
POLITECNICO DI TORINO

Master degree
in Electronic Engineering 

 

Master Degree Thesis

Design of multipurpose
measurement system for
Nanosatellites testing

Supervisor
Prof. Reyneri Leonardo

Candidate
Borrelli Dario

2016/17





Index

Summary...................................................................................1

Introduction...............................................................................2
 1.1 Testing Problem.............................................................................2

 1.2 Proposed Idea.................................................................................3

 1.3 Proposed Solution...........................................................................4

 1.4 Thesis Organization........................................................................5

 2 Standards Used......................................................................6
 2.1 Serial Peripheral Interface – SPI....................................................6

 2.2 Inter Integrated Circuit – I2C........................................................8

 2.3 JTAG............................................................................................10

 2.4 AraMiS Standards - Module.........................................................10

 2.5 Controller Area Network - CAN bus............................................11
 2.5.1 Physical Layer........................................................................12
 2.5.2 Data Link Layer.....................................................................14

 2.6 Component Library......................................................................16

 3 Design of 1C603A Multi-sensor...........................................17
 3.1 Specification..................................................................................18

 3.1.1 Functional Specification.........................................................18
 3.1.2 Mechanical Specification........................................................18

 3.2 Components..................................................................................18
 3.2.1 IMU sensor - MPU 9250.........................................................19
 3.2.2 Temperature Sensor - MAX31725MTA+...............................22
 3.2.3 Memory - 24AA01T-I/OT......................................................22

 3.3 Design – 1C603A Multi-Sensor.....................................................23
 3.3.1 Reusable Block – Bk1B4855_SPI-FPC-SLV..........................25

 3.4 PCB..............................................................................................27
 3.4.1 Electrical Characteristics........................................................29



 3.5 Software........................................................................................29
 3.5.1 Initializing Procedure.............................................................30
 3.5.2 Disable Function....................................................................31
 3.5.3 Configuration  Functions........................................................31

 3.5.3.1 Enable Gyroscope............................................................31

 3.5.3.2 Enable Accelerometer......................................................31

 3.5.3.3 Disable Gyroscope............................................................32

 3.5.3.4 Disable Accelerometer......................................................32

 3.5.3.5 Configure Accelerometer..................................................32

 3.5.3.6 Configure Gyroscope........................................................32

 3.5.3.7 Configure Magnetometer  ...............................................33

 3.5.3.8 Configure Thermometer...................................................33

 3.5.4  Read  Functions....................................................................34
 3.5.4.1 Read Accelerometer.........................................................34

 3.5.4.2 Read Gyroscope...............................................................34

 3.5.4.3 Read Magnetometer  ......................................................34

 3.5.4.4 Read Thermometer .........................................................35

 3.5.5 Onboard Memory Functions..................................................35
 3.5.5.1 Memory Map...................................................................35

 3.5.5.2 Write Memory.................................................................37

 3.5.5.3 Read Memory..................................................................37

 4 Optimization of Bk1B4221WTile Processor 4M V3.............38
 4.1 Specification..................................................................................38

 4.2 Main Components.........................................................................39
 4.2.1 Microcontroller - MSP430F5437.............................................39

 4.3 Design...........................................................................................41



 4.4 Software........................................................................................43

 5 Design of Bk1B4853 CAN Interface....................................44
 5.1 Specification..................................................................................45

 5.2 Main Components.........................................................................45
 5.2.1 CAN Interface - MCP2515T-I/ST..........................................45
 5.2.2 CAN Transceiver – SN65HVD230DR....................................47

 5.3 Design...........................................................................................48

 5.4 Software........................................................................................50
 5.4.1 SPI Operation........................................................................50

 5.4.1.1 Reset................................................................................51

 5.4.1.2 Read Register...................................................................51

 5.4.1.3 Write Register..................................................................51

 5.4.1.4 Read RX Buffer...............................................................51

 5.4.1.5 Load TX Buffer...............................................................52

 5.4.2 Configuration.........................................................................53
 5.4.2.1 Change Mode...................................................................53

 5.4.2.2 Read Mode.......................................................................53

 5.4.3 Message Transmission............................................................53
 5.4.3.1 Set Identifier....................................................................54

 5.4.3.2 Set Data...........................................................................54

 5.4.3.3 Set Priority and Start......................................................54

 5.4.3.4 Check Status Message......................................................55

 5.4.4 Message Reception.................................................................55
 5.4.4.1 Set Message Mask............................................................55

 5.4.4.2 Read Identifier.................................................................55

 5.4.4.3 Read Data........................................................................56



 6 Design of Bk1C601E Acquisition module.............................57
 6.1 Specification..................................................................................58

 6.1.1 Functional Specification.........................................................58
 6.1.2 Mechanical Specification........................................................58

 6.2 Main Components.........................................................................59

 6.3 Design...........................................................................................59
 6.3.1 Reusable Block - Bk1B4854_JTAG_Interface......................62
 6.3.2 Reusable Block - Bk1B4855_SPI-FPC-MST_Interface.........64
 6.3.3 Power Management................................................................66
 6.3.4 Connector...............................................................................68
 6.3.5 Mechanical.............................................................................70

 6.4 PCB..............................................................................................72
 6.4.1 Electrical Characteristics........................................................74

 6.5 Bk1C601E Acquisition Module box..............................................75

 7 Conclusions and Future Works............................................76
 7.1 Software Bk1C601E .....................................................................76

 7.2 1C603A Electrical test..................................................................76

 7.3 1C603A Software test...................................................................77

 7.4 Bk1C601E Electrical Test.............................................................77

 7.5 1B4853 CAN interface Software Test...........................................77

Appendix A 1C603A................................................................78

Appendix B Bk1C601E..........................................................100

BIBLIOGRAPHY..................................................................121



Summary

SUMMARY

This  thesis  project  focused  on  the  design  of  a  measurement  system able  to  test

attitude  control  of  the academic AraMiS satellite.  AraMiS,  acronym for  Modular

Architecture for Satellites, is a project started in 2006 at the Politecnico di Torino.

The aim of the project is to realize small satellites with a really modular structure.

Modularity allows a significant decrease in the cost of the project itself and thus

provides the university with the opportunity to become interested in space. The cost

of a space mission is, in fact, the main obstacle facing the common interest in space,

by companies and universities. The idea behind this project is to develop dedicated

interconnected and distributed units, built with commercial off-the-shelf components

(COTS)  components,  in  order  to  increase  fault  tolerance  and  allow  a  decent

performance  degradation,  while  maintaining  the  costs  at  acceptable  levels.  Small

artificial satellites are generally subdivided according to their weight. In particular, it

is about micro-satellite, when the mass of the satellite is between 10 and 100 Kg, it is

nano-satellite, when the mass is between 1 and 10 Kg, it is called pico-satellite, when

the mass is between 0.1-1 Kg. The most efficient way to reduce the cost of a small

satellite project is to reduce project costs as much as possible and not recurring to

manufacturing. These costs, in fact, represent over 90% of the total budget. Their

reduction can only be achieved through the sharing of design between a large number

of space missions. The re-use of projects is the logic behind the AraMiS project, the

development  of  a  modular  architecture  consisting  of  a  small  number  of  flexible

modules  that  can be reused in  different missions.  Reusing the same module over

several times allows you to subdivide project, qualification, and testing costs, and

reduce waiting times before launch. 

The most critical part of low-cost spacecraft project is the almost complete lack of

tests, due for several reason, like complexity, time and cost of test equipment. Hence

the  idea  to  realize  a  low  cost  multi-purpose  measurement  system able  to  model

mainly attitude control of nano-satellite, but also other parameters. To provide a

wide range of tests on nano-satellite has been chosen to design a measurement system

capable to measure position, forces, magnetic field and temperature.

1



 1 Introduction

 1 INTRODUCTION

 1.1 TESTING PROBLEM

One of the major causes for bad result in a nano-satellite space mission is lack or

insufficient testing operation. The nano-satellite are designed to be cheap for both

realization and sent in the space, but the testing procedure can be very long and the

the testing instrument can be very expensive. In nano-satellite space mission often

the budget is limited in term of time and in term of costs. For that reason the first

operation to be neglect are the testing operation. On nano-satellite can be performed

a wide range of tests, the most important are:

• Dynamic test: check the dynamic behaviour of nano-satellite is fundamental

for the success of the mission. Using a gimbal the nano-satellite can be rotated

or moved, in this condition can be performed center of gravity test, spin-off

stabilization test, attitude control test and more;

• Solar test: using lamps, is generated an artificial illumination that approximate

the solar sun light, the aim is to test solar cells, sun screen or materials used;

• Thermal  vacuum  chamber:  thermal  resistance  and  dissipation  in  space  is

critical, can be simulated using a vacuum chamber and a heat source can be

performed  thermal  simulation,  in  order  to  test  the  thermal  resistance  of

materials or correct heat dissipation;

• Vibration testing: a nano-satellite during launch is subject to an high level of

vibration, this condition can be simulated using a shaker. Can be tested the

mechanical characteristics of the nano-satellite, like resistance of materials or

structural resistance; 

• Electromagnetic testing: there are different electromagnetic tests that can be

performed, for example using a earth magnetic field simulator can be tested

electronics or magnetic parts of nano-satellite like magnetorquer.

2



 1 Introduction

 1.2 PROPOSED IDEA

The proposed solution intend to solve the problem of nano-satellite tests, creating a

multi-purpose low cost measurement system designed specially for nano-satellite. The

idea was to create a measurement system has much flexible possible, and able to take

different type of measure for a wide range of application for nano-satellite testing. In

particular the idea was to realize a multi sensor board and an acquisition board. The

board for  acquisition (Bk1C601E) have an on-board processor able to control, collect

and elaborate data from others board connected through SPI interface. While the

multi-sensor board (1C603A) is smaller provided with different sensors for acquire

data, memory to store tare value and SPI interface. The choose of the sensors are

mainly  due  to  archive  the  maximum flexibility,  in  particular  using  IMU sensor

(Inertial Motion Unit) give the opportunity to have three axes gyroscopes, three axes

accelerometer,  three axes magnetometer, on a single very small  integrated circuit.

This sensor joint with a temperature sensor permits to perform a wide range of tests

for nano-satellite. Furthermore, commercial IMU sensors are becoming widely diffused

and relatively  low cost  due  to  it's  big  applications  in  mobile  environments.  The

accelerometers  and  gyroscopes  permits  to  test  the  dynamic  behaviour  of  nano-

satellite, in particular the additional magnetometer can be useful to make different

type of attitude control tests for magnetorquer, the precision needed to make this

type of test is in capabilities of this sensors. The temperature sensor, instead, can be

very useful to test element of the nano-satellite like solar panels in a solar simulation

device.

3



 1 Introduction

 1.3 PROPOSED SOLUTION

The proposed solution is a compact measurement system, in particular was necessary

to design two different boards. The 1C603A Multi Sensor is very small and contain

the IMU sensor and the temperature sensor, can be interfaced through SPI with a

FFC cable.  The Bk1C601E Acquisition Module contain  a microcontroller,  sixteen

connector to connect to 1C603A Multi Sensor, the capability to acquire data from

seven different analog inputs and can be controlled via CAN or via JTAG by an host

computer as shown in figure 1. 

4

Figure 1: Designed measurement system structure

Figure 2: Examples of applications of the designed system



 1 Introduction

The application of the system are various in figure 2 are shown some examples, like

the temperature distribution of objects heated by internal heat sources or caused by

real or simulated solar irradiation (a), magnetic field distribution inside or around

solenoids  or  magnetic  circuits  of  systems  or  satellite  attitude  actuators  such  as

magnetorquers (b), acceleration distribution on flat surfaces or on the side walls of

geometrically complex systems during vibration tests or as a result of shocks (c). The

applications are not limited to nano-satellite testing, in fact due to the compacts

dimensions and to the versatility of the sensors mounted the system can be used for

different application fields like for example automotive applications.

 1.4 THESIS ORGANIZATION

This thesis project describe the system realized comprehending also an overview of

the standard used, the description of the designed interfaces and testing procedures

and future works. To realize the Bk1C601E Acquisition Module has been necessary to

implement or optimize also other reusable blocks. In order to respect the AraMiS

organization, all the designed blocks and the two boards are complexity reusable for

different application. The schematic and PCB has been made using Altium Designer,

the final board has been manufactured by EuroCircuit while all the components has

been bought on Digikey. After the design and realization phase, has been realized the

software  using  the  C++ generator  tool  of  Visual  Paradigm and IAR Embedded

Workbench for debugging and loading operation. Every part of this thesis project has

been  created  also  in  classes  with  Visual  Paradigm  using  the  UML  descriptive

language, in order to better integrate it in the AraMiS project.

The thesis project is organized as:

• Chapter  2 : Contain an overview of the standards used in the project;

• Chapter  3 : Discuss the design of the 1C603A Multi-Sensor;

• Chapter  4 : Describe the optimization of the Bk1B4221WTile Processor;

• Chapter  5 : Discuss the design of the Bk1B4853 CAN Interface;

• Chapter  6 : Describe the design of the Bk1C601E Acquisition Module;

• Chapter  7 : Contain an overview on future works that can be performed with

the designed system.

5



 2 Standards Used

 2 STANDARDS USED

To make the developed boards more compatible with different systems has been used

known and wide diffused standard for communication, in particular SPI to connect

Bk1C601E with 1C603A, I2C to connect the internal sensor of 1C603A, CAN and

JTAG interface from an external host with the Bk1C601E. Furthermore, as a part of

the AraMiS project has been necessary to respect all the standards for blocks names,

interfaces pin-outs and for wires names in schematics.

