Cylindrical Magnets configuration, each of them can be associated to an equivalent solenoid

The formulas to be used are the following [11]:

Q�R� = S?'4 TF;J U 1
RF + 1

�R + 2V�F − 2
�R + V�FW

T = @X
9

where:

• M is the magnetization (or magnetic polarization);

• N is the number of magnetic momentum in the volume
• V is the cylinder's volume

• m is the magnetic momentum of the magnet

Chapter III

83

• µ0 = 1.256637*10-6 N/A2 is the permeability in vacuum

Considering the equivalent solenoid we have:

T = @Y
9 = @Y

YV = @
V 	UYXW

where

• N is the number of coils

• I is the current flowing inside the solenoid
• A is the solenoid section

• V is the solenoid volume
• H is the solenoid length

3.4.2 Dynamics Analysis

Since the solenoids are driven by a constant current, the magnetic force varies during motion then
the acceleration varies as well. We can approximate the motion as uniformly accelerated in small
intervals. Time law of uniformly accelerated motion is:

� = �' + Z'� + 1
2N�F

Z = Z' + N�
The equations can be rewritten in the following form:

� = �' + Z'� + 1
2 �ΔZ

ZF = Z'F + 2NΔ�

Considering a generic i-th interval and making explicit vi and ti we obtain:

Z� = \Z�]^F + 2N_Δ�

�� = Δ�
Z�]^ + ^

F �Z� − Z�]^�

In Appendix II there are some Matlab routines to implement time calculation.

Chapter IV

84

Chapter IV

1B35 Specifications, Actors and Use

Cases

4.1 InterSat Communication

It is the main use case diagram, it contains all use cases related to the communication between the
OBC and Interlocutor Node via the 1B35_Intersatellite_Communication.

Chapter IV

85

Figure 4.1 - InterSat Communication use case diagram

4.1.1 Use Case - Send Message

The Controller sends data to be transmitted to 1B35_Intersatellite_Communication which uses Send
Data use case to communicate with Interlocutor Node identified by an ID specified by the
Controller using set_address function.

The Send Message is implemented by calling the sendMessage function.

The use case will create a packet compatible with the simpliciTI protocol.

The reliability of the communication is guaranteed by the reception of an ack. which is then
available to the Controller.

4.1.2 Use Case - Send Data

The 1B35_Intersatellite_Communication sends data to Interlocutor Node by means of simpliciTI
protocol and the simpliciTI_API.

Chapter IV

86

The reliability of the communication is guaranteed by the reception of an ack (forseen by simpliciTI
protocol).

The OBC will pass a proper ID as parameter to

sendData function choosing among the ones available in ID_List basing on the target of
communication.

The OBC will write the value of time_MASTER referring to its internal clock.

Messages will be sent at a frequency chosen among one of S-band_channels at programmable
power, up to the the maximum power available and it will have the structure described in simpliciTI
protocol.

Frequency can be set by the Configurator by means of the Set Initial Frequency and possibly
changed by the OBC using Change Frequency.

Power can be set by the Configurator by means of the Set Initial Power and possibly changed by the
OBC using Change Power.

4.1.3 Use Case - Read Message

The Controller reads the message provided by 1B35_Intersatellite_Communication using the
function getMessage if it is valid. The message is then taken from the message_body. When the
variable message_valid is true (high), it indicates that the message is valid.

4.1.4 Use Case - Read Data

The protocol to issue a command which reads between 1B to 256B of Designer's defined data from
one Slave to the Master, as defined by the Slave address. Up to 255 Slaves can be addressed
separately. It is the Designer's responsibility to ensure that data to be read is already available in the
Slave when the command is issued.

4.1.5 Use Case - Receive Data

The 1B35_Intersatellite_Communication receives data sent by an Interlocutor Node by means of
simpliciTI protocol and the simpliciTI_API.

Chapter IV

87

Messages will be received at a frequency in the range 2.4-2.4835 GHz initially set by the
Configurator by means of the Set Initial Frequency and then changed by the OBC using Change
Frequency and it will have the structure described in simpliciTI protocol.

When the Message is received, 1B35_Intersatellite_Communication will use Measure Distance RF
Slave to estimate the distance stored in internal variable dist_RF.

The 1B35_Intersatellite_Communication will write the value of time_SLAVE referring to its
internal clock.

This use case periodically checks if data is received by the Interlocutor Node, removes preamble,
verifies ID and if ID matches then stores it into the internal buffer message_body.

If CRC and length are correct it sets the internal flag message_valid.

The message message_body and the flag message_valid can be read by Controller using the Read
Message use case.

Correctness of transmission is granted by an ACK which is sent by
1B35_Intersatellite_Communication.

4.1.6 Use Case - Configure ID

The Configurator set a code, chosen among ID_List, and stores it in ID to identify the
1B35_Intersatellite_Communication involved in actual operations.

4.1.7 Use Case - Set Communication Parameters

The Configurator sets:

• modulation scheme,
• format,
• frequency deviation,
• packet format

4.1.8 Use Case - Set Initial Frequency

The Configurator must choose one of the 4 channels described in S-band_channels in the bandwidth
2.4000 - 2.4835 GHz through which the 1B351_Intersatellite_Communication will communicate at
boot (when powered-up and/or reset). The Configurator shall set initial frequency by setting
INITIAL_CHANNEL parameter of class 1B351S_Intersatellite_Communication.

Chapter IV

88

4.1.9 Use Case - Change Frequency

For any reason (channel occupied, data not arriving, and so on...) the Controller can change the
channel in which the 1B351_Intersatellite_Communication are communicating. By calling
change_frequency operation.

4.1.10 Use Case - Set Initial Power

The Configurator will set the initial power_TX of the 1B351_Intersatellite_Communication at the
maximum value allowed by calling setPower function.

4.1.11 Use Case - Change Power

Sets the transmitting power of CC2510, as close as possible to the value of power defined by the
Controller. The actual power will be the smallest value compatible with the transceiver, possibly not
smaller than power.

Namely, if power is less than the maximum allowable, the actual transmission power will be
smallest value larger than or equal to power.

This use case will start by calling setPower.

The implementation is optional.

4.1.12 Use Case - simpliciTI protocol

The Tile Processor actor is master, while an AraModule is a slave. Addressing is by means of Slave
address per each slave.

The simpliciTI protocol supports the following actions (see the corresponding descriptions):

• Write Data - when the Tile Processor wants to transfer up to 256B of data to an AraModule;
• Read Data - when the Tile Processor wants to read up to 256B of data from an AraModule;
• Command Only - when the Tile Processor wants to deliver a data-less command to an

AraModule.
Most data transfers contain:

Chapter IV

89

• 2-24 Bytes Preamble Bytes
• 2-4 Byte Sync word
• an 8-bit data length field
• a 4-Byte Destination Address
• a4-Byte Source Address
• data. Length of data field is (length+1) bytes (1B to 64B)
• a 2-Byte RSSI
• an 16-bit CRC.
• ack/nack (only from Tile Processor to an AraModule)

If an error occurs (either wrong CRC or wrong length or no memory available, etc.) the an
AraModule sets the (model element not found) flag.

By calling the Get Module Status use case, the Tile Processor can read details on the last error and
clear the (model element not found) flag.

References

Typ
e

Value

Folde
r

${Aramis_Progetto}\1B_Subsystem_Elements\1B4_On-
Board_Data_Handling_Subsystem\1B45_Subsystem_Serial_Data_Bus\SimpliciTI

File ${Aramis_Progetto}\1B_Subsystem_Elements\1B4_On-
Board_Data_Handling_Subsystem\1B45_Subsystem_Serial_Data_Bus\SimpliciTI\SimpliciTI
Specification.pdf

File ${Aramis_Progetto}\1B_Subsystem_Elements\1B4_On-
Board_Data_Handling_Subsystem\1B45_Subsystem_Serial_Data_Bus\SimpliciTI\SWRA221_Si
mpliciTI API.pdf

Chapter IV

90

4.2 InterSat Distance

It contains all use cases needed to evaluate the intersatellite distance between
1B35_Intersatellite_Communication and the Interlocutor Node.

Figure 4.2 - InterSat Distance use case diagram

4.2.1 Use Case - Measure Distance RF

First the Controller uses Send Data where a DUMMY message is sent to the right Interlocutor Node
identified by an ID given by the actor.

Through the RSSI technique, the power of the incoming acknowledgement (expected by simpliciTI
protocol) is measured and then processed by calling the processDistanceRF function.

The result is stored in the internal memory (dist_RF variable).

The Measure Distance RF is implemented by calling the measureDistanceRF function.

Chapter IV

91

4.2.2 Use Case - Measure Distance RF Slave

When the 1B35_Intersatellite_Communication receives a Message sent by Interlocutor Node it will
calculate the actual dist_RF basing on the value of incoming power_TX through
processDistanceRF.

4.2.3 Use Case - Get Distance RF

The Controller reads the value of distValid, if high (1), it reads the other attributes of Distance_RF.

The Get Distance RF is implemented by calling the getDistanceRF function.

4.2.4 Use Case - Estimate Distance RF

First the Controller uses Measure Distance RF to trigger the distance measurement to the right
Interlocutor Node identified by an ID given by the actor, then starts a loop in which periodically the
value of dist_RF and its validity are evaluated by using Get Distance RF .