 2.1 SERIAL PERIPHERAL INTERFACE – SPI

The  Serial  Peripheral  Interface  is  a  communication  system  used  between

microcontroller  with  other  integrated  circuit  or  between  microcontroller.  This

standard has been created and developed by Motorola. The transmission is  between

a device called master, and one or more device called slave. The master control the

bus, provide the clock signal and can start or end the communication. The clock can

be configured setting two parameters: 

• CPOL: sets the clock polarity, if equal to zero the idle state of the clock is the

low logic level, inversely if equal to one the idle state of the clock is the high

logic level;

• CPHA: sets the clock phase, hence the receiver sampling clock edge. If is equal

to zero the receiver sample the inputs on the clock edge between half clock

cycle with the clock idle and half clock cycle with the clock asserted, inversely

if is equal to one the receiver sample the inputs on the clock edge between half

clock cycle with the clock asserted and half clock cycle with the clock idle.

The SPI bus is defined serial, synchronous and full duplex. There is not a minimum

speed  of  communication  but  there  is  a  maximum  value  due  to  the  parasitic

capacitance introduced on the line by connected devices. The bus is realized using 4

wires (5 considering ground) that are:

• SCLK: Serial Clock, provided by the master;

• MISO/SOMI: Master Input Slave Output, input for the master output for the

6



 2 Standards Used

slave;

• MOSI/SIMO: Master Output Slave Input, output for the master input for the

slave;

• CS/SS/nCS/nSS: Chip Select (Slave Select), active low signal provided by the

master, cannot be share by more slave and activate the communication with

that specific slave.

In figure 3 is shown a basic SPI interface.

Both master and slaves contain a microcontroller that control serial shift registers.

The master load a byte in it's shift register, and send it to the slave through the

MOSI signal line, simultaneously the slave transfer the contents of its shift register to

the master through the MISO signal line. In this way both write and read operation

are performed simultaneously. 

In Figure  4 is shown a SPI transmission. If is desired only a write operation, the

master ignores the byte received, conversely if is desired a simple read operation the

7

Figure 3: Basic SPI Interface

Figure 4: SPI Transmission



 2 Standards Used

master  transfer  a  dummy byte to initiate  a  slave  transmission.  Some device  can

handle multiple byte transfers, in this case the chip select remain low for the entire

duration of the transmission. 

 2.2 INTER INTEGRATED CIRCUIT – I2C

I2C (Inter-Integrated Circuit) is a very simple and cheap bus widely used for many

years  by  manufacturer  to  interconnect  peripheral  devices  mainly  in  small  scale

embedded systems. I2C bus is  multi-master (each device have a unique address),

bidirectional, low speed (100Kbps for standard mode and 400Kbps for fast mode) and

synchronous to a common clock.  In  figure  5 is  shown a generic I2C Bus,  in  the

designed system has been used a I2C bus with only one master.

It use two wires for the bus, both open drain (so they need pull-up resistors) and

bidirectional, the wires are:

• SDA: Serial Data

• SCL: Serial Clock

In idle state both wires are high, a transaction begin with the “start condition”, that

correspond to SDA going low followed by SCL, after that begin the transaction on

SDA as shown in figure 6. The data on SDA is sampled on the rising edge of SCL

and must remain valid till  SCL goes low again. The transaction ends with “stop

condition” obtained returning high first SCL and after SDA. 

8

Figure 5: Generic I2C Bus



 2 Standards Used

To reduce  errors  there is  an acknowledge procedure.  Every byte sent  the sender

provide an additional clock pulse on SCL, in which SDA is left high, in order to

acknowledge the transmission. If the receiver acquire correctly the byte it low the

SDA wire acknowledging the sender, if not the sender understand the error resend the

byte. For each transmission the first byte represent the address of the slave, that is

composed by seven bits plus one which indicate the direction of the operation (one

for read or zero for write), while the second byte represent the data to be sent. In

figure 7 is shown an I2C complete data transfer. If two master begin a transmission

simultaneously the first master that recognize that the bus is pulled down by another

master abort the transmission.

9

Figure 6: I2C start and stop condition

Figure 7: I2C Data transfer



 2 Standards Used

 2.3 JTAG

JTAG stand for Joint Test Action Group is defined under the IEEE standard 1149.1a

(4), sometimes is known as a Test Access Port or TAP, this interface provides direct

access to the internals of the processor, in particular allows real-time debugging of

hardware and software, with single-step or multi-step code running directly on the

target systems, can be set breakpoints in code or when a particular address or device

is accessed, it also permits to examine and modify registers and memory locations. To

utilize  the  JTAG interface  is  needed  additional  JTAG compliant  hardware.  The

JTAG interface is defined on four signals:

• TDI : Test Data Input

• TDO : Test Data Output

• TMS : Test Mode Select

• TCK : Test Clock

 2.4 ARAMIS STANDARDS - MODULE

The developed system is a part of the AraMiS project, so to make it fully compatible

and fully reusable for other system must respect some AraMiS standards. The first

standard used is  the nomenclatures as can be seen each reusable block and each

board  have  it's  own  name  defined  following  the  AraMiS  nomenclature.  All  the

reusable block are built considering that they have interface with a tile processor, in

particular has been used the  module structure to handle the signal, defined in the

document (2). In figure 8 can be seen the module definition, each wire has a standard

name that respect it's functionalities in the tile processor, for example the SPI wires

correspond to  D0 D1 D2 D3,  while  D6 and D7  can  be used as  analog inputs,

furthermore all this wire are also general purpose input output so they can also be

configured as logic signals.

10



 2 Standards Used

 2.5 CONTROLLER AREA NETWORK - CAN BUS

CAN bus stand for Controller Area Network is a serial standard for field bus officially

released by Bosch in 1986. The latest CAN specification the 2.0 was released in 1991

(5). For this thesis project has been studied and used the specification 2.0b (3). The

CAN  network  protocol  was  created  to  provide  deterministic  communication  in

complex systems, with the following features:

• Message priority assignment and fixed maximum latencies;

• Multicast communication with bit-oriented synchronization;

• Bus multi-master access;

• Error detection with automatic retransmission of corrupted messages;

• Detection of permanent failures in node, and automatic switch-off to isolate

faulty node;

11

Figure 8: AraMiS module definition



 2 Standards Used

In a multicast communication every node of the network is listening on the bus, so

every node receive the frame and decide if the message have to accepted or not. The

CAN protocol consent the simultaneous access to the bus by many nodes, in this case

there is an not destructive arbitration based on bit, there is also a priority coded in

the node identify transmitted.

In CAN bus definition is specified only the physical layer and the data-link layer,

while the application layer is not standardized, so the designer have to define the user

interface details. 

 2.5.1 Physical Layer

The standard ISO 11898 define the bit representation and the transmission medium.

For the bus CAN is used a single bidirectional channel, that usually is differential,

the cable used is a twisted pair shielded or not depending of environment noise. The

bit-encoding is non return to zero, are used two bits, bit zero called dominant and bit

one called recessive. If is transmitted simultaneously a recessive and a dominant bit,

the dominant will be the one present on the line. As shown in figure 10 the twisted

pair is composed by two wires:

• CAN_L

• CAN_H

12

Figure 9:  CAN Bus

Figure 10: Twisted Pair
Cable



 2 Standards Used

The bit zero is represented with both line at 2.5V so the different between them is

zero. While the bit one is represented bringing the CAN_H line to 3,5V and the

CAN_L  line  to  1.5V,  so  the  difference  between  the  two  line  will  be  2V.  For

synchronization is  used the Bit  Stuffing technique. During the transmission there

must be at maximum five consecutive bits can have the same polarity. If there are

more than five, a stuff bit of opposite polarity is inserted. The bit time is defined by

four  time  segments.  Each  segment  is  composed  by  an  integer  number  of  time

quantum that  is  a  minimum of  eight  to  a  maximum of  twenty  five.  The  four

segments are shown in figure 11 and are:

• SYNC_SEG  :  has  fixed  duration  of  one  time  quanta,  and  is  used  to

synchronize different nodes;

• PROP_SEG : has programmable duration one to eight time quanta, is used to

compensate delay in transmission;

• PHASE_SEG1 and PHASE_SEG2 : between them is located the sampling

point, for that reason are programmed in order to have a correct sampling by

all the hardware connected, both can vary between one and eight time quanta;

The possibility to change the sampling point permits to optimize the bit timing with

respect of the needs. The last specification is on the termination of the bus, that must

have an impedance of 120Ω. In particular, in the design of Bk1B4853 CAN Interface

has been used as termination two 62Ω with the ground connected between in the

middle.

13

Figure 11: CAN Bit Time



 2 Standards Used

 2.5.2 Data Link Layer

In this layer is defined other important aspects of CAN protocol, like data message

frame formats, bus arbitration, message reception, and error management. In CAN

there are four  types of  frame that can be transmitted,  they differs  by structure,

content and function:

• Data frames: contain data information;

• Remote frames: are used to request transmission, don't contain data field;

• Error frames: are transmitted when a node detects an error;

• Overload frames: are used for flow control to request additional time delay

before the transmission of other frames;

The frame format is shown in figure 12,it contains:

• Start of frame : is represented by a single dominant bit, is used to indicate

the start of transmission and to synchronize all the receiver nodes; 

• Arbitration field : can be composed by twelve or sixteen bits according to user

defined format;

• Control field : is used to control the correctness of the previous sent bits and

contain information on data field, like how many bits is long the data field;

• Data field : contain data, can contain from zero, for remote frames, to eight

byte of data;

• CRC field : contain the fifteen bits of  cyclic redundancy check of the data

and one bit used as a CRC delimiter;

• Acknowledge field : is composed by two bit, one used by the receiver node as

acknowledge, the bit is leaved recessive by the transmitter if the message is

correctly received the receiver node write a dominant bit on that slot, the

14

Figure 12: CAN Bus frame format



 2 Standards Used

second bit is used as acknowledge delimiter;

• End of frame : is composed by seven recessive bits, is used to divide frames;

The  bus  arbitration  of  CAN bus  is  both  priority  based  and  non-preemptive  (a

message cannot be preempted by higher priority message). The bus act like a wired-

AND channel connected to all nodes. If the bus is idle two or more nodes can start

the transmission at the same time, one of them issue a start of frame bit (a dominant

bit) and other nodes synchronize on that bit edge and then they start transmit on the

bus.  To  avoid  the  message  collision  every  transmitting  nodes  compare  the  bit

transmitted and the corresponding bit on the bus, if they coincide the node continue

the transmission, instead if the bit transmitted is recessive (bit one) and the bit on

the  bus  is  dominant  (bit  zero),  the  unit  stops  the  transmission  and switches  to

listening mode only. Clearly the node transmitting the message with lowest identifier

is always the winner of the arbitration, furthermore, at any time there can't be two

message  with  the  same  identifier,  but  can  be  two or  more  nodes  to  receive  the

message. For that reason every node have an unit in the controller that using a mask

registers permits the node to accept or not the received message. 

The error management is performed in different ways, is used bit monitoring, the

transmitter check on the line if the bit is correctly sent; bit stuffing, every five equal

bits is sent a bit of opposite phase; CRC check, every node compute the CRC value

and check if is equal with the one received; control on frame, if the receiver don't

recognize the frame format is generated an error frame; acknowledge bits, in order to

recognize  error  in  receiving.  Every  node  take  a  count  of  how  many  errors  in

transmission and in reception it generated, in particular every error has a different

weight in the count. If one of this counter increase the node switch from a normal

state to an error active state, in which the node can take part on the communications

on bus, if increase more it switch to passive error state, in which the node must wait

more time to transmit on the bus, if increase more it switch to bus off state, in which

the node don't take part on the transmission on bus waiting to 127 recessive bits on

bus to take part again on the communications.

15



 2 Standards Used

 2.6 COMPONENT LIBRARY

The first thing to set up to start a project using Altium Designer is a components

library, because each component used in the project must be uniquely defined in a

library. A PCB library, where are defined all the footprints, and symbols library, in

which are defined all the symbols and all the parameters of the component. The first

problem to overcome was the necessity to use the components already bought and

present in the Politecnico. In particular was necessary for this board to set up a

database  library  for  capacitors,  resistances.  For  the  remaining  components  was

necessary to create a custom library, in which all the footprints and symbols was

modified to meet the datasheet specification, added component 3d model  and revised

in order to avoid errors. In particular for the Lead 24 QFN footprints was necessary

to add small metal line (because for them the alignment is granted) to help the solder

operation as can be seen marked as U1 in figure 15.

16



 3 Design of 1C603A Multi-sensor

 3 DESIGN OF 1C603A MULTI-SENSOR

The 1C603A Multi-Sensor is a multiple sensor able to measure the following physical

parameters of a system under test: 

• Temperature;

• Angular velocity along three orthogonal axes;

• Linear acceleration along three orthogonal axes; 

• Magnetic field along three orthogonal axes; 

In  figure  13 is  shown the  class  diagram of  this  board,  comprehensive  of  all  it's

components and documentation. In the following paragraphs is explained the design

work  flow,  starting  from specifications,  through  choose  of  components,  drawn  of

schematic, software, PCB design, to final product. 