When distValid is true, it indicates a valid measurement and causes the loop termination.

The Estimate Distance RFis implemented by calling the estimateDistanceRF function.

Chapter V

92

Chapter V

1B35 Communication Module Design

The general structure of 1B35_Intersatellite_Communication is divided in two parts:

• hardware (1B351_Intersatellite_Communication)
• software (1B351S_Intersatellite_Communication)

which are described in the corresponding diagrams in the next paragraphs. Among all objects used
by the software root class, there is an instance of 1B351_Intersatellite_SW_drivers which contains
the main functions to send/receive data and which directly interfaces with SimpliciTi API [8].

Chapter V

93

Figure 5.1 - 1B35 Intersatellite Communication main class diagram

5.1 Design choices

1B35 module is developed with the main target of implementing an efficient and reliable

intersatellite communication.

Obviously this communication has to be wireless, and respecting AraMiS specifications and

philosophy, it should be as light and low-power as possible. In fact it has to be mounted on a very

small satellite, which can provide a little amount of electrical power for all of its devices. After

studying and considering many wireless devices and protocols, our choice fell on CC2510 from

Texas Instruments.

This device is an extremely low power transceiver which is developed for communicating on the

2.4 GHz frequencies, and offers a series of goodpros:

Chapter V

94

• Very high sensitivity: -103 dBm at 2.4 kBaud

• Programmable data rate up to 500 kBaud

• Programmable output power up to 1dBm for all supported frequencies

• Frequency range 2400 – 2483.5 MHz

• Low current consumption: RX- 17.1 mA @ 2.4 kBaud, TX- 16 mA @ -6 dBm output

power

• Digital RSSI support

Last two are the most important features, the low current consumption because of our need of

power saving, and the RSSI support because of the final aim of my thesis.

1B35 module in fact, hasn’t only the duty of communicating, but also the one of helping the

satellites calculating their reciprocal distance. RSSI technique is the best way to do that as we will

see later.

CC2510 transceiver is also a perfect match because Texas Instruments already developed a

communication protocol based on these devices i.e. the SimpliciTI protocol.

5.1.1 SimpliciTi Protocol

SimpliciTI protocol is intended to support customer development of wireless end user devices in

environment in which the network support is simple and the customer desires a simple means to do

messaging over air.

The protocol is oriented around application peer-to-peer messaging. In most cases the peers are

linked together explicitly. However, simpliciTI protocol will support scenarios in which explicit

linking between pairs of devices is neither needed nor desired. The simpliciTI_API provides the

means to initialize the network, link devices, and send messages.

SimpliciTI layers

SimpliciTIprotocol is organized in 3 layers : Data Link/Physic, Network, and Application.

Application

Chapter V

95

This is the only layer that the developer needs to implement. It is where he develops his application

(to manage sensors for example), and implements network communication, by using SimpliciTI

network APIs or network applications.

Note that it is in this layer that the developer needs to implement reliable transport if required, as

there is no Transport layer.

Figure 5.2 - SimpliciTI logical layers

Network

This layer manages the Rx and Tx queues and dispatches frames to their destination. The

destination is always an application designated by a Port number.

Network applications are internal peer-to-peer objects intended to manage network. They work on a

predefined port and are not intended to be used by the developer (except Ping for debugging

purposes)

Their usage depends on the SimpliciTI device type. These applications are:

 Ping (Port 0x01): to detect the presence of a specific device.

 Link (Port 0x02): to support the link management of two peers.

 Join (Port 0x03): to guard entry to the network in topologies with APs.

Security (Port 0x04): to change security information such as encryption keys and encryption

context.

 Freq (Port 0x05): to perform change channel, change channel request or echo request.

Chapter V

96

 Mgmt (Port 0x06): general management port to be used to manage the device.

Source code files for network layer are located in /Components/simpliciti.

Data Link/Physic

This layer may be divided in 2 entities:

BSP (Board Support Package): to abstract the SPI interface from the NWK layer calls that

interactwith the radio (/Components/mrfi);

MRFI (Minimal RF Interface): to encapsulate the differences between supported hardware radios,

toward the network layer (/Components/bsp).

SimpliciTIprotocol initialization involves three stages of initialization: board, radio, and stack.

Board initialization (BSP) is deliberately separated from the radio and stack initialization. The radio

and stack initialization occur as a result of the SimpliciTI initialization call. The board initialization

is a separate invocation not considered part of the SimpliciTI API but it is noted here for

completeness.

The BSP initialization is partitioned out because customers may already have a BSP for their target

devices. Making the BSP initialization explicit in the SimpliciTI distribution makes it easier to port

to another target.

Board Initialization

SimpliciTI supports a minimal board-specific BSP. The BSP scope includes GPIO pin

configuration for LEDs, switches, and a counter/timer used for protocol chores. It also includes SPI

initialization for the dual-chip RF solutions.

Radio Initialization

Radio registers are populated and the radio is placed in the powered, idle state. Most of the radio

registers are based on exported code from SmartRF Studio. The default channel is set with the first

entry in the channel table.

Stack Initialization

All data structures and network applications are initialized. In addition the stack issues a Join

request on behalf of the device. The Join request will fail in topologies in which there is no Access

Point. This is expected in this topology and is not an error condition.

Chapter V

97

We will use SimpliciTI protocol to communicate through CC2510, this device automatically sends

RSSI value. This value is fundamental for our target, and to understand it we need to see the RSSI

technique in details.

5.1.2 RSSI Technique

Received signal strength indicator (RSSI) is a measurement of the power present in a received radio

signal.

RSSI is a generic radio receiver technology metric, which is usually invisible to the user of the

device containing the receiver, but is directly known to users of wireless networking of IEEE

802.11 protocol family.

In an IEEE 802.11 system RSSI is the relative received signal strength in a wireless environment.

RSSI is an indication of the power level being received by the antenna. Therefore, the higher the

RSSI value, the stronger the signal.

This technique is based on Friis equation:

���� = ���� � �4	
�
�

From which we get

 = �4	��������

Now it is clear how things will work: 1B35 Module will implement a communication between the

two interlocutor nodes, and each time a message is sent from a node to another, an RSSI value is

present in the message itself. This will grant the possibility of getting the distance between the

nodes, no matter what the content of the message is.

Also, our system will store a reference of time inside the message. This reference is not absolute, it

means that the internal clocks of the nodes don’t need to be synchronized, in fact there are two

fields in the message, one contains the time referred to the clock of the source of the message,

another one contains the time referred to the clock of the destination; since the message also

contains the IDs of the source and of the destination, it is simple to obtain the time I need to refer to.

Chapter V

98

The reference of time is important because I could need to calculate the distance more than once in

a small gap of time, in this case it’s unuseful to send a new message because it would need time and

power, and sometimes we can avoid that. In fact if the last message is very near in time, we can

suppose that the node is still in the same position of the point where it sent the last message. If we

accept it, we can calculate the distance again without communicating.

5.2 Class Diagrams

5.2.1 -1B35 Intersatellite Communication main class diagram

Class - 1B35_Intersatellite_Communication
The system allows the exchange of signals with the Interlocutor Node. It works either as a
transmitter or a receiver and for this reason it has two separate signal processing chain (one for
transmission and the other one for reception). Since one section is shared between the two channels,
a half-duplex communication is implemented (transmission and reception separated in time and
using the same channel).

In Send Data use case , starting from a digital sequence, it properly build an analog signal which
travel on the channel (free space in the case study).

Similarly, in the Receive Data use case, it takes the analog signal intercepted by the antenna and it
extracts the digital information.

It also provides distance measurement with respect to Interlocutor Node by using (model element
not found) technique.

Template Parameters: ID

References

Type Value

Folder ${Aramis_Progetto}\FemtoSat

Attributes
Signature: -driver : 1B351S_Intersatellite_Communication

Chapter V

99

Class - 1B351_Intersatellite_Communication
The class contains all the hardware design of the 1B35_Intersatellite_Communication.

It acts as a slave on both MODULE_A and MODULE_B.

Operations
Signature: MODULE_A()

Signature: MODULE_B()

Signature: DEBUG()

Signature: RF()

Signature: VCC_CPU()

Signature: GND()

Class - 1B351S_Intersatellite_Communication
It is the core system of the 1B35_Intersatellite_Communication, it manages all communications.
Then basing on priorities it takes decisions, governs and coordinates all modules inside the
1B35_Intersatellite_Communication.

Template Parameters: ID, INITIAL_CHANNEL, MODULE

Attributes
-MESSAGE_LENGTH_MAX : unsigned char const

Message maximum length according to simpliciTI protocol.

Signature: -commands : t_Commands

An instance of t_Commands class.

Signature: -lastID : unsigned char

Stores the ID of the last Interlocutor Node for which the distance has been measured.

Signature: -power_TX : float

It's the value of power chosen by OBC for current transmission.

It's firstly set by Set Initial Power and then changed by Change Power.

Signature: distance_RF : Distance_RF

Signature: -done : bool = 0

Is a flag that tells if the message is still useful or not.

Chapter V

100

It's just 1 bit.

Signature: -message : Message

Signature: +lambda : float

It's the wavelength referred to the transmitting frequency. The frequency is variable but we can
assume the centerband as 2.4 GHz since the variation between a channel and another is relatively
small.