17

Figure 13: Bk1C603A Class Diagram



 3 Design of 1C603A Multi-sensor

 3.1 SPECIFICATION

The main specification for the 1C603E Multi-Sensor board are defined functional and

the mechanical, trying also to obtain a low cost device, in terms of components and

production costs. 

 3.1.1 Functional Specification

The board designed must have this functionalities:

• three a axis gyroscope, accelerometer and magnetometer;

• temperature sensor;

• controllable by a control board via SPI;

• capability  to  store  on  board  calibration  values,  in  order  to  correct  the

systematic error with the stored tare line. 

 3.1.2 Mechanical Specification

The board designed must be very small to obtain the maximum flexibility for make

the board usable for also small application, and to permit to use more board on the

same nano-satellite. For that reason the maximum dimensions set are 3x3cm. The

final board dimensions are 1.4cm and 2.3cm. In order to be easily fixed must be

present hole for fixing and all the bottom part of the board must be isolated to avoid

shorts between different lines. The cable used to interface must be smallest possible

and flexible but at the same time provide a stable connection with the board.

 3.2 COMPONENTS

The components needed are an IMU sensor (three axis gyroscopes,  accelerometer,

magnetometer), a temperature sensor, a memory and a connector. To encounter the

specification  defined  in  paragraph 3.1  all  the  packages  chosen  are  the  smallest

possible, the IMU sensor must have the capability to control other module (via I2C

for the MPU9250) and at the same time must have an SPI interface to communicate

18



 3 Design of 1C603A Multi-sensor

with the host processor, the memory must be capable to store all the tare value for

each sensor, the connector must provide a stable connection to the host processor. 

 3.2.1 IMU sensor - MPU 9250

The IMU Sensor chosen is the Microchip MPU 9250, has been chosen for the high

connectivity  (this  sensor  have  SPI  and  I2C  interface  and  can  control  any  I2c-

compatible device), very small package 24 Lead QFN and relative low price (9-4€

each). From datasheet (6), it's a multi-chip module composed by two dies integrated

into a single QFN package. In one die is present the 3 axis gyroscope and for the 3

axis accelerometer, while in the other is present the 3 axis magnetometer. The sensors

are  sampled  with  one16-bit  ADC for  each  axes  of  gyroscope,  accelerometer  and

magnetometer.  For  precision  tracking  of   both  fast   and slow  motions,  the

gyroscope full-scale range is user-programmable and also the accelerometer full-scale

range  is  user-programmable.  Communication  with  all  registers  of  the  device  is

performed using either I2C at 400kHz or SPI at 1MHz. For applications requiring

faster  communications,  the  sensor  and  interrupt  registers  may  be  read  using

SPI  at 20MHz. For processing is present an embedded Digital Motion Processor

(DMP) MPU-9250 that can be used to offloads computation of motion processing

algorithms from the host processor.  The DMP acquires data from accelerometers,

gyroscopes, magnetometers and additional 3rdparty sensors, and processes the data.

The resulting data can be read from the DMP’s registers, or can be buffered in a

FIFO. The DMP feature is not used in the 1C603A design. In figure 14 is present the

block diagram representation of the module.

The features of triple-axis MEMS gyroscope are:

• Digital-output X-, Y-, and Z-Axis angular rate sensors (gyroscopes) with a

user-programmable full-scale range of ±250, ±500, ±1000, and ±2000°/sec and

integrated 16-bit ADCs;

• Digitally-programmable low-pass filter;

• Gyroscope operating current: 3.2mA;

• Sleep mode current: 8μA;

• Factory calibrated sensitivity scale factor;

19



 3 Design of 1C603A Multi-sensor

• Self-test;

The features of triple-axis MEMS accelerometer are:

• Digital-output triple-axis accelerometer with a programmable full scale range

of ±2g, ±4g, ±8g and ±16gand integrated 16-bit ADCs;

• Accelerometer normal operating current: 450μA;

• Low power accelerometer mode current: 8.4μA at 0.98Hz, 19.8μA at 31.25Hz;

• Sleep mode current: 8μA;

• User-programmable interrupts;

• Wake-on-motion interrupt for low power operation of applications processor; 

• Self-test;

The features of triple-axis MEMS magnetometer are:

• 3-axis  silicon  monolithic  Hall-effect  magnetic  sensor  with  magnetic

concentrator;

• Wide  dynamic  measurement  range  and  high  resolution  with  lower  current

consumption;

20

Figure 14: Block Diagram MPU 9250



 3 Design of 1C603A Multi-sensor

• Output data resolution of 14 bit (0.6μT/LSB);

• Full scale measurement range is ±4800μT;

• Magnetometer normal operating current: 280μA at 8Hz repetition rate;

• Self-test function with internal magnetic source to confirm magnetic sensor

operation on end products;

Other features are:

• Auxiliary master I2C bus for reading data from external sensors;

• 3.5mA operating current when all 9 motion sensing axes and the DMP are

enabled;

• VDD supply voltage range of 2.4–3.6V;

• VDDIO reference voltage for auxiliary I2C devices;

• Smallest and thinnest QFN package for portable devices:3x3x1mm; 

• Minimal  cross-axis  sensitivity  between  the  accelerometer,  gyroscope  and

magnetometer axes;

• 512byte FIFO buffer enables the applications processor to read the data in-

bursts;

• Digital-output temperature sensor;

• User-programmable  digital  filters  for  gyroscope,  accelerometer,  and  temp

sensor;

• 10,000g shock tolerant;

• 400kHz Fast Mode I2C for communicating with all registers;

• 1MHz SPI serial interface for communicating with all registers;

• 20MHz SPI serial interface for reading sensor and interrupt registers;

• MEMS structure hermetically sealed and bonded at wafer level;

• RoHS and Green compliant.

21



 3 Design of 1C603A Multi-sensor

 3.2.2 Temperature Sensor - MAX31725MTA+

The temperature sensor was chosen to meet the specification of maximum 0,5° C of

uncertainty, an I2C interface,  a small  package (TDFN 8) and low cost  (1,2-1,1€

each).  From  datasheet  (7) the  MAX31725MTA+  convert  the  temperature

measurements  to  digital  form  using  a  high-resolution,  sigma-delta,  16bit  ADC.

Accuracy  is  ±0.5°C  from  -40°C  to  +105°C.  Communication  is  through  an  I2C-

compatible 2-wire serial  interface.  The I2C serial  interface accepts standard write

byte, read byte, send byte, and receive byte commands to read the temperature data

and configure the behaviour of the open-drain over-temperature shutdown output.

The module features three address select lines with a total of 32 available addresses.

The sensors have a 2.5V to 3.7V supply voltage range, low 600μA supply current, and

a lock-up protected I2C-compatible interface. The device use an 8-pin TDFN package

and operate over the -55°C to +150°C temperature range.

 3.2.3 Memory - 24AA01T-I/OT

The memory have to be big enough to store all the calibration value for each sensor,

for that reason have been chosen a 1Kbit (128 x 8) memory, with I2C interface, with

a  small package (SOT 23-5) and a low price (0,2€ each), due to it's compatibility is

possible to choose for different application a bigger memory. From datasheet (8) the

Microchip Technology Inc. 24AA01T-I/OT is a 1 Kbit Electrically Erasable PROM.

The device is  organized as one block of 128 x 8-bit memory with a 2-wire serial

interface.  Low-voltage  design  permits  operation  down  to  1.7V with  standby  and

active currents of only 1μA and 1 mA, respectively. The device also has a page write

capability for up to 8 bytes of data. The package chosen is the 5-lead SOT-23.

Features:

• Single Supply with Operation down to 1.7V for 24AA01T-I/OT Devices;

• Low-Power CMOS Technology:

◦ Read current 1 mA, max;

◦ Standby current 1μA, max;

• 2-Wire Serial Interface, I2C™ Compatible;

22



 3 Design of 1C603A Multi-sensor

• Schmitt  Trigger  inputs  for  Noise  Suppression  Output  Slope  Control  to

eliminate Ground Bounce;

• 100 kHz and 400 kHz Compatibility; 

• Typical Page Write Time 3 ms;

• Hardware Write-Protect;

• ESD Protection >4,000V;

• More than 1 Million Erase/Write Cycles;

• Data Retention >200 Years;

• Factory Programmable Available;

• Package 5-lead SOT-23;

• Pb-free and RoHS Compliant;

• Temperature Ranges: 40°C to +85°C.

 3.3 DESIGN – 1C603A MULTI-SENSOR

The board  is  designed  to  be  connected  via  SPI  with  the  Bk1C601E Acquisition

module board. The SPI interface of the MPU9250 is used to control and handle the

communication with the temperature sensor and memory via I2C, eliminating the

necessity of additional hardware. The memory is normally in only read configuration

to avoid the lost of data in case of error addressing, to make it writeable is necessary

connect to ground the 1mm test point present on the board. The Max31725MTA+

device have a configurable slave address, connecting the pins A2 A1 A0 to ground has

been selected as base address 144 (90 Hex). The design has been divided in two part,

a top level in which there are all the main components and a reusable block the

Bk1B4855_SPI-FPC-SLV, where is defined the pin out of the connector for the SPI

slave interface. The top sheet, that is shown in schematic page 1, is arranged to make

it fully compatible and reusable for future application, in particular to define signal

has been used the standard  AraMiS module definition described in paragraph 2.4  .

The 100nF capacitors C1, C2  and C3 are decoupling capacitors, while the 4.7KΩ

resistances R1 and R2 are pull-up resistor for I2C communication between devices.

The memory write protection pin is connected to R3 a 4.7KΩ resistor, that acts as a

pull-up resistance and to a test point, to make that pin easily accessible by the user.

23



 3 Design of 1C603A Multi-sensor

24



 3 Design of 1C603A Multi-sensor

 3.3.1 Reusable Block – Bk1B4855_SPI-FPC-SLV

This  reusable  block  in  which  is  present  the  connector  of  FPC/FFC  slave  SPI

interface. It takes as input a module, a chip select wire and ground, and connect it

properly to match the master interface defined in  Bk1B4855_SPI-FPC-MST. The

pinout is elaborated to reduce cross-talk between different wires, keeping the high

switching wires isolated between low switching wires. In page 2 of the schematic is

shown the pinout for the FFC slave connector and how it's connect to the module

signals.

25



 3 Design of 1C603A Multi-sensor

26



 3 Design of 1C603A Multi-sensor

27



 3 Design of 1C603A Multi-sensor

 3.4 PCB

During the hardware realization has been interfaced different problems. The fist idea

was to realize the board using a flexible-rigid PCB so without a female connector

with a flexible part that have a male connector compatible with a chosen female

connector on the Bk1C601E Acquisition module. The problem related to this idea

were the cost of production, not compatible with the low cost specification, there

were problems legated to the tolerances in the production of the flexible part of the

PCB (in particular thickness and outline spacing) that was not compatible with any

possible female connector on the Bk1C601E Acquisition module. For that reason has

been chosen a female connector compatible with any 5 pins 3-5mm FFC cable, and

the same standard has been used for the Bk1C601E Acquisition module. The PCB is

realized considering rules not so strict in order to avoid the increase of the cost for

production. The PCB is a two layer FR-4, for the wires thickness and for clearance is

used 6mil as rules. Vias dimension are 0,7mm with 0,3mm for the hole. 

28

Figure 15: Bk1C603A Multi-Sensor Designed PCB



 3 Design of 1C603A Multi-sensor

To  isolate  the  bottom of  the  PCB all  the  vias  are  tented  on  the  bottom.  The

capacitor C1, C2 and C3 are decoupling capacitor, for that reason must be placed

closed to the supply voltage pins of the integrated circuit. There are also 4 mounting

holes of 2,2mm connected to the ground. The resulting PCB is shown in figure 15.

The blue and red polygon are copper pour connected to ground used to reduce cross-

talk effect on the board. In figure 17 is shown the 3d model of the board.

29

Figure 16: Produced 1C603A Multi Sensor PCB

Figure 17: 3d Model of Bk1C603A Multi-Sensor



 3 Design of 1C603A Multi-sensor

 3.4.1 Electrical Characteristics

In the following table are presented the electrical characteristic of the 1C603A Multi-

Sensor.  More  information  can  be  taken  from  the  MPU9250  datasheet  (6),  in

particular this integrated circuit have the capability to activate one sensor at once in

order to reduce power consumption. 

Parameter Min Typical Max

Supply Voltage 2,4V 2,5V 3,6V

Supply Current (all sensor active) 3,8mA 4,4mA 7,63mA

Temperature Range -40°C +85°C

VIHmin 1,68V 1,75V 2,54V

VILmax 0,72V 0,75V 1,08V

VOHmax 2,16V 2,25V 3,24V

VOLmin 0,24V 0,25V 0,36V

 3.5 SOFTWARE

Due to it's structure this board doesn't need a preloaded firmware, but to correctly

operate some procedure must be respected.  This  board must  interact with a tile

processor for that reason has been realized a driver class that use all the methods of

30

Figure 18: Software to interface with 1C603A



 3 Design of 1C603A Multi-sensor

the tile processor used the Bk1B4221WTile Processor. In this paragraph are described

every function created. In figure 18 is shown the software class diagram that contain

all  the  function  used  to  interface  with  Bk1C603A board,  the  enumeration  called

MPU_9250_RM instead represent the complete register map of the MPU9250. All

the developed software can be find in Appendix A 1C603A.