Given this we can approximate the lambda with

lambda = c / f = 125 mm

Signature: +Gain : float

Is the gain of the antenna and it is the same in transmission and in reception.

It is indicated in the formulas as Gt or Gr.

Its value is set by Configurator.

Operations
Signature: init()

Initializes internal variables, including:

• lastID = 0;

Configures initial frequency of CC2510

Signature: sendMessage(message : Message)

It performs all operations needed to send a message through the
1B35_Intersatellite_Communication which writes its own ID in sourceID and the ID of the
Interlocutor Node to whom the message is sent, in destID; both ids are chosen among ID_List.

The message has the structure described in Message.

Signature: getMessage(message : Message) : void

Returns the last received message from Interlocutor Node.

After the message is received, the 1B351_Intersatellite_Communication checks that the destID
inside the message is the same of its own ID

If this is true, basing on preamble_length reads the preamble and verifies that everything is ok.

At last, it reads message_body knowing when to stop by reading the value message_length.

Once the message is verified to be valid, the value message_valid is raised to 1.

Signature: getDistanceRF(distance_RF : Distance_RF)

Returns different parameters related to the distance:

• dist_RF is the actual value of distance between the
the Interlocutor Node

• ID_MASTER is the ID of the master
• ID_SLAVE is the ID of the slave
• power is the value of power of the transmitter
• time_MASTER stores the time referring to the internal clock of the maste
• time_SLAVE stores the time referring to the internal clock of the slave, it's not

synchronized with the master clock
Signature: processDistanceRF(RSSI_value : float) : float

Starting from the value read by (model ele
distance and stores it in dist_RF
measureDistanceRF

The formula will be

Since we are in open space we can, with an acceptable margin of error, consider only the direct
wave in the FRIIS equation:

To be more precise we would have to calculate at least the reflections on the satell
diffraction due to the solar panels of the satellites themselves. (AGGIUNGI MTIVO)

Signature: measureDistanceRF(distance_RF : Distance_RF)

When the Controller calls this function all operations needed to measure the
(Measure Distance RF use case).

Signature: estimateDistanceRF(distance_RF : Distance_RF)

It combines measureDistanceRF
dist_RF.

Chapter V

101

Returns different parameters related to the distance:

is the actual value of distance between the 1B35_Intersatellite_Communication

is the ID of the master
is the ID of the slave

is the value of power of the transmitter
stores the time referring to the internal clock of the maste
stores the time referring to the internal clock of the slave, it's not

synchronized with the master clock
Signature: processDistanceRF(RSSI_value : float) : float

Starting from the value read by (model element not found) technique it process data,computes
dist_RF and returns dist_RF value. This function is called inside

Since we are in open space we can, with an acceptable margin of error, consider only the direct

To be more precise we would have to calculate at least the reflections on the satell
diffraction due to the solar panels of the satellites themselves. (AGGIUNGI MTIVO)

Signature: measureDistanceRF(distance_RF : Distance_RF)

When the Controller calls this function all operations needed to measure the

Signature: estimateDistanceRF(distance_RF : Distance_RF)

measureDistanceRF and getDistanceRF functions in order to estimate the value of

1B35_Intersatellite_Communication and

stores the time referring to the internal clock of the master
stores the time referring to the internal clock of the slave, it's not

ment not found) technique it process data,computes
value. This function is called inside

Since we are in open space we can, with an acceptable margin of error, consider only the direct

To be more precise we would have to calculate at least the reflections on the satellite body and the
diffraction due to the solar panels of the satellites themselves. (AGGIUNGI MTIVO)

When the Controller calls this function all operations needed to measure the dist_RF value start

functions in order to estimate the value of

Chapter V

102

The measureDistanceRF triggers the measurement, while getDistanceRF read the value in a loop,
until the distValid is true.

Signature: getMessageValid() : bool

Getter method for message_valid

Signature: setMessageValid(messageValid : bool)

Setter method for message_valid

Signature: read_message(message : Message)

Asks through the SPI to read the Message and return the message_body

Signature: send_ack(ack : Message) : Message

Sends an ACK to certificate that the message is sent / received correctly and all required operations
are completely done.

Signature: check_distValid(distValid : bool)

Checks the value of distValid

Signature: set_distValid(distValid : bool)

Sets distValid high when the measurement is over in the following conditions:

• ID_MASTER is the same of the 1B351S_Intersatellite_Communication ID
• ID_SLAVE is one among ID_List
• time_MASTER is not to far from actual 1B351S_Intersatellite_Communication time (less

than 10 minutes
Signature: set_initial_freq() : S-band_channels

Starts the Set Initial Frequency sequence, passes to the 1B351S_Intersatellite_Communication the
band among S-band_channels on which the communication will take place.

Signature: receive_data(data : Message)

Stores Message data

Signature: change_frequency(channel : S-band_channels)

This function chooses a value from S-band_channels

Chapter V

103

Class - 1B351_Intersatellite_SW_drivers
The class contains all the software routines which works on simpliciTI protocol.

Attributes
Signature: -dataCorrect : bool

It indicates if there are incoming data and if they are correct.

Signature: +target_freq : S-band_channels

the frequency at which the 1B351_Intersatellite_SW_drivers trie to communicate

Signature: -target_power : float

Is the target power passed by the Controller

Signature: -i : int

An int variable, useful for some cycle

Operations
Signature: init()

Initializes the class and the variables needed inside it.

Signature: sendData(mess : Message)

It contains all operations needed to send data through the Send Data use case.

Signature: readData(mess : Message) : unsigned char

Returns the last received data from Interlocutor Node. The message has already been verified for
correctness (CRC)

Signature: getDataCorrect() : bool

Getter method for dataCorrect

Signature: setDataCorrect(dataCorrect : bool)

Setter method for dataCorrect

Signature: setFrequency(target_channel : int)

The implementation is optional. The function is used to change the frequency among the ones
available in S-band_channels.

Signature: setPower(power : float)

The function is used to set EIRP of the transmitted Message, as close as possible to power (Change
Power use case). The actual power will be the smallest value compatible with the transceiver,
possibly not smaller than power.

Chapter V

104

Namely, if power is less than the maximum allowable, the actual transmission power will be
smallest value larger than or equal to power.

The implementation is optional.

Signature: receive_data(data : Message)

This function is needed to prepare the 1B35_Intersatellite_Communication to the reception of a
packet from the Interlocutor Node.

The 1B351S_Intersatellite_Communication will have to recognize the various parts of the message
(preamble, mess...) and will store them in the proper memory locations for future use.

At the end of the operations, data will be verified and a flag dataCorrect will be set through
setDataCorrect in order to allow the sending of an ack, that will certify the receiving of the proper
message.

Signature: send_ack(ack : Message) : Message

Sends an ACK to certificate that the message is sent / received correctly and all required operations
are completely done.

Signature: verify_data(data : Message) : bool

Verifies that data are correct by getting sure that dataCorrect is set high (1).

Chapter V

105

5.2.2 -1B351 Intersatellite Communication Hardware

The diagram contains all hardware classes of 1B35_Intersatellite_Communication that is:

• 1B351_Intersatellite_Communication
• Bk1B31B1W_OBRF_CC2510
• 1B480_Null_Modem_SPI

1B351_Intersatellite_Communication is the root class, it is taken from
1B35_Intersatellite_Communication project [6]. The module communicates with external
environment by means of two standard modules developed for AraMis (MODULE_A,
MODULE_B) and a DEBUG interface. It is important to notice that the antenna is an external
element not consider in 1B35_Intersatellite_Communication design, for this reason there is an RF
pin in the module interface.

Bk1B31B1W_OBRF_CC2510 is taken from 1B31_On_Board_RF_Module project [9], which has
as core component CC2510 system on chip with in addition some electronics in order to let the
system work.

1B480_Null_Modem_SPI is taken from 1B48_Module_Interface [10] which is used to implement
null modem connection to configure 1B35_Intersatellite_Communication as slave.

For more details refers to schematics and PCB layout in Appendix V.

Chapter V

106

Figure 5.3 - 1B351 Intersatellite Communication Hardware class diagram

Class - Bk1B31B1W_OBRF_CC2510
Transceiver module for 437MHz transmission. It provides FSK modulation/demodulation
capabilities for the information bit-stream and includes an external oscillator to achieve low
frequency drift.

It acts as a master on both MODULE_A and MODULE_B slots.

References

T
y
p
e

Value

F
ol
d
er

${Aramis_Progetto}\1B_Subsystem_Elements\1B3_TT&C_Telecommunication_Subsystem\1B31_
On_Board_RF_Module\Bk1B31B1_OBRF_2_4GHz\Bk1B31B1W_OBRF_CC2510

Operations
Signature: DEBUG()

Debug bus for CC2510. Contains: RESET, DEBUG_DATA, DEBUG_CLOCK, 3V3_SUPPLY.

Signature: MODULE_A()

Signature: MODULE_B()

Chapter V

107

Signature: RF()

Signature: VCC_CPU()

Signature: GND()

Class - CC2510

References

Type Value

File ${1C54_Datasheets}\cc2510f32.pdf

Class - 1B480_Null_Modem_SPI
Null model circuit for SPI interface to connect two 1B48_Module_Interfaces which are both master.

It connects with simple wires:

• D0_RX_SOMI of MODULE_A with D1_TX_SIMO of MODULE_B;
• D1_TX_SIMO of MODULE_A with D0_RX_SOMI of MODULE_B;
• D4_CLK of MODULE_A with D4_CLK of MODULE_B.

such that the system connected to MODULE_A can talk with the system connected to
MODULE_B.

One of them shall be configured as master, while the other shall be configured as slave.

References

Type Value

Folder ${Progetto}\1B_Subsystem_Elements\1B4_On-
Board_Data_Handling_Subsystem\1B48_Module_interface\1B480_Null_Modem_SPI

Operations
Signature: MODULE_A()

Signature: MODULE_B()

Class - 1B48_Module_Interface

References

Type Value

File ${Aramis_Progetto}\1B_Subsystem_Elements\1B4_On-
Board_Data_Handling_Subsystem\1B48_Module_interface\1B481_Module_Interface\1B481
Module Interface ICD V1_1.doc

Folder ${Aramis_Progetto}\1B_Subsystem_Elements\1B4_On-
Board_Data_Handling_Subsystem\1B48_Module_interface\1B481_Module_Interface

Chapter V

108

Class - MC306 - 32768Hz Crystal

References

Type Value

File ${1C54_Datasheets}\MC406-crystal.PDF

Class - FA-128 Crystal

References

Type Value

File ${1C54_Datasheets}\FA-128_crystal.pdf

Chapter V

109

5.2.3 -1B351S Intersatellite Communication Software

The diagram contains all software classes of 1B35_Intersatellite_Communication

Figure 5.4 - 1B351S Intersatellite Communication Software class diagram

Chapter V

110

Class - 1B351_Intersatellite_SW_drivers
The class contains all the software routines which works on simpliciTI protocol.

Attributes
Signature: -dataCorrect : bool

It indicates if there are incoming data and if they are correct.

Signature: +target_freq : S-band_channels

the frequency at which the 1B351_Intersatellite_SW_drivers trie to communicate

Signature: -target_power : float

Is the target power passed by the Controller

Signature: -i : int

An int variable, useful for some cycle

Operations
Signature: init()

Initializes the class and the variables needed inside it.

Signature: sendData(mess : Message)

It contains all operations needed to send data through the Send Data use case.

Signature: readData(mess : Message) : unsigned char

Returns the last received data from Interlocutor Node. The message has already been verified for
correctness (CRC)

Signature: getDataCorrect() : bool

Getter method for dataCorrect

Signature: setDataCorrect(dataCorrect : bool)

Setter method for dataCorrect

Signature: setFrequency(target_channel : int)

The implementation is optional. The function is used to change the frequency among the ones
available in S-band_channels.

Signature: setPower(power : float)

The function is used to set EIRP of the transmitted Message, as close as possible to power (Change
Power use case). The actual power will be the smallest value compatible with the transceiver,
possibly not smaller than power.

Chapter V

111

Namely, if power is less than the maximum allowable, the actual transmission power will be
smallest value larger than or equal to power.

The implementation is optional.

Signature: receive_data(data : Message)

This function is needed to prepare the 1B35_Intersatellite_Communication to the reception of a
packet from the Interlocutor Node.

The 1B351S_Intersatellite_Communication will have to recognize the various parts of the message
(preamble, mess...) and will store them in the proper memory locations for future use.

At the end of the operations, data will be verified and a flag dataCorrect will be set through
setDataCorrect in order to allow the sending of an ack, that will certify the receiving of the proper
message.

Signature: send_ack(ack : Message) : Message

Sends an ACK to certificate that the message is sent / received correctly and all required operations
are completely done.

Signature: verify_data(data : Message) : bool

Verifies that data are correct by getting sure that dataCorrect is set high (1).

Class - Message
Is the set of data that can be exchanged between 1B35_Intersatellite_Communication and
Interlocutor Node.

Attributes
Signature: +preamble_length : unsigned short

Indicates the length of the preamble of the message, that is to say the length of that part of the
message which contains information about the message, not the real message body.

Signature: +sourceID : unsigned char

It's the ID of the source of the message. It's a value chosen among one of the ID present in ID_List.

Signature: +destID : unsigned char

It's the ID of the destination of the message. It is a value among the ones present in ID_List.

Signature: +message_length : unsigned short

It's the length of the message itself.

Signature: +message_body : unsigned char

Chapter V

112

This attribute contains the main body of the message.

It can contain

• Distance_RF
• one of t_Commands
• a generic message

Signature: +message_valid : bool

It is a flag which specifies if the message is valid or not.

The variable assumes "true" as value when there is an incoming message and the data are correct.

The variable assumes "false" as value either when the incoming message is read by the OBC (Read
Message use case) so data become obsolete or when data are corrupted.

It's a boolean value which indicates if the message is correct or corrupted.

• its value is 1 if message is valid
• its value is 0 instead when the message is corrupted

Signature: +power : float

This is power_TX. expressed in Watt.

Signature: +frequency : S-band_channels

Indicates the frequency of transmission.

It's one of the values among the ones listed in S-band_channels

Signature: +RSSI_value : float

Class - Distance_RF
This class contains information related to distance measurement.

Attributes
Signature: +ID_MASTER : unsigned char

This is the ID of the 1B35_Intersatellite_Communication master which has requested the
measurement.

Signature: +ID_SLAVE : unsigned char

This is the ID of the Interlocutor Node slave which is receiving the (model element not found).

Signature: +dist_RF : float

Contains the last measured distance as defined by Measure Distance RF use case.

Unit is meters.

Chapter V

113

Initial value shall be 0, which means that no distance has been measured so far.

Signature: +distValid : bool

The flag which indicates if the dist_RF value is valid i.e. the measurement is carried out correctly.

Signature: +time_MASTER : float

This is the time relative to the internal clock of the 1B35_Intersatellite_Communication expressed
in seconds.

Signature: +time_SLAVE : float

This is the time of the internal clock of the Interlocutor Node expressed in seconds.

Signature: +power : float

This is power_TX.

Class - t_Commands
The enumeration contains a list of all possible commands and status notification that the
1B35_Intersatellite_Communication can receive.

Attributes
Signature: -DUMMY

Dummy command.

Signature: -ACK

It indicates that the communication is carried out without errors.

Class - S-band_channels
Is the enumeration list of all possibles channels of frequencies on which the CC2510 can establish a
communication.

Attributes
Signature: -CHANNEL_0 : float

This channel refers to channel_3 (see SimpliciTI_Channel_Table_Information.pdf), has a center
band in 2.4257 GHz. and a bandwidth of 250KHz, corresponds to the IEEE channel 15

Signature: -CHANNEL_1 : float

This channel refers to channel_103 (see SimpliciTI_Channel_Table_Information.pdf), has a center
band in 2.4508 GHz and a bandwidth of 250KHz., corresponds to the IEEE channel 20

Chapter V

114

Signature: -CHANNEL_2 : float

This channel refers to channel_202 (see SimpliciTI_Channel_Table_Information.pdf), has a center
band in 2.4755 GHz. and a bandwidth of 250KHz, corresponds to the IEEE channel 25

Signature: -CHANNEL_3 : float

This channel refers to channel_212 (see SimpliciTI_Channel_Table_Information.pdf), has a center
band in 2.4807 GHz and a bandwidth of 250KHz., corresponds to the IEEE channel 26

Class - ID_List
The list of all possible IDs that Configurator can assign to 1B35_Intersatellite_Communication and
that 1B35_Intersatellite_Communication can use to address messages.

Attributes
Signature: -ID0 : unsigned char

Signature: -ID1 : unsigned char

Signature: -ID2 : unsigned char

Signature: -ID3 : unsigned char

Signature: -ID4 : unsigned char

Signature: -ID5 : unsigned char

Chapter V

115

5.3 Sequence Diagrams

5.3.1 Send Message

The 1B35_Test initializes the 1B351S_Intersatellite_Communication calling init function, then the
Controller calls the sendMessage function. As a result of this, 1B351S_Intersatellite_Communication uses
Send Data use case with Message as payload of the communication. After data are sent, an ack is returned to
1B351S_Intersatellite_Communication and then to Controller.

Figure 5.5 - Send Message sequence diagram

5.3.2 Send Data

The 1B35_Test initializes the 1B351S_Intersatellite_Communication calling init function, then
simpliciTI_API is initializes as well. Now the Controller calls sendData, which causes a call to
send. From here the hardware 1B351_Intersatellite_Communication is involved in the sequence and
uses Bk1B31B1W_OBRF_2_4GHz for sending data to the Interlocutor Node.

When data are received an ack is sent back to the 1B351_Intersatellite_SW_drivers which calls
verify_data function and gives the ack back to the Controller

Chapter V

116

Figure 5.6 - Send Data sequence diagram

5.3.3 Read Message

The 1B35_Test initializes the 1B351S_Intersatellite_Communication calling init function, then the
Controller periodically checks the validity of the message by calling getMessageValid. If
message_valid is true then it calls getMessage of 1B351S_Intersatellite_Communication which
calls setMessageValid as well passing false (0) as parameter.