 3.5.1 Initializing Procedure

bool init(baudrate : unsigned long) 
For the initializing procedure has been defined a function called init() that take as

input the baudrate used for SPI communication for the tile processor. This function

disable  all  unused  features  like  FSYNC  pin,  interrupts  and  setup  the  I2C

communication:

• Reset all register accessing PWR_MGMT_1 at  107 (6Bh) and setting it to

80h, to reset the magnetometer access the register CNTL2 11 (0Bh) and set it

to  01h.  After  that  is  mandatory  to  wait  some  time  till  the  operation  is

complete;

• Access the register  CONFIG at 26 (1Ah), configure the bit [5:3] to 000, to

disable FSYNC;

• Set register  INT_PIN_CFG at 55 (37 Hex) bit 2 to 0, in order to disable

Fsync pin from causing an interrupt;

• Reset register INT_ENABLE at 56 (38 Hex) to disable all interrupts; 

• To setup the MPU 9250 as the I2C master for the memory and temperature

sensor is necessary to access USER_CTRL at 106 (6Ah) and setting it to 20h,

enabling the bit 5;

• To set the I2C bus speed, in the register I2C_Master_Control at 36 (24h) can

be selected different speed changing the first 3 bits, to set the speed to 400Khz

must write in it 0Dh.

• Set the clock source for gyroscope accessing PWR_MGMT_1 register at 107

(6Bh) and setting it to 01h, in order to select the best clock source;

If every operation is completed correctly, the function returns true, else it returns

false.

31



 3 Design of 1C603A Multi-sensor

 3.5.2 Disable Function

bool disable() 
This  function  disable  the  SPI  communications  with  the  1C603A Multi-Sensor,  it

returns true if the operation is completely successfully otherwise it returns false. 

 3.5.3 Configuration  Functions

The MPU9250 offer the possibility to configure several parameters for each sensor,

like  full-scale,  precision and others.  It  permits  also  to activate or  deactivate one

sensor at time, reducing the power dissipation. For that reason was needed to create

a series of function to configure or enable each sensor. These functions must be used

before any acquisition operation from sensor, in particular for the temperature sensor

it's mandatory to call the configuration before any other operation.

 3.5.3.1 Enable Gyroscope

bool enableGyroscope() 
This function enable the gyroscope, it returns true if  every operation is completed

correctly, else it returns false. To do that is necessary to:

• Access the  PWR_MGMT_2 register 108 (6Ch), read the register value and

mask it with F8h in order to set the bits [0-2] to zero. The masking operation

is necessary to keep activated the sensor already active.

 3.5.3.2 Enable Accelerometer

bool enableAccelerometer() 
This function enable the accelerometer, it returns true if every operation is completed

correctly, else it returns false. To do that is necessary to:

• Access the  PWR_MGMT_2 register 108 (6Ch), read the register value and

mask it with C7h in order to set the bits [3-5] to zero.

32



 3 Design of 1C603A Multi-sensor

 3.5.3.3 Disable Gyroscope

bool disableGyroscope() 
This function disable the gyroscope, it returns true if  every operation is completed

correctly, else it returns false. To do that is necessary to:

• Access the  PWR_MGMT_2 register 108 (6Ch), read the register value and

mask it with 07h in order to set the bits [0-2] to one.

 3.5.3.4 Disable Accelerometer

bool disableAccelerometer() 
This  function  disable  the  accelerometer,  it  returns  true  if  every  operation  is

completed correctly, else it returns false. To do that is necessary to:

• Access the  PWR_MGMT_2 register 108 (6Ch), read the register value and

mask it with 38h in order to set the bits [0-2] to one.

 3.5.3.5 Configure Accelerometer

bool configureAccelerometer(config_1 : byte, config_2 : byte) 
This  function  takes  as  inputs  two  values,  that  will  directly  written  in  the

corresponding configuration register:

• config_1 : will be written in the register  ACCEL_CONFIG at 28 (1Ch), in

this register can be set full-scale and self test operation for each axes;

• config_2 : will be written in the register ACCEL_CONFIG_2 at 29 (1Eh), in

this register can be set a low pass filter for the sensor and it's characteristics.

The function return true if everything goes fine, else it returns false.

 3.5.3.6 Configure Gyroscope

bool configureGyroscope(config : byte) 
This function takes as input one value, that will directly written in the corresponding

configuration register:

• config : will be written in the register  GYRO_CONFIG at 27 (1B), in this

register can be set full-scale and self test operation for each axes;

33



 3 Design of 1C603A Multi-sensor

The function return true if everything goes fine, else it returns false.

 3.5.3.7 Configure Magnetometer

bool configureMagnetometer(config : byte)  
This function takes as input one value, that will directly written in the corresponding

configuration register:

• config : will be written in the register CNTL at 10 (0Ah), in this register can

be set operating mode and measurement precision in bits;

The function return true if everything goes fine, else it returns false.

 3.5.3.8 Configure Thermometer

bool configureThermometer(config : byte)  
This  function  configure  the  MPU9250  to  communicate  through  I2C  with  the

temperature  sensor,  in  order  to  write  in  it's  configuration  register  the  config

parameter. The input config (type byte), will directly written in the corresponding

configuration register, for that reason the user must configure it properly according to

the temperature sensor datasheet  (7).

In order to correctly communicate with the temperature sensor, the MPU9250 must

be configured properly:

• Access the Slave 0 register  I2C_SLV0_ADDR address 37 (25h), write in it

200 (C8h), to set up a write procedure to the external sensor, in particular the

Msb=0 indicate a write procedure;

• In register I2C_SLV0_REG 38 (26h) must be set the register to write in this

case must be set to 01, that correspond to the configuration register, in which

can be set data format and operation mode;

• Access the register I2C_SLV0_DO 99 (63h), writing in it the config that will

directly write in the configuration register of the sensor.

• Finally to start the I2C communication, in the register I2C_SLV0_CTRL 39

(27h) must write 129 (81h);

The function return true if everything goes fine, else it returns false.

34



 3 Design of 1C603A Multi-sensor

 3.5.4  Read  Functions

To retrieve data from sensor has been provided a function each sensor,  has been

defined also type called “measures” which is composed by three unsigned integer one

each axes, that will represent the read values.

 3.5.4.1 Read Accelerometer

measures getAccelerometer() 
This functions return the accelerometers read values in a object called measures, in

particular the function access to:

• for axis X: register 3Ch for low bits and register 3Bh for high bits;

• for axis Y: register 3Dh for low bits and register 3Eh for high bits;
• for axis Z: register 40h for low bits and register 3Fh for high bits;

 3.5.4.2 Read Gyroscope

measures getGyroscope() 
This  functions  return  the  gyroscopes  read  values  in  a  object  called  measures,  in

particular the function access to:

• for axis X: register 44h for low bits and register 43h for high bits;

• for axis Y: register 46h for low bits and register 45h for high bits;

• for axis Z: register 48h for low bits and register 47h for high bits;

 3.5.4.3 Read Magnetometer

measures getMagnetometer() 
This functions return the magnetometer read values in a object called measures, in

particular the function access to:

• for axis X: register 03h for low bits and register 04h for high bits;

• for axis Y: register 05h for low bits and register 06h for high bits;

• for axis Z: register 07h for low bits and register 08h for high bits;

35



 3 Design of 1C603A Multi-sensor

 3.5.4.4 Read Thermometer

unsigned int getThermometer() 
This function returns the thermometer, that will directly written in the corresponding

configuration  register.  In  order  to  correctly  communicate  with  the  temperature

sensor, the MPU9250 must be configured properly:

• Access the Slave 0 register  I2C_SLV0_ADDR address 37 (25h), write in it

200 (C8h), to set up a write procedure to the external sensor, in particular the

Msb=1 indicate a read procedure;

• In register I2C_SLV0_REG 38 (26h) must be set the register to read in this

case must be set to 00, that correspond to the temperature register;

• Finally must be set to 82h the register  I2C_SLV0_CTRL 39 (27h) to start

the read operation of two byte of data from the sensor;

• The read values can be retrieved accessing the MPU9250:

◦ Register EXT_SENS_DATA_00 : for low bits, address 73 (49h);

◦ Register EXT_SENS_DATA_01 : for high bits, address 74 (4Ah).

 3.5.5 Onboard Memory Functions

The 1C603A Multi Sensor have also an on board EEPROM memory, to correctly use

it has been defined two memory function one for write procedure and another for

read procedure, both functions take as input the memory location address. To make

the board easily to use and to avoid data lost, has been also defined a complete

memory map.

 3.5.5.1 Memory Map

This board, as described in the previous paragraphs, have mounted a 1Kb (128x8)

memory. This memory is used to store the tare value in order to easily correct the

measures. Approximating as linear the correction factor to apply is sufficient to have

gain  and offset  to  obtain  the  correct  calibration.  To have  a  better  correction  is

possible to store three different value of calibration for each sensor, that correspond

to different operating condition, like different operating temperature. In particular

36



 3 Design of 1C603A Multi-sensor

has been defined three values of temperature, A, B and C that will be stored memory

location  shown  in  the  memory  map.  This  data  is  generated  starting  from  the

measured values, taken with a sensors read procedure, that are elaborated by the tile

processor of the controlling board. There are also 8 bytes that can be defined by user.

The memory mapping is represented in table 3.

37

Sensor Temperature
A

Temperature 
B

Temperature 
C

Offset Gain Offset Gain Offset Gain

Hig
h

Low Hig
h

Low Hig
h

Low Hig
h

Low Hig
h

Low Hig
h

Low

X-Axis 
Accelerometer

0B 0A 09 08 07 06 05 04 03 02 01 00

Y-Axis 
Accelerometer

17 16 15 14 13 12 11 10 0F 0E 0D 0C

Z-Axis 
Accelerometer

23 22 21 20 1F 1E 1D 1C 1B 1A 19 18

X-Axis
Gyroscope 

2F 2E 2D 2C 2B 2A 29 28 27 26 25 24

Y-Axis
Gyroscope 

3B 3A 39 38 37 36 35 34 33 32 31 30

Z-Axis
Gyroscope 

47 46 45 44 43 42 41 40 3F 3E 3D 3C

X-Axis
Magnetometer

53 52 51 50 4F 4E 4D 4C 4B 4A 49 48

Y-Axis
Magnetometer

5F 5E 5D 5C 5B 5A 59 58 57 56 55 54

Z-Axis
Magnetometer

6B 6A 69 68 67 66 65 64 63 62 61 60

Thermometer 77 76 75 74 73 72 71 70 6F 6E 6D 6C

Temperature 7A 79 78

User-Defined XX XX XX XX XX XX XX 7F 7E 7D 7C 7B

Table 1: Memory Map of Bk1C603E



 3 Design of 1C603A Multi-sensor

 3.5.5.2 Write Memory

bool writeMemory(address : byte, data : byte) 
This function takes as inputs, the memory location address and the byte of data to

write in the on-board memory.

To successfully perform the function:

• Configure  IMU  to  communicate  with  the  memory,  in  I2C_SLV1_ADDR
address 40 (28h) writing in it 80 (50h), in particular the Msb=0 indicate a

write procedure;

• In I2C_SLV1_REG 41 (29h) the user can select the memory location to write

according with the memory map; 

• The data that have to be written in the memory must be stored in the register

I2C_SLV1_DO 100 (64h);

• Set to 81h the register I2C_SLV1_CTRL 42 (2Ah) to send one byte of data.

 3.5.5.3 Read Memory

byte readMemory(address : byte) 
To read the on-board memory is necessary to:

• Configure  IMU  to  communicate  with  the  memory,  in  I2C_SLV1_ADDR
address 40 (28h) writing in it D0 (50h), in particular the Msb=1 indicate a

read procedure;

• In I2C_SLV1_REG 41 (29h) the user can select the memory location to read

according with the memory map; 

• Set to 81h the register I2C_SLV1_CTRL 42 (2Ah) to read one byte of data;

• Access the EXT_SENS_DATA_03 76 (4Ch) to obtain the read data.

38



 4 Optimization of Bk1B4221WTile Processor 4M V3

 4 OPTIMIZATION OF BK1B4221WTILE
PROCESSOR 4M V3

This reusable block was already present in the AraMiS library as a four module

(AraMiS  standard)  tile  processor.  Has  been  necessary  to  redraw  it  in  Altium,
checking also all it's components, obtaining the version 3 of the schematic. In figure

19 is  shown  the  class  diagram,  can  be  seen  that  this  class  is  a  part  of  the

1B422_Tile_processor.

 4.1 SPECIFICATION

This  block  must  contain  everything  is  needed  to  make  work  properly  the

MSP430F5437, and also:

• The block must be reusable in the AraMiS architecture;

• All the AraMiS standard for interfaces and modules have to be respected;

39

Figure 19: Bk1B4221W_Tile_Processor_4M_V3 Class Diagram



 4 Optimization of Bk1B4221WTile Processor 4M V3

 4.2 MAIN COMPONENTS

Main components of the board are the microcontroller, that has been chosen with

integrated SPI interface and with a number of general purpose input output able to

control  all  the devices  on the board. The microcontroller  chosen is  optimized for

ultralow-power operation reducing the impact on the needed voltage supply by the

entire system.

 4.2.1 Microcontroller - MSP430F5437

From  datasheet  (9) the  Texas  Instruments  MSP430  family  of  ultralow-power

microcontroller is optimized to achieve extended battery life in portable measurement

applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and

constant  generators  that  contribute  to  maximum  code  efficiency.  The  digitally

controlled oscillator (DCO) allows the device to wake up from low-power modes to

active mode in less than 5 µs. 