Chapter V

117

Figure 5.7 - Read Message sequence diagram

5.3.4 Receive Data

The Interlocutor Node is sending data to Bk1B31B1W_OBRF_2_4GHz. When data are received,
through 1B351_Intersatellite_Communication, an interrupt is launched by simpliciTI_API that sets
high (1) the flag dataCorrect and 1B351_Intersatellite_SW_drivers uses receive_data to write data
inside Message.

Figure 5.8 - Receive Data sequence diagram

Chapter V

118

5.3.5 Read Data

1B351S_Intersatellite_Communication periodically checks on 1B351_Intersatellite_SW_drivers if
dataCorrect is true.

When it is true, reads the data through readData function and then uses setDataCorrect to set
dataCorrect as false (0).

At last, uses setMessageValid function to set the flag messageValid as true (1).

Figure 5.9 - Read Data sequence diagram

5.3.6 Measure Distance RF

The 1B35_Test initializes the 1B351S_Intersatellite_Communication calling init function, then the
Controller can call measureDistanceRF function. 1B351S_Intersatellite_Communication uses Send
Data use case and receives an ack. From the message received it can calculate distance with
processDistanceRF function and it calls set_distValid function.

Chapter V

119

Figure 5.10 - Measure Distance RF sequence diagram

5.3.7 Get Distance RF

The 1B35_Test initializes the 1B351S_Intersatellite_Communication calling init function, then
theController is able to ask the distance through getDistanceRF.

At this point 1B351S_Intersatellite_Communication calls check_distValid function to check the
value of distValid. If high (1) returns Distance_RF to the Controller.

Figure 5.11 - Get Distance RF sequence diagram

Chapter V

120

5.3.8 Estimate Distance RF

Figure 5.12 - Estimate Distance RF sequence diagram

5.3.9 Set Initial Frequency

The Configurator launches set_initial_freq function .

The 1B35_Test initializes the 1B351S_Intersatellite_Communication calling init function, then the
1B351S_Intersatellite_Communication calls change_frequency causing the execution of
SMPL_Ioctl from simpliciTI_API that updates the registers in CC2510.

Chapter V

121

Figure 5.13 - Set initial Frequency sequence diagram

5.3.10 Change Frequency

The 1B35_Test initializes the 1B351S_Intersatellite_Communication calling init function, then the
Controller is able to call change_frequency function which causes the call of SMPL_Ioctl from
simpliciTI_API which updates registers on the Bk1B31B1W_OBRF_2_4GHz.

Figure 5.14 - Change Frequency sequence diagram

Conclusion

122

Conclusion

This thesis has led to the realization of 1B35_InterSatellite_Communication module for managing

the communication between two satellites placed in line of sight.

In particular we realized the project description (fully documented in UML), the software routines,

the schematics up to the PCB layout.

Due to the complexity of the subject, the FemtoSat project was not completed, but a general setting

of the problem is presented. Also in this case the design is carried on by means of UML and

different studies have been done to understand particular issues related to the subject:

-Solenoid Choice

-Source power Analysis

-FemtoSat dynamic analysis.

Concerning FemtSat project, this thesis represent a very good basis for future implementations.

Appendix I

XI

Appendix I

Solenoid Choice - Matlab Files

I.1 Function magnetic_field_1solenoid

%having fixed solenoid parameters, the function evaluate the magnetic field
%generated by one solenoid at distance x.

clc
clear all
close all

%***physical constant***
ro=1.7241e-8; %[Ohm*m] copper resistivity
u0=4*pi*10^(-7); %[T*m/A] relative magnetic permeability

%***solenoid parameter***
Radius=0.055; %[m] coil radius
N=300; %number of coils

L_wire=2*pi*Radius*N; %[m] solenoid wire length
d_wire=0.15e-3; %[m] solenoid wire diameter
S_wire=(d_wire/2)^2*pi; %[m^2] solenoid wire cross section
R_sol=ro*L_wire/S_wire; %[Ohm] solenoid resistance
L_sol=d_wire*N %[m] length of the solenoid

a=L_sol/2; %[m]
b=2.5e-3; %[m]
x0=2*a-b; %[m] initial offset considering the thicketness of
the solenoid and magnetic sensor

%***power, voltage, current on the solenoid***

Appendix I

XII

P=2; %[W] max power coming from power generator
Rdson=1;
Rs=0.2;
Req=R_sol+Rdson+Rs;
V=sqrt(Req*P) %[V] voltage supplying the solenoid
I=V/Req %[A] current flowing inside one solenoid

d=0.01 %[m] distance from the solenoid coil

B_x_gauss=B(d+x0,I,N,L_sol,Radius)

d=0.2 %[m] distance from the solenoid coil

B_x_gauss=B(d+x0,I,N,L_sol,Radius)

d=linspace(0,1,10000);
for (i=1:10000)
 y(i)=B(d(i)+x0,I,N,L_sol,Radius);
end
createfigure(d*100,y);

I.2 Function magnetic_field_2solenoid

%having fixed solenoid parameters, the function evaluate the magnetic field
%generated by 2 solenoid in serires at distance x.

clc
clear all
close all

%***physical constant***
ro=1.7241e-8; %[Ohm*m] copper resistivity
u0=4*pi*10^(-7); %[T*m/A] relative magnetic permeability

%***solenoid parameter***
Radius=0.055; %[m] coil radius
N=150; %number of coils

L_wire=2*pi*Radius*N; %[m] solenoid wire length
d_wire=0.15e-3; %[m] solenoid wire diameter
S_wire=(d_wire/2)^2*pi; %[m^2] solenoid wire cross section
R_sol=ro*L_wire/S_wire; %[Ohm] solenoid resistance
L_sol=d_wire*N %[m] length of the solenoid

a=L_sol; %[m]
b=2.5e-3; %[m]
x0=2*a-b; %[m] initial offset considering the thicketness of
the solenoid and magnetic sensor

%***power, voltage, current on the solenoid***
P=2; %[W] max power coming from power generator

Rdson=1;
Rs=0.2;

Appendix I

XIII

Req=R_sol*2+Rdson+Rs;
V=sqrt(Req*P) %[V] voltage supplying the solenoid
I=V/Req %[A] current flowing inside one solenoid

d=0.01 %[m] distance from the solenoid coil

B_x_gauss=B(d+x0,I,N*2,L_sol*2,Radius)

d=0.2 %[m] distance from the solenoid coil

B_x_gauss=B(d+x0,I,N*2,L_sol*2,Radius)

d=linspace(0,1,1000);
for (i=1:1000)
 y(i)=B(d(i)+x0,I,N*2,L_sol*2,Radius);
end
createfigure(d*100,y);

I.3 Function solenoid_parallel

function [R_sol,Req,V,I,B_dmin,B_dmax] =
solenoid_parallel_Req(Radius,N_coil,P,N_sol)
%UNTITLED Summary of this function goes here
% Detailed explanation goes here
 %***physical constant***
 ro=1.7241e-8; %[Ohm*m] copper resistivity
 u0=4*pi*10^(-7); %[T*m/A] relative magnetic permeability

 %***solenoid parameter***
 L_wire=2*pi*Radius*N_coil; %[m] solenoid wire length
 d_wire=0.15e-3; %[m] solenoid wire diameter
 S_wire=(d_wire/2)^2*pi; %[m^2] solenoid wire cross section
 R_sol=ro*L_wire/S_wire; %[Ohm] solenoid resistance
 L_sol=d_wire*N_coil; %[m] length of the solenoid
 R_sol/N_sol;
 b=2.5e-3; %[m]
 x0=2*L_sol*(N_sol/2)-b; %[m] initial offset considering
the thicketness of the solenoid and magnetic sensor

 %***power, voltage, current on the solenoid***
 Rdson=1;
 Rs=0.2;
 Req=R_sol/N_sol+Rdson+Rs;
 V=sqrt(Req*P); %[V] voltage supplying the solenoid
 I=V/Req/N_sol; %[A] current flowing inside one solenoid

d=0.01; %[m] minimum distance considered between two
solenoids

B_dmin=B(d+x0,I,N_coil*N_sol,L_sol*N_sol,Radius);

d=0.2; %[m] minimum distance considered between two
solenoids

Appendix I

XIV

B_dmax=B(d+x0,I,N_coil*N_sol,L_sol*N_sol,Radius);

d=linspace(0,2,100000);
for (i=1:100000)
 y(i)=B(d(i)+x0,I,N_coil*N_sol,L_sol*N_sol,Radius);
end
d1=find(y<0.2,1)*(2/100000)*100;
d2=find(y<0.0005,1)*(2/100000)*100;

%createfigure(x*100,y);

end

I.4 Function B

function [B_x] = B(x,I,N,L_sol,Radius)
%the function return the value of magnetic field starting from physical
%parameter if the solenoid.