The MSP430F5437 is microcontroller configuration with three 16-bit timers, a high-

performance  12-bit  analog-to-digital  converter  (ADC),  up  to  four  universal  serial

communication interfaces (USCIs), a hardware multiplier, DMA, a real-time clock

(RTC)  module  with  alarm  capabilities,  and  up  to  87  I/O  pins.

Features:

• Low Supply Voltage Range: 2.2V to 3.6V;

• Ultralow Power Consumption;

• Active Mode (AM): All System Clocks Active:

• 312 µA/MHz at 8 MHz, 3.0 V, Flash Program Execution (Typical);

• 140 µA/MHz at 8 MHz, 3.0 V, RAM Program Execution (Typical);

• Standby Mode (LPM3): 

• Real-Time  Clock  (RTC)  With  Crystal,  Watchdog,  and  Supply

Supervisor Operational, Full RAM Retention, Fast Wakeup: 2.6 µA at

3.0 V (Typical); 

• Low-Power Oscillator (VLO), General-Purpose Counter, Watchdog, and

Supply Supervisor Operational, Full RAM Retention, Fast Wakeup: 1.8

40



 4 Optimization of Bk1B4221WTile Processor 4M V3

µA at 3.0 V (Typical);

• Off Mode (LPM4): Full RAM Retention, Supply Supervisor Operational, Fast

Wakeup: 1.69 µA at 3.0 V (Typical);

• Wakeup From Standby Mode in Less Than 5 µs; 

• 16-Bit RISC Architecture; 

• Extended Memory; 

• Up to 18-MHz System Clock;

• Flexible Power Management System; 

• Fully Integrated LDO With Programmable Regulated Core Supply Voltage; 

• Supply Voltage Supervision, Monitoring, and Brownout;

• Unified Clock System; 

• FLL Control Loop for Frequency Stabilization; 

• Low-Power Low-Frequency Internal Clock Source (VLO); 

• Low-Frequency Trimmed Internal Reference Source (REFO); 

• 32-kHz Crystals; 

• High-Frequency Crystals up to 32 MHz;

• 16-Bit Timer TA0, Timer_A With Five Capture/Compare Registers; 

• 16-Bit Timer TA1, Timer_A With Three Capture/Compare Registers; 

• 16-Bit Timer TB0, Timer_B With Seven Capture/Compare Shadow Registers;

• Up to Four Universal Serial Communication Interfaces; 

• USCI_A0, USCI_A1, USCI_A2, and USCI_A3 Each Support: 

• Enhanced UART Supports Automatic Baud-Rate Detection; 

• IrDA Encoder and Decoder; 

• Synchronous SPI;

• USCI_B0, USCI_B1, USCI_B2, and USCI_B3 Each Support: 

• I2C; 

• Synchronous SPI;

• 12-Bit Analog-to-Digital Converter (ADC); 

• Internal Reference; 

• Sample-and-Hold; 

• Auto-scan Feature; 

• 14 External Channels, 2 Internal Channels;

41



 4 Optimization of Bk1B4221WTile Processor 4M V3

• Hardware Multiplier Supporting 32-Bit Operations; 

• Serial Onboard Programming, No External Programming Voltage Needed; 

• Three-Channel Internal DMA; 

• Basic Timer With RTC Feature.

 4.3 DESIGN

This block contain everything is needed to make work properly the MSP430F5437.

It's ports are the power supply VCC_CPU, the two ground (for the analog (ADC)

and for digital circuits of the microcontroller), a JTAG module that contain all the

signal needed for JTAG interface and 4 general-purpose module that maps all the

remaining pin of the microcontroller. This mapping is already defined in AraMiS.

There are  two crystals,  one at  32,765KHz used as  ADC sampling frequency and

another at 10MHz used as clock frequency of the microcontroller. The capacitors C1,

C2, C3, C4 are decoupling capacitors, in particular three in PCB design phase they

have to be placed the power supply pins of the microcontroller.  Furthermore the

capacitor C4, following the instructions contained in the datasheet (9), need an high

temperature coefficient and low uncertainty, in this design has been chosen a X8R

temperature coefficient capacitor with 10% of uncertainty.  

42



 4 Optimization of Bk1B4221WTile Processor 4M V3

43



 4 Optimization of Bk1B4221WTile Processor 4M V3

 4.4 SOFTWARE

The software was already defined in the AraMiS project, so all the software used was

checked and optimized to work properly. In figure 20 can be seen the class diagram of

the software structure, in particular every module of the processor used is divided in

slots.  Each slot  have  different  functions,  based on capabilities  supported by that

module. In the designed system have been used slot A and slot B capabilities to

control an SPI communications through UART0 and UART1, while other slot have

been used the IOdriver functions to control properly the GPIO pins.

44

Figure 20: Bk1B4221 Tile processor software



 5 Design of Bk1B4853 CAN Interface

 5 DESIGN OF BK1B4853 CAN INTERFACE

This reusable block design is completely new. The purpose of this electronic module is

to have a reusable block that easily permits to implements a fully flexible, stand-

alone  SPI-CAN  interface.  As  can  be  seen  in  figure  21 where  is  shown  the

corresponding class diagram, contain everything is needed to use a CAN interface

with an SPI communication, in particular it contains also a connector, configurable

speed and filters for the transceiver, under voltage protection and has been created a

software class for the tile processor to easily handle all the commands of the CAN

controller.

45

Figure 21: Bk1B4853_CAN_Interface Class Diagram



 5 Design of Bk1B4853 CAN Interface

 5.1 SPECIFICATION

The board designed must have everything is needed to realize a SPI-CAN interface,

in particular:

• Must respect all the AraMiS standards;

• The CAN communication speed must be configurable;

• As a part  of a CAN bus,  must respect all  the CAN specification, like the

120Ohm termination  resistance,  type  of  connector,  protection  of  bus  lines,

etc..;

• To  avoid  noise  problems,  in  case  of  long  wires,  must  be  considered  the

possibility to add filters on the transceiver TX and RX lines;

• Must have a fully compatible SPI interface.

 5.2 MAIN COMPONENTS

The components of this block are a SPI-CAN interface a CAN transceiver to handle
the CAN protocol.

 5.2.1 CAN Interface - MCP2515T-I/ST

From datasheet  (10) Microchip Technology’s MCP2515 is a stand-alone Controller

Area  Network  (CAN)  controller  that  implements  the  CAN specification,  Version

2.0B. It is capable of transmitting and receiving both standard and extended data

and remote frames. The MCP2515 has two acceptance masks and six acceptance

filters  that  are  used  to  filter  out  unwanted  messages,  thereby  reducing  the  host

MCU’s  overhead.  The  MCP2515  interfaces  with  microcontrollers  (MCUs)  via  an

industry standard Serial Peripheral Interface (SPI).

Features:

• Implements CAN V2.0B at 1 Mb/s:

◦ 0 to 8-byte length in the data field;

◦ Standard and extended data and remote frames;

• Receive Buffers, Masks and Filters:

46



 5 Design of Bk1B4853 CAN Interface

◦ Two receive buffers with prioritized message storage;

◦ Six 29-bit filters;

◦ Two 29-bit masks;

• Data Byte Filtering on the First Two Data Bytes (applies to standard data

frames);

• Three Transmit Buffers with Prioritization and Abort Features;

• High-Speed SPI Interface (10 MHz):

◦ SPI modes 0,0 and 1,1;

• One-Shot mode Ensures Message Transmission is Attempted Only One Time;

• Clock Out Pin with Programmable Pre-scaler:

◦ Can be used as a clock source for other device(s);

• Start-of-Frame (SOF) Signal is Available for Monitoring the SOF Signal:

◦ Can be used for time slot-based protocols and/or bus diagnostics to detect

early bus degradation;

• Interrupt Output Pin with Selectable Enables;

• Buffer Full Output Pins Configurable as:

◦ Interrupt output for each receive buffer;

◦ General purpose output;

• Request-to-Send (RTS) Input Pins Individually Configurable as:

◦ Control pins to request transmission for each transmit buffer;

◦ General purpose inputs;

• Low-Power CMOS Technology:

◦ Operates from 2.7V-5.5V;

◦ 5mA active current (typical);

◦ 1μA standby current (typical) (Sleep mode);

• Temperature Ranges Supported:

◦ Industrial (I): -40°C to +85°C;

47



 5 Design of Bk1B4853 CAN Interface

 5.2.2 CAN Transceiver – SN65HVD230DR

From datasheet (11) the SN65HVD230 controller area network (CAN) transceiver is

compatible to the specifications of the ISO 11898-2 High Speed CAN Physical Layer

standard (transceiver). These device is designed for data rates up to 1 megabit per

second (Mbps),  and  include  many protection features  providing device  and CAN

network robustness.  The SN65HVD23x transceivers  are designed for use with the

Texas  Instruments  3.3VµPs,  MCUs  and  DSPs  with  CAN  controllers,  or  with

equivalent  protocol  controller  devices.  The  devices  are  intended  for  use  in

applications employing the CAN serial communication physical layer in accordance

with  the  ISO  11898  standard.  Designed  for  operation  in  especially  harsh

environments, these devices feature cross wire protection, loss of ground and over-

voltage protection, over-temperature protection, as well as wide common mode range

of operation.

The CAN transceiver is the CAN physical layer and interfaces the single ended host

CAN protocol controller with the differential CAN bus found in industrial, building

automation, and automotive applications. These devices operate over a -2 V to 7 V

common mode range on the bus,  and can withstand common mode transients of

±25V. The RS pin (pin 8) on the SN65HVD230 and SN65HVD231 provides three

different modes of operation: high speed mode, slope control mode, and low-power

mode. The high speed mode of operation is selected by connecting the RS pin to

ground, allowing the transmitter output transistors to switch on and off as fast as

possible with no limitation on the rise and fall slopes. The rise and fall slopes can also

be adjusted by connecting a resistor in series between the RS pin and ground. The

slope will be proportional to the pin's output current. With a resistor value of 10kΩ
the device will have a slew rate of ~15 V/µs, and with a resistor value of 100kΩ the

device will  have a slew rate of ~2 V/µs. The SN65HVD230 enters a low current

standby mode (listen only) during which the driver is switched off and the receiver

remains active if a high logic level is applied to the RS pin. This mode provides a

lower  power  consumption  mode than normal  mode while  still  allowing  the  CAN

controller to monitor the bus for activity indicating it should return the transceiver

to normal mode or slope control mode. The host controller (MCU, DSP) returns the

48



 5 Design of Bk1B4853 CAN Interface

device to a transmitting mode (high speed or slope control) when it wants to transmit

a message to the bus or if during standby mode it received bus traffic indicating the

need to once again be ready to transmit.

 5.3 DESIGN

The design realized takes as input a module in which are used all the needed signal to

use SPI interface and GPIO pins to control the MCP2515T, in particular to make

this integrated circuit work properly is needed a clock source that has been realized

using a crystal and corresponding decoupling capacitors C10 and C9. The MCP2515T

is connected to a CAN transceiver that handle the communications on the CAN_L

and CAN_H wires. The transceiver communication speed is hardware configurable

mounting or not the resistors R6, R7. Furthermore in case of noise problems on the

TXD and RXD of the transceiver is already expected the possibility to set-up two

low pass filter, replacing the 0Ω resistors R10,R9 and DNI capacitances C15, C12. To

interface with the CAN wires is used a 4-wire CAN connector, a switch to configure

this node as a termination, that is realized using a series of two 68Ω resistor R8,R11

tied in the middle to ground. To protect the transceiver in case of under-voltage of

the CAN wires there are two diodes.

49



 5 Design of Bk1B4853 CAN Interface

50



 5 Design of Bk1B4853 CAN Interface

 5.4 SOFTWARE

To use correctly the SPI-CAN interface, has been created a software class for tile

processor. The controller generate all control bits and CRC field of the data frame, it

have three buffer to send data and two buffer to receive data, so can be set different

priority for each message and can be set two address for receiving data. In figure 22 is

shown the corresponding class class diagram, in particular the MCP2515_RM is the

the complete register map of the MCP2515. The software has been developed for the

Bk1B4221WTile Processor, and handle the CAN controller in it's most important

functions. All the developed software can be find in Appendix B Bk1C601E.

 5.4.1 SPI Operation

The  SPI  read  and  write  operation  is  performed  writing  to  the  MCP2515  using

instruction set defined in datasheet (10), the following function implements the most

important commands of the instruction set.

51

Figure 22: Bk1b4853 CAN interface software class



 5 Design of Bk1B4853 CAN Interface

 5.4.1.1 Reset

bool Reset()
This function when called reset all  internal register and put the MCP2515 in the

configuration  mode,  it  returns  true  if  the  operation  is  performed  successfully

otherwise it returns false.

 5.4.1.2 Read Register

byte ReadRegister(address : byte) 
The function read the register pointed by the address received as input, it returns the

read data if the operation is performed successfully otherwise it returns zero.

This is done writing the read command (equal to 3), thus is written the address of

the register to read, finally is performed the read operation. 

 5.4.1.3 Write Register

byte WriteRegister(address : byte, data : byte) 
The function write data (variable of type byte) to the register pointed by the address

received as input, it returns true if the operation is performed successfully otherwise

it returns false.

This is done writing the write command (equal to 2), thus is written the address of

the register to write and finally is written the data.