 %***physical constant***
 ro=1.7241e-8; %[Ohm*m] copper resistivity
 u0=4*pi*10^(-7); %[T*m/A] relative magnetic permeability

 B_x=(u0*N*I)/(2*L_sol)*((L_sol+2*x)/sqrt((L_sol+2*x)^2+4*Radius^2)+(L_sol-
2*x)/sqrt((L_sol-2*x)^2+4*Radius^2))*10^4;
end

I.5 Function main

clc
clear all
close all

Radius=0.055; %[m] solendoid radius
P=2; %[W] power coming from an ideal source

% N_solenoid=1 %number of solenoids
%
% N_coil=50
% [R_sol,Req,V,I,B_dmin,B_dmax]=solenoid_parallel(Radius,N_coil,P,N_solenoid)
% N_coil=100
% [R_sol,Req,V,I,B_dmin,B_dmax]=solenoid_parallel(Radius,N_coil,P,N_solenoid)
% N_coil=150
% [R_sol,Req,V,I,B_dmin,B_dmax]=solenoid_parallel(Radius,N_coil,P,N_solenoid)
% N_coil=200
% [R_sol,Req,V,I,B_dmin,B_dmax]=solenoid_parallel(Radius,N_coil,P,N_solenoid)
% N_coil=300
% [R_sol,Req,V,I,B_dmin,B_dmax]=solenoid_parallel(Radius,N_coil,P,N_solenoid)

N_solenoid=2 %number of solenoids

N_coil=50
[R_sol,Req,V,I,B_dmin,B_dmax]=solenoid_parallel(Radius,N_coil,P,N_solenoid)
N_coil=100
[R_sol,Req,V,I,B_dmin,B_dmax]=solenoid_parallel(Radius,N_coil,P,N_solenoid)

Appendix I

XV

N_coil=150
[R_sol,Req,V,I,B_dmin,B_dmax]=solenoid_parallel(Radius,N_coil,P,N_solenoid)

% N_solenoid=4 %number of solenoids
%
% N_coil=50
% [R_sol,Req,V,I,B_dmin,B_dmax]=solenoid_parallel(Radius,N_coil,P,N_solenoid)
% N_coil=75
% [R_sol,Req,V,I,B_dmin,B_dmax]=solenoid_parallel(Radius,N_coil,P,N_solenoid)

Appendix II

XVI

Appendix II

FemtoSat Dynamics - Matlab Files

II.1 Function main

clc
clear all
close all

%two exaples of calculations%

time_calculation_sat(1,0.01)
time_calculation_sat(0.5,0.01)

time_calculation_sat(0.01,1)
time_calculation_sat(0.01,0.5)

II.2 Function time_calculation_sat

function [T] = time_calculation_sat(d_start,d_stop)

%it receives the starting distance and the stopping distance (in meter)
%and returns the time that the satellites need to approach/leave

 u0=4*pi*10^(-7);
 N=150;
 I=0.1731;
 H=0.023;
 R=0.035;

Appendix II

XVII

 m=0.1;

 x_start=d_start/2;
 x_stop=d_stop/2;

 x=linspace(x_start,x_stop,1000);
 v=zeros(1,1000);
 deltaX=abs(x_start-x_stop)/1000;

 for i=2:1000
 F(i)=pi*u0/4*(N*I/H)^2*R^4*(1/((2*x(i))^2)+1/(2*x(i)+2*H)^2-
2/(2*x(i)+H)^2);
 a(i)=F(i)/m;
 v(i)=sqrt(v(i-1)^2+2*a(i)*deltaX);
 t(i)=deltaX/(v(i-1)+0.5*(v(i)-v(i-1)));
 end

 T=sum(t);

end

Appendix III

XVIII

Appendix III

1B35 Design - Software Routines

Class - SPI_Driver

Operations
Signature: init()

Code Body: #include 1B35_main.c

void Initialize_SPI_Driver()

{

/*SPI configuration*/

 #define SPIy SPI1

 #define SPIy_GPIO GPIOA

 #define SPIy_CLK RCC_APB2Periph_SPI1

 #define SPIy_GPIO_CLK RCC_APB2Periph_GPIOA

 #define SPIy_SCKPin GPIO_Pin_5

 #define SPIy_MISOPin GPIO_Pin_6

 #define SPIy_MOSIPin GPIO_Pin_7

/* TODO: implement a system of calling one of the following functions basing on cycles

and passing parameters. */

send_message();

processDistanceRF();

return_distance();

read_message();

Appendix III

XIX

measure_distance();

get_distance();

get_ack();

estimate_distance_RF();

set_messageValid();

set_distValid();

check_distValid();

return 0;

}

Signature: send_message(mess : char*, destIDsourceIDlengthpreamble_length)

Code Body:

void send_message()

{

 if(message != NULL);

 {

 GPIO_Configuration();

 SPI_Configuration();

 while(message--)

 {

 /* Waiting for transmission to end. */

 while(SPI_I2S_GetFlagStatus(SPIy, SPI_I2S_FLAG_TXE) == RESET)

 {

 }

 /* Writes a byte (bit after bit) inside SPIy Transmit Data Register. */

 SPI_I2S_SendData(SPIy, TxBuffer2[TxCounter2++]);

 }

 RCC_APB2PeriphClockCmd(SPIy_GPIO_CLK | RCC_APB2Periph_AFIO, ENABLE);

 /* Enables SPIy Clock. */

 RCC_APB2PeriphClockCmd(SPIy_CLK, ENABLE);

 }

 else

 {

 }

return 0;

}

Appendix III

XX

/* Here is the function that configures GPIO. */

void GPIO_Configuration(void)

{

 /* Here is the configuration of SPI1 Pins Clock, MOSI and MISO as GPIO Ports. */

 GPIO_InitStructure.GPIO_Pin = SPIy_SCKPin | SPIy_MISOPin | SPIy_MOSIPin;

 GPIO_Init(SPIy_GPIO, &GPIO_InitStructure);

}

/* Here is the function that configures SPI. */

void SPI_Configuration(void)

{

 /* Refers to the library stm32f10x_spi.h */

 SPI_InitTypeDef SPI_InitStructure;

 /* Refers to the library stm32f10x_spi.c */

 SPI_StructInit(&SPI_InitStructure);

 /* Refers to the library stm32f10x_spi.c */

 SPI_I2S_DeInit(SPIy);

 /* Configures all aspects of SPI defining each of its parameters.

 * All the meanings of those values are defined in stm32f10x_spi.h.

 */

 SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;

 SPI_InitStructure.SPI_Mode = SPI_Mode_Slave;

 SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;

 SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;

 SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;

 SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;

 SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_LSB;

 /* Configures SPIy as SPI with the declared features. */

 SPI_Init (SPIy, &SPI_InitStructure);

 /* Enables SPIy. */

 SPI_Cmd(SPIy, ENABLE);

}

Signature: processDistanceRF(distance : Distance_RF) : float

Code Body:

void processDistanceRF(S-band_channels f)

{

float _pi = 3.14;

Appendix III

XXI

float lambda;

float P_t; /* TBD by Configurator */

float P_r; /* TBD by Configurator */

float G_t; /* TBD by Configurator */

float G_r; /* TBD by Configurator */

int c = 300000; /* m/s */

S-band_channels f;

lambda = c/f;

distance_RF.dist_RF = ((lambda/(4*_pi))*((P_t*G_r*G_t)/P_r));

}

Signature: return_distance() : Distance_RF

Code Body:

void return_distance()

{

 if(distance.distValid == 1);

 {

 return DistanceRF=distance;

 }

 else

 {

 }

return 0;

}

Signature: read_message(message : Message)

Code Body:

void read_message()

{

/* the function need to pass all parameters of the struct t_message from the received

message to the local struct*/

 message.preamble_length = Message.preamble_length;

 message.sourceID = Message.sourceID;

 message.destID = Message.destID;

 message.message_length = Message.message_length;

Appendix III

XXII

 message.message_body = Message.message_body;

 message.message_valid = Message.message_valid;

 message.power = Message.power;

 message.frequency = Message.frequency;

return 0;

}

Signature: measure_distance(distance : Distance_RF)

Code Body:

void measure_distance()

{

}

Signature: get_distance(ID : unsigned char &) : float

Code Body:

void get_distance()

{

 if(distance_RF != NULL);

 {

 GPIO_Configuration();

 SPI_Configuration();

 while(distance_RF--)

 {

 /* Waiting for transmission to end. */

 while(SPI_I2S_GetFlagStatus(SPIy, SPI_I2S_FLAG_RXE) == RESET)

 {

 }

 /* Writes a byte (bit after bit) inside SPIy Transmit Data Register. */

 SPI_I2S_GetData(SPIy, RxBuffer2[TxCounter2++]);

 }

 RCC_APB2PeriphClockCmd(SPIy_GPIO_CLK | RCC_APB2Periph_AFIO, ENABLE);

 /* Enables SPIy Clock. */

 RCC_APB2PeriphClockCmd(SPIy_CLK, ENABLE);

 }

 else

 {

 }

Appendix III

XXIII

return 0;

}

/* Here is the function that configures GPIO. */

void GPIO_Configuration(void)

{

 /* Here is the configuration of SPI1 Pins Clock, MOSI and MISO as GPIO Ports. */

 GPIO_InitStructure.GPIO_Pin = SPIy_SCKPin | SPIy_MISOPin | SPIy_MOSIPin;

 GPIO_Init(SPIy_GPIO, &GPIO_InitStructure);

}

/* Here is the function that configures SPI. */

void SPI_Configuration(void)

{

 /* Refers to the library stm32f10x_spi.h */

 SPI_InitTypeDef SPI_InitStructure;

 /* Refers to the library stm32f10x_spi.c */

 SPI_StructInit(&SPI_InitStructure);

 /* Refers to the library stm32f10x_spi.c */

 SPI_I2S_DeInit(SPIy);

 /* Configures all aspects of SPI defining each of its parameters.