 5.4.1.4 Read RX Buffer

byte ReadRXBuffer(buffer : ushort)
This function use the Read RX Buffer instruction that permits to read the RX buffer

directly, without performing a read operation on the corresponding buffer register,

reducing the overhead of one byte (the register address byte). The MCP2515 have

two different receiver buffer, furthermore can be read both identifier and data of the

message, for that reason has been defined an input variable called buffer to choose

from which buffer read and which will be the first data to be read.

52



 5 Design of Bk1B4853 CAN Interface

buffer=0 Receiver buffer 0, start with the most significant bits of the identifier

buffer=1 Receiver buffer 0, start with data bits

buffer=2 Receiver buffer 1, start with the most significant bits of the identifier

buffer=3 Receiver buffer 1, start with data bits

Table 2: Read RX Buffer variable definition

 5.4.1.5 Load TX Buffer

byte LoadTXBuffer(buffer : ushort, data : byte)
This function use the Load TX Buffer instruction that permits to load data in the

TX buffer directly, without performing a write operation on the corresponding buffer

register, reducing the overhead of one byte (the register address byte). The MCP2515

have three different transmission buffer, furthermore the data can be written starting

from the most significant byte or from the least significant byte, for that reason has

been defined an input  variable  called  buffer to  choose where the data should be

written.

buffer=0 Transmission buffer 0, write the most significant byte

buffer=1 Transmission buffer 0, write the least significant byte

buffer=2 Transmission buffer 1, write the most significant byte

buffer=3 Transmission buffer 1, write the least significant byte

buffer=4 Transmission buffer 2, write the most significant byte

buffer=5 Transmission buffer 2, write the least significant byte

Table 3: Load TX Buffer variable definition

53



 5 Design of Bk1B4853 CAN Interface

 5.4.2 Configuration

The MCP2515 can operate in five different modes. For that reason has been realized

a set of functions to access easily to the registers that control this parameters. 

 5.4.2.1 Change Mode

Bool ChangeMode(config : byte)
This function permits to change the operating mode of the MCP2515, in particular to

change operating mode is necessary to access to the register CANCTRL at address

Fh, the function access directly to the register and write in it the config variable. For

that reason the user must configure the input variable config properly according to

the datasheet (10).

 5.4.2.2 Read Mode

byte ReadMode() 
This function permits reads the status register (CANSTAT) of the MCP2515, in this

register located at address Eh are stored information on the operating mode of the

integrated circuit and interrupts flags.

 5.4.3 Message Transmission

To use correctly the CAN bus protocol is necessary to set the identifier field and data

field of the data frame that have to be sent on the bus. For that reason has been

created a set of function with that purpose.

54



 5 Design of Bk1B4853 CAN Interface

 5.4.3.1 Set Identifier

bool  SetID(Buffer : int, ID : unsigned short) 
This function is used to set the 11 bits standard identifier of message to be sent, by

the corresponding transmit buffer received as input in variable buffer, the id will be

set  in  one of  the three TXBnSIDH register located at 31h, 41h,  51h and in the

TXBnSIDL register located at 32h, 42h, 52h. In particular in this register have to be

set also the type of identifier of the message in this case standard. This function

returns true if everything is performed successfully otherwise it returns false.

 5.4.3.2 Set Data

bool SetData(Buffer : int, len : unsigned int, data : int[])  
This function set the data field of the message that have to sent. It takes three input

parameters, Buffer identify in which buffer the message to be sent is, len define the

length of the data field, data is an array that contain the data the have to be written

in the data field.  Firstly is  check if  len have the correct dimension, after on the

selected buffer is written the data field length in the register TXBnDLC located at

address 35h, 45h, 55h. Finally the data to be written is split in byte and written in

the  corresponding  registers  TXBnDm. This  function  returns  true  if  everything  is

performed successfully otherwise it returns false.

 5.4.3.3 Set Priority and Start

bool SetPriorityAndStart(Buffer : int, priority : unsigned int)  
This function permits to set the priority of the message and start the communication

on the select buffer. It receive as inputs: Buffer that identify the buffer in which the

message is located and the priority of the message that can be from 0-3 (3 represent

the  highest  priority  message).  The  operations  are  done  accessing  the  register

TXBnCTRL located at 30h, 40h, 50h and set it properly. This function returns true

if everything is performed successfully otherwise it returns false.

55



 5 Design of Bk1B4853 CAN Interface

 5.4.3.4 Check Status Message

bool CheckStatusMessage(Buffer : int) 
This function check if the buffer selected doesn't have messages pending, it return

true if  there are no message pending otherwise it  returns false.  This operation is

performed accessing the register TXBnCTRL located at 30h, 40h, 50h and checking

the third bit TREQ.

 5.4.4 Message Reception

The message reception is handle by three buffer register that have a settable message

filter to determine if the message should be loaded into the receiver buffer.

 5.4.4.1 Set Message Mask

bool SetMessageMask(Buffer : int, Mask : unsigned short)
This function permits to set a message mask on the message identifier to determine if

the message should be loaded into the receiver buffer. It receive as inputs: Buffer that

identify the buffer in which mask should be applied and Mask that is the value that

will  used as  mask.  This  operation  is  performed writing the  mask in  the register

RXMnSIDH located at 00h, 04h, 08h, 10h, 14h, 18h, that contain the most significant

bits of the mask to be applied, and in the register RXMnSIDL located at 01h, 05h,

09h, 11h, 15h, 19h, which contain the least significant bits of the mask. This function

returns true if everything is performed successfully otherwise it returns false.

 5.4.4.2 Read Identifier

unsigned int ReadID(Buffer : int)
This function read the identifier of the read message on the buffer defined by the

parameter Buffer received as input, returning the read value in an unsigned int. This

operation is performed reading the register RXBnSIDH located at 61h, 71h, for the

most significant bits of the identifier, and reading the register RXBnSIDL located at

62h, 72h for the least significant bits.

56



 5 Design of Bk1B4853 CAN Interface

 5.4.4.3 Read Data

bool ReadData(Buffer : int, data : int[])
This function store in the variable data the read message on the buffer defined by the

parameter Buffer received as input. This operation is performed reading the register

RXBnDLC located at 65h, 75h to determine the data length, after are performed read

operation  on  the  registers  RXBnDm in  which  the  data  is  stored.  This  function

returns true if everything is performed successfully otherwise it returns false.

57



 6 Design of Bk1C601E Acquisition module

 6 DESIGN OF BK1C601E ACQUISITION
MODULE

The Bk1C601E Acquisition Module is composed by two elements.

The  Bk1C601E  Acquisition  Module  board  comprehend  all  the  electronics,  in

particular the board contain: 

• Bk1B4221WTile_Processor, that is used has core of the board to handle all

the other elements on the board;

• Bk1B4853_CAN_Interface, that is used to handle the CAN bus protocol;

• SPI connectors, to interface with the 1C603A Multi-sensor;

• JTAG  Connector,  to  permits  to  an  PC  to  interface  easily  with  the

Bk1B4221WTile_Processor;

• Analog  inputs  Connectors,  to  use  the  analogic  input  pins  of  the

Bk1B4221WTile_Processor, to make additional measures;

• Push buttons, to reset the microcontroller,;

• Led, the user can configure it to have a visual feedback of the operation of the

microcontroller.

The second element is the Bk1C601E Acquisition Module box, that is an enclosure

box for the electronic board. The entire system is represented in the class diagram

shown in figure 23.

58

Figure 23: Bk1C601E Acquisition Module Class diagram



 6 Design of Bk1C601E Acquisition module

 6.1 SPECIFICATION

This board is realized to control and acquire data from till sixteen Bk1C601A board

connected through FFC cable using SPI protocol. The data acquired could be also

sent  to  an  host  computer,  and  this  board  must  be  controllable  from  this  host

computer or from another control board, for this reason are also needed additional

interfaces like JTAG and CAN.

 6.1.1 Functional Specification

The board designed must have this functionalities:

• 16 SPI connector;

• CAN interface;

• JTAG interface;

• Capability to control and provide supply for sixteen 1C601A;

• Capability to store on board the read data;

• Capability to make calculation, in order to correct read data;

• Capability to make additional voltage measurement;

• Capability to easily control the behavior of the board processor .

 6.1.2 Mechanical Specification

The board must be small enough to be portable, in particular has been identified a

maximum dimensions of 10cmX10cm. However must be enough space to easily use

the SPI connectors and at the same time enough space for all the other connectors

and  components.  The  final  board  design  have  smaller  dimensions  that  are

5cmX7,5cm. In appendix is shown the drawing of the board. The enclosure must be

bigger enough to contain the board and permits an easily access to the connectors

and wires. 

59



 6 Design of Bk1C601E Acquisition module

 6.2 MAIN COMPONENTS

Starting from the specification this board is designed in many different block divided

by  functionalities,  and  all  this  block  are  made  completely  reusable  for  future

applications.  Main  components  are  the  Bk1B4221WTile_Processor  described  in

chapter 4  and the Bk14853_CAN_Interface described in the chapter 5  . The final

project has been realized with an hierarchical structure that is shown in figure 24.

 6.3 DESIGN

The first  step  in  the  board  designing  is  the  choose  of  microcontroller,  from the

specification has been calculated the numbers of general purpose input output port

needed, the interfaces needed and the generally performance needed. In the AraMiS

project there was already a class of processors called tile processors, they have also a

standard definition of it's modules. Since they match all the needs and permit an easy

integration in the AraMiS project has been decided to use the 4 module tile processor

that has been optimized as described in chapter 4 . To make it easily programmable

has been added a 8pin connector for the JTAG interface (comprehensive of dedicated

3,3Volts  power  supply,  defined  in  a  reusable  blocks  for  future  applications),  a

momentary switch linked with a 1mm test point and to reset the microcontroller that

can be seen in page 1 of the schematic, a 8pin connector linked with seven analog

60

Figure 24: Sheet structure of
Bk1C601E  



 6 Design of Bk1C601E Acquisition module

input and to analog ground of  the microcontroller  and two led connected to the

microcontroller  GPIO configurable by used in order to have a visual feedback of

processor behaviour.  However this processor doesn't have a CAN interface. To add

the CAN interface has been necessary choose a CAN transceiver and CAN interface

module, in particular has been chosen a SPI-CAN in order to maintain each block

more reusable as possible, in fact the CAN interface (defined in a reusable block) is

fully compatible with any microcontroller that have a SPI interface and it's hardware

configurable  to  adapt  to  different  CAN bus,  the  design  of  this  module  as  been

described in depth in the chapter 5  . This schematic represent the top level of the

project, where all the different reusable blocks and schematic are connected together.

In this schematic is possible to see the supply organization of the board. The power

supply is taken from the CAN connector supply pin, is protected from over voltage

and under voltage (power management schematic), and supply the entire board. The

schematic connector contain all the  SPI connectors,  Analogic connector and the two

led. The mechanical schematic contains a mechanical component defined in library in

which there are the six fixing holes. In the next page is possible to see the top sheet

of the project called Bk1C601E_Acquisition_Module_Board.

61



 6 Design of Bk1C601E Acquisition module

62



 6 Design of Bk1C601E Acquisition module

 6.3.1 Reusable Block - Bk1B4854_JTAG_Interface

As it's shown in schematic page 7 this reusable block contain a 8 pin connector that

provide all the wires necessary to use the JTAG interface. It takes as input a JTAG

module and connect it to the correct pin out of the connector, the input module and

the pin out are both a standard defined in AraMiS.

63



 6 Design of Bk1C601E Acquisition module

64



 6 Design of Bk1C601E Acquisition module

 6.3.2 Reusable Block - Bk1B4855_SPI-FPC-MST_Interface

In this reusable block is present the connector of FPC master SPI interface. The

schematic is shown in the next page, it takes as input a module, a chip select wire

and ground, and connect its properly to match the slave SPI interface. The pinout for

the FPC master connector to use not crossed cable is inverter with the respect of the

slave connector. The connector used in this schematic a vertical mount in order to

respect the mechanical specification. 

65



 6 Design of Bk1C601E Acquisition module

66



 6 Design of Bk1C601E Acquisition module

 6.3.3 Power Management

For the power management are needed 3,3Volts to supply all  the components on

boards and all  the  connected  1C601A boards,  at  the  beginning has been used  a

voltage regulator that from a 12 Volts source (coming from external source through a

connector) and with a switch it was possible to select the 3,3Volts coming from the

CAN connector  supply  pin,  but  to respect  the mechanical  specification  has been

necessary to remove the 12Volts connector to reduce the board dimension, for that

reason was useless to have a voltage regulator so it was removed. Has been kept only

the 3,3Volt coming from the CAN connector supply pin adding an additional over-

voltage and under-voltage protection, with a switch that is used to switch-off the

board removing the power supply to the board.

This schematic is realized custom for this board, it takes as input only the power

supply  and  the  ground,  and  give  in  output  the  power  supply  protected.  

The over-voltage protection is realized using a 3Volt voltage reference diode and a

NPN transistor, when the input voltage is over than 3,8Volt the transistor goes on

insulating the board, blocking the maximum output supply voltage at 4,25Volts (the

base emitter junction of the NPN transistor saturate at 1,25Volts). The under-voltage

protection is realized using an high speed Schottky diode capable to sink up to 1A,

when the input voltage goes under -0,3Volts the diode goes on sinking all the current

and blocking the voltage. In addition there are a switch to remove the voltage supply

to the board and a red led with a 1mm test point, in order to easily see if there is

power supply in board or not. The schematic can be seen in the following page.