 * All the meanings of those values are defined in stm32f10x_spi.h.

 */

 SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;

 SPI_InitStructure.SPI_Mode = SPI_Mode_Slave;

 SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;

 SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;

 SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;

 SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;

 SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_LSB;

 /* Configures SPIy as SPI with the declared features. */

 SPI_Init (SPIy, &SPI_InitStructure);

 /* Enables SPIy. */

 SPI_Cmd(SPIy, ENABLE);

}

Signature: estimate_distance_RF(distance : Distance_RF)

Appendix III

XXIV

Code Body:

void estimate_distance_RF()

{

measure_distance(distance);

dist_RF processDistanceRF(distance);

return 0;

}

Signature: set_messageValid(messageValid : bool)

Code Body:

void set_messageValid()

{

 if(message.message_body != 0)

 {

 return message.message_body;

 }

 else

 {

 }

}

Signature: get_messageValid() : bool

Signature: set_distValid(distValid : bool) : bool

Code Body:

void set_distValid()

{

 distance.distValid = 1;

return 0;

}

Signature: check_distValid(distValid : bool) : bool

Appendix III

XXV

Code Body:

void check_distValid()

{

 if(distance.distValid == 1)

 {

 return distance;

 }

 else

 {

 }

}

Class - 1B35_Test

Operations
Signature: main()

Code Body: /***************1B35_main.c********************/

#include 1B351_Intersat_SW_drivers.h

#include 1B351S_Intersat_communication.h

#include SimpliciTI_API.h

#include SPI_Driver.h

int main (void)

{

 typedef unsigned char UCHAR, *PUCHAR;

 typedef struct Distance_RF

 {

 uchar ID_MASTER;

 uchar ID_SLAVE;

 float dist_RF;

 bool distValid;

 float time_MASTER;

 float time_SLAVE;

 float power;

 }t_Distance_RF;

 typedef struct Message

 {

 ushort preamble_length;

Appendix III

XXVI

 uchar sourceID;

 uchar destID;

 ushort message_length;

 uchar message_body;

 bool message_valid;

 float power;

 S-band_channels frequency;

 }t_Message;

 /* ID_List */

 uchar enum {ID0 = A, ID1 = B, ID2 = C, ID3 = D, ID4 = E, ID5 = F}

 /*S_Band_channels*/

 float enum {CHANNEL_0 = 2.4257, CHANNEL_1 = 2.4508,

 CHANNEL_2 = 2.4755, CHANNEL_3 = 2.4807}

 Initialize_1B351_Intersat_SW_drivers();

 Initialize_1B351S_Intersat_communication();

 Initialize_SPI_Driver();

 while(1)

 {

 }

return 0;

}

Class - simpliciTI_API

Operations
Signature: init(myAddress : ulong) : t_SimpliciTI_error

Code Body: BSP_Init();

//SMPL_Ioctl(IOCTL_OBJ_ADDR, IOCTL_ACT_SET, (addr_t*) &linkToAddr);

//SMPL_Init(sRxCallback);

Signature: send(dest : ulong, data : byte, length : byte) : t_SimpliciTI_error

Signature: status() : t_SimpliciTI_status

Appendix III

XXVII

Signature: isDataAvailable(source : ulong) : bool

Signature: getData(data : byte, length : byte) : bool

Signature: set_address(myAddr : ulong)

Signature: SMPL_SendOpt(lid : linkID_t, msg : uint, len : uint, options : txOpt_t) : smplStatus_t

Signature: SMPL_Ioctl(obj : ioctlObject_t, act : ioctlAction_t, val : void) : smplStatus_t

Class - 1B351_Intersatellite_SW_drivers

Operations
Signature: init()

Code Body: #include 1B35_main.c

void Initialize_1B351_Intersat_SW_drivers()

{

S-band_channels target_freq = CHANNEL_0;

/* TODO: implement a system of calling one of the following functions basing on cycles

and passing parameters. */

sendData();

readData();

getDataCorrect();

setDataCorrect();

setFrequency();

setPower();

receive_data();

send_ack();

verify_data();

return 0;

}

Appendix III

XXVIII

Signature: sendData(mess : Message)

Code Body:

void sendData()

{

}

Signature: readData(mess : Message) : unsigned char

Code Body:

void readData()

{

 message.preamble_length = Message.preamble_length;

 message.sourceID = Message.sourceID;

 message.destID = Message.destID;

 message.message_length = Message.message_length;

 message.message_body = Message.message_body;

 message.message_valid = Message.message_valid;

 message.power = Message.power;

 message.frequency = Message.frequency;

return 0;

}

Signature: getDataCorrect() : bool

Code Body:

void getDataCorrect()

{

 if(message.message_body != 0)

 {

 dataCorrect = 1;

 }

return 0;

}

Signature: setDataCorrect(dataCorrect : bool)

Code Body:

void setDataCorrect()

Appendix III

XXIX

{

 if(message.message_body != 0)

 {

 dataCorrect = 1;

 }

return 0;

}

Signature: setFrequency(target_channel : int)

Code Body:

void setFrequency(target_freq)

{

 if(frequency != target_freq)

 {

 message.frequency = target_freq;

 }

return 0;

}

Signature: setPower(power : float)

Code Body:

void setPower()

{

int i;

 if(message.power != target_power)

 {

 if(message.power < target_power)

 {

 message.power = message.power + 0.5 ;

 i++;

 }

 elseif(message.power > target_power)

 {

 message.power = message.power - 0.4;

 i++;

 }

 if(i >= 10)

Appendix III

XXX

 {

 }

 else

 {

 return 0;

 }

 }

 else

 {

 {

return 0;

}

Signature: receive_data(data : Message)

Code Body:

void receive_data()

{

 if(dataCorrect == 1)

 {

 message.preamble_length = Message.preamble_length;

 message.sourceID = Message.sourceID;

 message.destID = Message.destID;

 message.message_length = Message.message_length;

 message.message_body = Message.message_body;

 message.message_valid = Message.message_valid;

 message.power = Message.power;

 message.frequency = Message.frequency;

 }

 else

 {

 }

return 0;

}

Signature: send_ack(ack : Message) : Message

Code Body:

bool send_ack()

Appendix III

XXXI

{

bool ack = 1;

message.message_body = ack;

sendMessage(message);

return 0;

}

Signature: verify_data(data : Message) : bool

Code Body:

void verify_data()

{

return message.message_valid;

}

Class - 1B351S_Intersatellite_Communication

Operations
Signature: init()

Code Body: #include 1B35_main.c

void Initialize_1B351S_Intersat_communication()

{

t_Commands commands = NULL;

uchar lastID = Z;

float power_TX = 0;

t_Distance_RF distance_RF = NULL;

bool done = 0;

Message message = NULL;

return 0;

}

Signature: sendMessage(message : Message)

Code Body: for(int i=0;i<MESSAGE_LENGTH;i++){

 message[i]=mess[i];

}

communication.sendData(message);

Signature: getMessage(message : Message) : void

Appendix III

XXXII

Code Body:

void getMessage()

{

return message;

}

Signature: getDistanceRF(distance_RF : Distance_RF)

Code Body:

void getDistanceRF()

{

return distance_RF;

}

Signature: processDistanceRF(RSSI_value : float) : float

Code Body:

void processDistanceRF(S-band_channels f)

{

float _pi = 3.14;

float lambda;

float P_t; /* TBD by Configurator */

float P_r; /* TBD by Configurator */

float G_t; /* TBD by Configurator */

float G_r; /* TBD by Configurator */

int c = 300000; /* m/s */

S-band_channels f;

lambda = c/f;

distance_RF.dist_RF = ((lambda/(4*_pi))*((P_t*G_r*G_t)/P_r));

}

Signature: measureDistanceRF(distance_RF : Distance_RF)

Code Body: message[0]=commands.DUMMY; //non sono sicuro che gli enumeration funzioni così

for (int i=1;i<MESSAGE_LENGTH;i++){

 message[i]=0;

}

sendData(message);

//dopo aver ricevuto l'ack

Appendix III

XXXIII

dist=processDistanceRF();

Signature: estimateDistanceRF(distance_RF : Distance_RF)

Code Body:

void estimateDistanceRF()

{

}

Signature: getMessageValid() : bool

Code Body:

void getMessageValid()

{

return message.message_valid;

}

Signature: setMessageValid(messageValid : bool)

Code Body:

void setMessageValid()

{

 if(message.message_body != NULL)

 {

 message.message_valid = 1;

 }

 else

 {

 }

return 0;

}

Signature: read_message(message : Message)

Code Body:

void read_message()

{

Appendix III

XXXIV

 message.preamble_length = Message.preamble_length;

 message.sourceID = Message.sourceID;

 message.destID = Message.destID;

 message.message_length = Message.message_length;

 message.message_body = Message.message_body;

 message.message_valid = Message.message_valid;

 message.power = Message.power;

 message.frequency = Message.frequency;

return 0;

}

Signature: send_ack(ack : Message) : Message

Code Body:

bool send_ack()

{

bool ack = 1;

message.message_body = ack;

sendMessage(message);

return 0;

}

Signature: check_distValid(distValid : bool)

Code Body:

void check_distValid()

{

 if(distance_RF.distValid == 1)

 {

 }

 else

 {

 }

return 0;

}

Signature: set_distValid(distValid : bool)

Code Body:

Appendix III

XXXV

void set_distValid()

{

 if(distance_RF.dist_RF != 0)

 {

 distance_RF.distValid = 1;

 }

return 0;

}

Signature: set_initial_freq() : S-band_channels

Code Body:

void set_initial_freq()

{

target_freq = CHANNEL_0;

return 0;

}

Signature: receive_data(data : Message)

Code Body:

void receive_data()

{

 if(dataCorrect == 1)

 {

 message.preamble_length = Message.preamble_length;

 message.sourceID = Message.sourceID;

 message.destID = Message.destID;

 message.message_length = Message.message_length;

 message.message_body = Message.message_body;

 message.message_valid = Message.message_valid;

 message.power = Message.power;

 message.frequency = Message.frequency;

 }

 else

 {

 }

Appendix III

XXXVI

return 0;

}

Signature: change_frequency(channel : S-band_channels)

Code Body:

void change_frequency()

{

int i;

S-band_channels x;

srand(time(NULL));

i = rand() % 4;

x = CHANNEL_i;

target_freq = x;

return 0;

}

Appendix IV

XXXVII

Appendix IV

FemtoSat Design - Hardware

schemes

RF

DEBUG

MODULE_B

MODULE_A

COIL1

COIL2

MODULE

MODULE

DEBUG

MODULE_BMODULE_A

MODULE_A

MODE

EN_COIL

SENSE

NOT_BRAKE

PHASE

NOT_ENABLE

REF_3VPDBINT 5V

COIL1

COIL2

NOT_BRAKE

MODE

PHASE

NOT_ENABLE

REF_3V

PDBINT

R
S
_
5
0
4
-8
9
3
4

R2

R
1
0
K

R
S
_
6
6
2
-0
7
9
2

R
3
0
K

R9

DK_PCC2308CT-ND
C10u

C1

DK_620-1133-1-ND

DRV_A3953

U2

LOAD_SUPPLY

GROUND

NOT_BRAKE

REF

RC

PHASE

NOT_ENABLE

LOGIC_SUPPLY

OUTB

MODE

SENSE

OUTA

SENSE

R
S
_
4
6
4
-6
5
1
5
P

C
4
7
0
p

C2

EN_COIL

5V

COIL2

COIL1

VREF5V

VINPOS

VINNEG

VOUT

DK_RL12S.20FCT-ND_K

R0R2

R18

R
S
_
6
1
6
-9
3
9
1

C4

C
1
0
0
n

OUT
EN

IN

OUT

IN

EN

RS_504-9959

R18K

EN_MAGN

RESET

notSET

REF_3V3V3

MAGN_X

MAGN_Y

5V

U3

SEN_HMC1002

VbridgeA VbridgeB

G
N
D
1
A

G
N
D
2
A

G
N
D
1
B

G
N
D
2
B

G
N
D
-P
L
N

OFFSET-A

S/R-B

OFFSET-B

S/R+B

OFFSET+B

S/R+A

OFFSET+A

S/R-A

OUT+A

OUT-A

OUT+B

OUT-B

3V3

REF_3V

R1

R33R

RS_504-6562

R20

R33R

RS_504-6562

notSET

RESET

R21R200R

RS_668-8356

Q9

IR
F
7
3
2
4

S

D

G

Q9

IR
F
7
3
2
4

S

D

G

U4

OA_AD623ARZ

IN+

IN-

RG+

RG-

VS+

VS-

OUT

REF

U5

OA_AD623ARZ

IN+

IN-

RG+

RG-

VS+

VS-

OUT

REF

R22
R3K3
RS_504-6506

R23
R3K3
RS_504-6506

C7C
1
0
u

R
S
_
1
4
8
-0
5
8

C6C
1
0
0
n

R
S
_
6
1
6
-9
3
9
1

C8C
1
0
u

R
S
_
1
4
8
-0
5
8

C
1
0
0
n

C5

R
S
_
6
1
6
-9
3
9
1

R1K
R4

RS_504-8928

R1KR6
RS_504-8928

R1K

R5

RS_504-8928

R1K

R3

RS_504-8928

MAGN_X

MAGN_Y

R1K

R7

RS_504-8928

R1K

R8

RS_504-8928

D1
CZRU52C3

A

K

D2
CZRU52C3

A

K

C9
C10u

DK_399-3525-6-ND

C11

C470n
DK_478-1263-1-ND

C10

C470n
DK_478-1263-1-ND

EN_MAGN

5V

Q10

IR
F
7
3
1
1

G

D

S

Q10

IR
F
7
3
1
1

G

D

S

NC

NC

NC

NC

REF_LM4128AMF-4.1
VIN

EN

VREF

GND

OUT
EN

IN

MODULE_A MODULE_B

BA

BA

BA

BA

DK_LM6142BIM-ND

4

8

U8
2

3

1

OA_LM6142

V+

V-

RS_666-2279

R101
R1MEG

DK_MCT0603-100K-MBCT-ND

R103
R100K

DK_MCT0603-100K-MBCT-ND

R104

R100K

VINNEG

VINPOS

5V

VOUT

VREF

DK_LM6142BIM-ND

4

8

U8
6

5

7

OA_LM6142

V+

V-

R
S
_
6
1
6
-
9
3
9
1

C
1
0
0
n

D
K
_
T
N
P
7
.5
0
K
A
A
C
T
-
N
D

R105

R7K5

DK_RG16P10.5KBCT-ND

R106

R10K5

RS_666-2279

R102R1MEG

IN

RS_505-0151

R200K

RS_504-8940

R100K

EN

OUT

RS_504-9684

R15R

RS_504-8940

R100K

EN

IN
OUT

Appendix V

XXXVIII

Appendix V

1B35 Design - Hardware schemes

VCC_CPU

RF
MODULE_B

DEBUG

MODULE_A

MODULE_A

MODULE_B

D
E
B
U
G

MODULE_A

MODULE_B

MODULE_B

MODULE_A

C2
C4

C3 C1

C5

L1

B
2

B
1

C6

L4

B
2

B
1

L3
B2

B1

C7
C8

L2

B
2

B
1

C9

C10

C12 C11

3

RS_213-2418

R10k

R1

RS_213-2418
R10k

R2

D
K
_
S
E
2
4
1
8
C
T
-N
D

X
_
3
2
K
H
z

RS_545-4143

C100p

C15

RS_264-4630

C100n

C17

RS_264-4630

C100n
C16

RS_264-4630
C100n
C18

C14C13

DK_311-1024-1-ND

C100p

C19

DK_311-1024-1-ND
C100p

C20

MODULE_B

MODULE_A

D
E
B
U
G

A B

MODULE_A MODULE_B

A B

BA

C:\Documents and Settings\s176277\Desktop\Donato\1B351_Intersatellite_Communication\PCB\1B351_Intersatellite_Communication.pcb - Page 1 of 1 pages.

DB

D
K
_
S
E
2
4
1
8
C
T
-
N
D

X1

C
9

C19

C2

C12

C20

C
8

C4

C14

C
3

R
1

C
1
1

L2

C
6

L4

L
3 C7

C
1
3

C17

C
1
0

U
1C
1
5

R
2 C
1

X
2

L
1

C16

C5

C18

C
9

X
1

C19

C2

C12

C20

C
8

C4

C14

C
1

U
1 R
1

X
2

C
1
1

L2

C
6

L4

L
3 C7

C
1
3

C17

C
3

C
1
0

C
1
5

R
2

L
1

C16

C5

C18

Bibliography

XXXIX

Bibliography

1. MONTEFUSCO GIUSEPPE, Design of a system of determination and communication of

distance and mutual flying attitude between two satellites in close-by flight, Aram-

Dock, Master Thesis, Politecnico di Torino, 2013.

2. MARTIN FLOWER UML Distilled, third edition, Pearson Education, 2004.

3. VISUAL PARADIGM official web site http://www.visual-paradigm.com

4. R.T. MERRILL, M.W. MCELHINNY, PH.L. MCFADDEN. The Magnetic Field of the

Earth - Paleomagnetism, the Core and the Deep Mantle. San Diego, California:

Academic Press, 1996.

5. Distribution of geomagnetic field intensity in 2009

http://www.ngdc.noaa.gov/geomag/WMM/WMM2010BetaSoft.shtml

6. DONATO RUSSO, MONTEFUSCO GIUSEPPE, 1B35_Intersatellite_Communication

UML Project, AraMis repository, Politecnico di Torino, 2013

7. DAVIDE MASERA, 1B22_Magnetic_Attitude_Subsystem UML project, AraMis

repository, Politecnico di Torino, 2012

8. RIZWAN MUGHAL, 1B45_Subsystem_Serial_Data UML project, AraMis repository,

Politecnico di Torino, 2013

9. HAIDER ALI, 1B31_On_Board_RF_Module UML project, AraMis repository,

Politecnico di Torino, 2013

Bibliography

XL

10. JUANCARLOS DELOSRIOS, RIZWAN MUNGHAL 1B48_Module_Interface UML

project, AraMis repository, Politecnico di Torino, 2012

11. Magnet - https://en.wikipedia.org/wiki/Magnet

12. P.MAZZOLDI, M.NIGRO, C.VOCI, Fisica, Vol.II Elettromagnetisco Onde, Edises,

2002