67



 6 Design of Bk1C601E Acquisition module

68



 6 Design of Bk1C601E Acquisition module

 6.3.4 Connector

In this schematic there are all the connector organization, in particular it takes as

inputs all  the four modules of  the microcontroller.  Can be seen that for the SPI

connectors is used the SPI wires of the module A, other wires are used for SPI chip

selects, to control a yellow and a green led, and for the analog connector. For the

analog connector every pin has been linked with a 1mm test point to easily sold cable

or to control the acquired voltage. In this schematic is also present the two ground

(analog and digital) connected together with 0Ω resistor. The schematic can be seen

in the following page. 

69



 6 Design of Bk1C601E Acquisition module

70



 6 Design of Bk1C601E Acquisition module

 6.3.5 Mechanical

This schematic contains a mechanical component defined in library in which there are
the six fixing holes connected together. Having a component defined in library make
possible  to  reuse this fixing holes  (and so the case that are built  for)  for others
boards. In the following page is shown the schematic. 

71

Figure 25:  Mechanical component footprint



 6 Design of Bk1C601E Acquisition module

72



 6 Design of Bk1C601E Acquisition module

 6.4 PCB

The PCB has been realized considering the mechanical specification, in particular to

have a smaller PCB has been necessary to use a 4 plane FR-4 with components

placed on both side of PCB. The components that have to interact with user has

been posed on top with also the higher components to have a board less thick on

bottom (simplifying the fixing structure). The main rules used for this board are 6mil

as clearance and wire thickness, and for Vias 0,7mm and 0,35mm for hole. The only

wire thicker is the wire connect external power supply to the board internal power

supply that is realized 0,5mm thick, to make it able to support over-current. The two

internal plane are connected to internal power supply and to ground.

This  two  planes  simplify  a  lot  the  routing  procedure  reducing  from  circa  200

connection to 60. Particular attention as been made to the communications part of

the board, where for SPI-CAN and for the CAN transceiver the routing as been made

manually  only on the bottom of  the board to ensure shorter wires  and to avoid

interferences with other switching part of the circuit (the 16 SPI wires are all placed

on top).  The CAN connector,  the power supply switch and the CAN terminator

switch are leaning out on the side of the board to make them usable cutting a hole on

the side of the enclosure box.

73

Figure 26: Bk1C601E Acquisition Module Board designed PCB, (a) top (b) bottom 



 6 Design of Bk1C601E Acquisition module

To operate with till sixteen 1C601A board has been necessary to chose and find the

space to insert sixteen FFC connector, to reduce the space needed on the board and

to make it more easy to use has been chosen vertical mount connector. For all the

components has been necessary to create symbols, footprints. For some components

have a standard packages so has been necessary to create only the symbol and only

link to the correct packages (checking on datasheet all the dimensions of pads and

clearance between them), for other has been necessary to draw them and to find or

build  a  specific  3d  model  to  add  to  them.  Also  for  this  board  all  the  common

components are chosen considering which of them are already at Politecnico.

In figure 27 is shown the designed PCB 3d model, while in figure 28 is represented

the final produced PCB.

74

Figure 27: Bk1C601E Acquisition Module Board PCB 3d model, (a) top (b) bottom 

Figure 28: Bk1C601E Acquisition Module Board produced PCB



 6 Design of Bk1C601E Acquisition module

 6.4.1 Electrical Characteristics

In  the  following  table  are  presented  the  electrical  characteristic  of  the  1C601E

Acquisition  Module  Board.  More  information  can  be  taken  from  components

datasheet.

Parameter Min Typical Max

Vcc Supply Voltage 2,2V 3,3V 3,6V

Supply Current 
(without 1c603A connected)

35,6mA

Supply Current 
(with 16 1c603A connected)

158mA

Temperature Range -40°C +85°C

Vin analog pins range 0V Vcc

VOHmin 1,8V 2,70V 3V

VOLmax 0,6V

CAN_H -4V 16V

CAN_L -4V 16V

75



 6 Design of Bk1C601E Acquisition module

 6.5 BK1C601E ACQUISITION MODULE BOX

To enclosure the Bk1C601E Acquisition Module Board has been already realized a
box. This box is divided in three parts: a base, on which is mounted the electronics
board,  and two covers that with screws can be fixed to the base. In figure 29 can be
seen the complete box designed. 

76

Figure 29: Bk1C601E Acquisition Module box

Figure 30: Bk1C601E Acquisition Module expanded view



 7 Conclusions and Future Works

 7 CONCLUSIONS AND FUTURE WORKS

The designed system is a complete measurement system, however due to lack of time

was not possible to develop the software for the Bk1C601E Acquisition Module Board

and was not possible to test all the hardware created. This was manly due to the

manufacturing time and component delivery time that not permits to test in time the

board.

 7.1 SOFTWARE BK1C601E 

The  software  that  have  to  be  designed  must  implement  the  handling  the

measurement procedures, like the calibration procedure that have to perform for each

1C603A Multi-Sensor connected a measure in controlled environment elaborate the

calibration values and store them in the 1C603A Multi-Sensor on board memory. 

Have to be designed also the CAN protocol application level. In particular this level

in CAN protocol is not standardized. For that reason is necessary to design the data

field  of  the  data  frame.  In  particular  is  important  to  create  a  standard  for  the

AraMiS project in order to make easily usable the 1B4853 CAN interface.

 7.2 1C603A ELECTRICAL TEST

The first thing to do after soldering all components on the realized board, is to test if

all the pins of every components are correctly connected and there isn't unwanted

shorts between to adjacent pins. In particular, due to the small dimensions of the

footprints, can be very difficult to correctly separate the central ground pad with

pins.  For  that  reason is  very  important  to test  the boards.  Furthermore  can  be

performed test on SPI communications with an oscilloscope in order to evaluate the

presence of noises that can produce errors in SPI communications. 

77



 7 Conclusions and Future Works

 7.3 1C603A SOFTWARE TEST

The software realized for this board is used to send data and instruction to the IMU

Sensor  that  handle  all  the  aspect  of  the  SPI  communication  and also  all  others

components mounted on board.

The test can be realized also using a breakout board for the MPU9250, controlled by

a developing board with the same processor  (MSP430F5437)  using a USB-JTAG

debugger that permits to see real-time the registers value resulted by interaction of

the two boards. In fact is important to check if the values generated by the 1C603A

are compatible with measurement values.

 7.4 BK1C601E ELECTRICAL TEST

After soldering all components on the realized board, the first thing to do is to test if

all the pins of every components are correctly connected and there isn't unwanted

shorts between to adjacent pins.  Furthermore can be performed also test on SPI

communications with an oscilloscope in order to evaluate the presence of noises that

can produce errors in SPI communications, test on CAN communications to evaluate

if  the  levels  are  noiseless  and  at  the  same  time are  comply  with  the  CAN bus

protocol. This is important to check the correct behaviour of the CAN transceiver.

The supply  over-voltage  and under-voltage  as  not  destructive  protection,  can  be

easily tester putting on the supply pin properly voltages value.

 7.5 1B4853 CAN INTERFACE SOFTWARE TEST

The software realized handle the communication between the tile processor and the

CAN controller. So all features implemented in the developed software must be tested

to evaluate the correctly behaviour of the CAN controller. Also in this case can be

used a breakout board for the MCP2515, controlled by a developing board with the

same processor (MSP430F5437) using a USB-JTAG debugger that permits to see

real-time the registers value resulted by interaction of the two boards.

78



Appendix A 1C603A

APPENDIX A 1C603A

BOM
Quantity for 25 boards.

79



Appendix A 1C603A

1C603A Dimensions

All measures are in millimetres.

80



Appendix A 1C603A

1C603A Software

init(baudrate : unsigned long) : bool
{
byte temp;

SLOT::D0.init();
SLOT::D0.msbFirst();
SLOT::D0.enable(MSP_430::SPI_MASTER_MODE,baudrate);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(PWR_MGMT_1);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x80);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(CNTL2);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x01);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;

81



Appendix A 1C603A

}
SLOT::D0.writeData(CONFIG);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return false;
}
temp=SLOT::D0.readData();

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(CONFIG);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(temp && 0xC7);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(INT_PIN_CFG);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return false;
}
temp=SLOT::D0.readData();

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(INT_PIN_CFG);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){

82



Appendix A 1C603A

    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(temp && 0xFB); 

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(INT_ENABLE);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x00);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(USER_CTRL);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x20);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(I2C_MST_CTRL);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x0D);

83



Appendix A 1C603A

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(PWR_MGMT_1);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x01);
return true;
}

disable() : bool
{
for (unsigned long i=0;!SLOT::D0.isTXempty();i++){
    if (i>TIMEOUT)
       return false;
}
disable(SPI_MASTER_MODE);
return true;
}

readMemory(address : byte) : byte
{
byte data;
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return 0;
}
SLOT::D0.writeData(I2C_SLV1_ADDR);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return 0;
}
SLOT::D0.writeData(0xD0);

84



Appendix A 1C603A

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return 0;
}
SLOT::D0.writeData(I2C_SLV1_REG);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return 0;
}
SLOT::D0.writeData(address);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return 0;
}
SLOT::D0.writeData(I2C_SLV1_CTRL);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return 0;
}
SLOT::D0.writeData(0x81);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return 0;
}
SLOT::D0.writeData(EXT_SENS_DATA_03);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return 0;
}
data=SLOT::D0.readData();
return data;
}

writeMemory(address : byte, data : byte) : bool

85



Appendix A 1C603A

{
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(I2C_SLV1_ADDR);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x50);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(I2C_SLV1_REG);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(address);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(I2C_SLV1_DO);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(data);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;

86



Appendix A 1C603A

}
SLOT::D0.writeData(I2C_SLV1_CTRL);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x81);
return true;
}

enableGyroscope() : bool
{
byte temp;

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(PWR_MGMT_2);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return false;
}
temp=SLOT::D0.readData();

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(PWR_MGMT_2);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(temp && 0xF8);
return true;
}

87



Appendix A 1C603A

enableAccelerometer() : bool
{
byte temp;

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(PWR_MGMT_2);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return false;
}
temp=SLOT::D0.readData();

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(PWR_MGMT_2);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(temp && 0xC7);
return true;
}

disableGyroscope() : bool
{
byte temp;

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(PWR_MGMT_2);

88



Appendix A 1C603A

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return false;
}
temp=SLOT::D0.readData();

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(PWR_MGMT_2);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(temp || 0x07);
return true;
}

disableAccelerometer() : bool
{
byte temp;

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(PWR_MGMT_2);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return false;
}
temp=SLOT::D0.readData();

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;

89



Appendix A 1C603A

}
SLOT::D0.writeData(PWR_MGMT_2);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(temp || 0x38);
return true;
}

configureAccelerometer(config_1 : byte, config_2 : byte) : bool
{
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(ACCEL_CONFIG);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(config_1);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(ACCEL_CONFIG_2);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(config_2);

return true;
}

90



Appendix A 1C603A

configureGyroscope(config : byte) : bool
{
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(GYRO_CONFIG);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(config);
return true;
}

configureMagnetometer(config : byte) : bool
{
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(CNTL);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(config);
return true;
}

configureThermometer(config : byte) : bool
{
//temperature sensor slave configuration
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(I2C_SLV0_ADDR);

91



Appendix A 1C603A

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0xC8);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(I2C_SLV0_REG);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x01);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(I2C_SLV0_DO);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(config);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(I2C_SLV0_CTRL);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;

92



Appendix A 1C603A

}
SLOT::D0.writeData(0x81);
return true;
}

getAccelerometer() : MEASURES
{
byte low,high;
MEASURES data;

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
SLOT::D0.writeData(ACCEL_XOUT_H);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
high=SLOT::D0.readData();

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
SLOT::D0.writeData(ACCEL_XOUT_L);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
low=SLOT::D0.readData();
data.Xaxes = (unsigned int)((unsigned char) high<<8 || (unsigned char) low);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
SLOT::D0.writeData(ACCEL_YOUT_H);

93



Appendix A 1C603A

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
high=SLOT::D0.readData();

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
SLOT::D0.writeData(ACCEL_YOUT_L);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
low=SLOT::D0.readData();
data.Yaxes = (unsigned int)((unsigned char) high<<8 || (unsigned char) low);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
SLOT::D0.writeData(ACCEL_ZOUT_H);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
high=SLOT::D0.readData();

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
SLOT::D0.writeData(ACCEL_ZOUT_L);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)

94



Appendix A 1C603A

       return NULL;
}
low=SLOT::D0.readData();
data.Zaxes = (unsigned int)((unsigned char) high<<8 || (unsigned char) low);
return data;
}

getGyroscope() : MEASURES
{
byte low,high;
MEASURES data;

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
SLOT::D0.writeData(GYRO_XOUT_H);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
high=SLOT::D0.readData();

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
SLOT::D0.writeData(GYRO_XOUT_L);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
low=SLOT::D0.readData();
data.Xaxes = (unsigned int)((unsigned char) high<<8 || (unsigned char) low);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;

95



Appendix A 1C603A

}
SLOT::D0.writeData(GYRO_YOUT_H);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
high=SLOT::D0.readData();

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
SLOT::D0.writeData(GYRO_YOUT_L);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
low=SLOT::D0.readData();
data.Yaxes = (unsigned int)((unsigned char) high<<8 || (unsigned char) low);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
SLOT::D0.writeData(GYRO_ZOUT_H);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
high=SLOT::D0.readData();

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
SLOT::D0.writeData(GYRO_ZOUT_L);

96



Appendix A 1C603A

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
low=SLOT::D0.readData();

data.Zaxes = ((unsigned int) high)<<8 || low;
data.Xaxes = high * 256 + low;
return data;
}

getMagnetometer() : MEASURES
{
byte low,high;
MEASURES data;

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
SLOT::D0.writeData(HXH);
for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
high=SLOT::D0.readData();

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
SLOT::D0.writeData(HXL);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
low=SLOT::D0.readData();
data.Xaxes= (unsigned int)((unsigned char) high<<8 || (unsigned char) low);

97



Appendix A 1C603A

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
SLOT::D0.writeData(HYH);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
high=SLOT::D0.readData();

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
SLOT::D0.writeData(HYL);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
low=SLOT::D0.readData();
data.Yaxes = (unsigned int)((unsigned char) high<<8 || (unsigned char) low);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
SLOT::D0.writeData(HZH);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
high=SLOT::D0.readData();

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return NULL;

98



Appendix A 1C603A

}
SLOT::D0.writeData(HZL);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
low=SLOT::D0.readData();
data.Zaxes = (unsigned int)((unsigned char) high<<8 || (unsigned char) low);
return data;
}
getThermometer() : MEASURES
{
byte low,high;
unsigned int data;

//temperature sensor slave configuration
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return 0;
}
SLOT::D0.writeData(I2C_SLV0_ADDR);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return 0;
}
SLOT::D0.writeData(0x48);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return 0;
}
SLOT::D0.writeData(I2C_SLV0_REG);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return 0;
}
SLOT::D0.writeData(0x00);

99



Appendix A 1C603A

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return 0;
}
SLOT::D0.writeData(I2C_SLV0_CTRL);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return 0;
}
SLOT::D0.writeData(0x82);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return 0;
}

SLOT::D0.writeData(EXT_SENS_DATA_00);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return 0;
}
low=SLOT::D0.readData();

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return 0;
}
SLOT::D0.writeData(EXT_SENS_DATA_01);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return 0;
}
high=SLOT::D0.readData();
data = (unsigned int)((unsigned char) high<<8 || (unsigned char) low)
return data;
}

100



Appendix B Bk1C601E

APPENDIX B BK1C601E

BOM

101



Appendix B Bk1C601E

Bk1C601E Dimensions

All measures are in millimetres.

102



Appendix B Bk1C601E

BK1B4853CAN Software

Reset() : bool
{
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(RESET);

return true;
}

ReadRegister(address : byte) : byte
{
byte data;

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return  0;
}
SLOT::D0.writeData(READ);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return 0;
}
SLOT::D0.writeData(address);

for (unsigned long i=0;!SLOT::D0.isRXready();i++){
    if (i>TIMEOUT)
       return NULL;
}
data=SLOT::D0.readData();

return data;
}

WriteRegister(address : byte, data : byte) : bool

103



Appendix B Bk1C601E

{
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(WRITE);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(address);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(data);

return true;
}

LoadTXBuffer(buffer : ushort, data : byte) : bool
{
if (buffer == 0)
{
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x40);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(data);

return true;
}

104



Appendix B Bk1C601E

if (buffer == 1)
{
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x41);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(data);

return true;
}

if (buffer == 2)
{
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x42);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(data);

return true;
}

if (buffer == 3)
{
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)

105



Appendix B Bk1C601E

       return false;
}
SLOT::D0.writeData(0x43);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(data);

return true;
}

if (buffer == 4)
{
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x44);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(data);

return true;
}

if (buffer == 5)
{
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x45);

for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)

106



Appendix B Bk1C601E

       return false;
}
SLOT::D0.writeData(data);

return true;
}
return false;
}

ReadRXBuffer(buffer : ushort) : bool
{
if (buffer == 0)
{
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x90);

return true;
}

if (buffer == 1)
{
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x92);

return true;
}

if (buffer == 2)
{
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}

107



Appendix B Bk1C601E

SLOT::D0.writeData(0x94);

return true;
}

if (buffer == 3)
{
for (unsigned long i=0;!SLOT::D0.isTXready();i++){
    if (i>TIMEOUT)
       return false;
}
SLOT::D0.writeData(0x96);

return true;
}

return false;
}

ChangeMode(config : byte) : bool
{
return WriteRegister(CANCTRL, config);
}

ReadMode() : byte
{
return ReadRegister(CANSTAT);
}

SetID(Buffer : int, ID : unsigned short) : bool
{
bool var;

unsigned char msb = ID >> 3;
unsigned char lsb = (ID << 13) >> 8;
lsb= lsb && 0xE0;

switch (buffer) {

case 0 :

108



Appendix B Bk1C601E

var=WriteRegister(TXB0SIDH,msb);
if (var==false)
break;
var=WriteRegister(TXB0SIDL,lsb); 
break;

case 1 : 
var=WriteRegister(TXB1SIDH,msb);
if (var==false)
break;
var=WriteRegister(TXB1SIDL,lsb); 
break;

case 2 : 
var=WriteRegister(TXB2SIDH,msb);
if (var==false)
break;
var=WriteRegister(TXB2SIDL,lsb);
break;

  default : 
       return false;
}

return var;
}

SetData(Buffer : int, len : unsigned int, data : int[]) : bool
{
bool var;
unsigned char msb;
unsigned char lsb;

if (len> 8)
len=8;

lsb= lsb && 0xE0;

switch (buffer) {

109



Appendix B Bk1C601E

case 0 :
var=WriteRegister(TXB0DLC,len);
if (var==false)
break;
for (int i=0;i<(len/2);i++){
msb = data[i] >> 8;
lsb = (data[i] << 8) >> 8;
switch (i) {

case 0 :
var=WriteRegister(TXB0D0,lsb);
if (var==false)
break;
var=WriteRegister(TXB0D1,msb); 
if (var==false)
break;

break;

case 1 :
var=WriteRegister(TXB0D0,lsb);
if (var==false)
break;
var=WriteRegister(TXB0D1,msb); 
if (var==false)
break;

break;

case 2 :
var=WriteRegister(TXB0D2,lsb);
if (var==false)
break;
var=WriteRegister(TXB0D3,msb); 
if (var==false)
break;

break;

case 3 :
var=WriteRegister(TXB0D4,lsb);
if (var==false)
break;

110



Appendix B Bk1C601E

var=WriteRegister(TXB0D5,msb); 
if (var==false)
break;

break;

case 4 :
var=WriteRegister(TXB0D6,lsb);
if (var==false)
break;
var=WriteRegister(TXB0D7,msb); 
if (var==false)
break;

break;

default: 
break;
}
}
break;

case 1 :
var=WriteRegister(TXB1DLC,len);
if (var==false)
break;
for (int i=0;i<(len/2);i++){
msb = data[i] >> 8;
lsb = (data[i] << 8) >> 8;
switch (i) {

case 0 :
var=WriteRegister(TXB1D0,lsb);
if (var==false)
break;
var=WriteRegister(TXB1D1,msb); 
if (var==false)
break;

break;

case 1 :
var=WriteRegister(TXB1D0,lsb);

111



Appendix B Bk1C601E

if (var==false)
break;
var=WriteRegister(TXB1D1,msb); 
if (var==false)
break;

break;

case 2 :
var=WriteRegister(TXB1D2,lsb);
if (var==false)
break;
var=WriteRegister(TXB1D3,msb); 
if (var==false)
break;

break;

case 3 :
var=WriteRegister(TXB1D4,lsb);
if (var==false)
break;
var=WriteRegister(TXB1D5,msb); 
if (var==false)
break;

break;

case 4 :
var=WriteRegister(TXB1D6,lsb);
if (var==false)
break;
var=WriteRegister(TXB1D7,msb); 
if (var==false)
break;

break;

default: 
break;
}
}
break;

112



Appendix B Bk1C601E

case 2 :
var=WriteRegister(TXB2DLC,len);
if (var==false)
break;
for (int i=0;i<(len/2);i++){
msb = data[i] >> 8;
lsb = (data[i] << 8) >> 8;
switch (i) {

case 0 :
var=WriteRegister(TXB2D0,lsb);
if (var==false)
break;
var=WriteRegister(TXB2D1,msb); 
if (var==false)
break;

break;

case 1 :
var=WriteRegister(TXB2D0,lsb);
if (var==false)
break;
var=WriteRegister(TXB2D1,msb); 
if (var==false)
break;

break;

case 2 :
var=WriteRegister(TXB2D2,lsb);
if (var==false)
break;
var=WriteRegister(TXB2D3,msb); 
if (var==false)
break;

break;

case 3 :
var=WriteRegister(TXB2D4,lsb);
if (var==false)
break;

113



Appendix B Bk1C601E

var=WriteRegister(TXB2D5,msb); 
if (var==false)
break;

break;

case 4 :
var=WriteRegister(TXB2D6,lsb);
if (var==false)
break;
var=WriteRegister(TXB2D7,msb); 
if (var==false)
break;

break;

default: 
break;
}
}
break;

return var;
}

SetPriorityAndStart(Buffer : int, priority : unsigned int) : bool
{
bool var;

if (priority > 3)
priority=3;

priority = priority & 0x8;

switch (buffer) {

case 0 :
var=WriteRegister(TXB0CTRL,priority);
break;

case 1 : 
var=WriteRegister(TXB1CTRL,priority);

114



Appendix B Bk1C601E

break;

case 2 : 
var=WriteRegister(TXB2CTRL,priority);
break;

  default : 
       return false;
}
}

CheckStatusMessage(Buffer : int) : bool
{
byte read;

switch (buffer) {

case 0 :
read=ReadRegister(TXB0CTRL);
if (read&0x8 != 0x8)
 return true;
break;

case 1 : 
read=ReadRegister(TXB1CTRL);
if (read&0x8 != 0x8)
 return true;
break;

case 2 : 
read=ReadRegister(TXB2CTRL);
if (read&0x8 != 0x8)
 return true;
break;

  default : 
       return false;
}

return false;

115



Appendix B Bk1C601E

}

SetMessageMask(Buffer : int, Mask : unsigned short) : bool
{
bool var;

unsigned char msb = Mask >> 3;
unsigned char lsb = (Mask << 13) >> 8;

switch (buffer) {

case 0 :
var=WriteRegister(RXM0SIDH,msb);
if (var==false)
break;
var=WriteRegister(RXM0SIDL,lsb); 
break;

case 1 : 
var=WriteRegister(RXM1SIDH,msb);
if (var==false)
break;
var=WriteRegister(RXM1SIDL,lsb); 
break;

case 2 : 
var=WriteRegister(RXM2SIDH,msb);
if (var==false)
break;
var=WriteRegister(RXM2SIDL,lsb);
break;

  default : 
       return false;
}

return var;
}

ReadID(Buffer : int) : unsigned int

116



Appendix B Bk1C601E

{
bool var;
unsigned char msb;
unsigned char lsb;
unsigned int;

switch (buffer) {

case 0 :
msb=ReadRegister(RXB0SIDH);
lsb=ReadRegister(RXB0SIDL); 
break;

case 1 : 
msb=ReadRegister(RXB1SIDH);
lsb=ReadRegister(RXB1SIDL); 
break;

  default : 
       return 0;
}
ID = (unsigned int)(msb<<8 ||  lsb)
return ID;
}

ReadData(Buffer : int, data : int[]) : bool
{
bool var;
int len;
unsigned char msb;
unsigned char lsb;

len= len && 0x7;

switch (buffer) {

case 0 :
len =readRegister(RXB0DLC);
for (int i=0;i<len;i++){

117



Appendix B Bk1C601E

switch (i) {

case 0 :
data[0]=WriteRegister(RXB0D0);
break;

case 1 :
data[1]=WriteRegister(RXB0D1);
break;

case 2 :
data[2]=WriteRegister(RXB0D2);
break;

case 3 :
data[3]=WriteRegister(RXB0D3);
break;

case 4 :
data[4]=WriteRegister(RXB0D4);
break;

case 5 :
data[5]=WriteRegister(RXB0D5);
break;

case 6 :
data[6]=WriteRegister(RXB0D6);
break;

case 7 :
data[7]=WriteRegister(RXB0D7);
break;

default: 
break;
}
}
break;

118



Appendix B Bk1C601E

case 1 :
len =readRegister(RXB1DLC);
for (int i=0;i<len;i++){
switch (i) {

case 0 :
data[0]=WriteRegister(RXB1D0);
break;

case 1 :
data[1]=WriteRegister(RXB1D1);
break;

case 2 :
data[2]=WriteRegister(RXB1D2);
break;

case 3 :
data[3]=WriteRegister(RXB1D3);
break;

case 4 :
data[4]=WriteRegister(RXB1D4);
break;

case 5 :
data[5]=WriteRegister(RXB1D5);
break;

case 6 :
data[6]=WriteRegister(RXB1D6);
break;

case 7 :
data[7]=WriteRegister(RXB1D7);
break;

default: 
break;
}

119



Appendix B Bk1C601E

}
break;

case 2 :
len =readRegister(RXB2DLC);
for (int i=0;i<len;i++){
switch (i) {

case 0 :
data[0]=WriteRegister(RXB2D0);
break;

case 1 :
data[1]=WriteRegister(RXB2D1);
break;

case 2 :
data[2]=WriteRegister(RXB2D2);
break;

case 3 :
data[3]=WriteRegister(RXB2D3);
break;

case 4 :
data[4]=WriteRegister(RXB2D4);
break;

case 5 :
data[5]=WriteRegister(RXB2D5);
break;

case 6 :
data[6]=WriteRegister(RXB2D6);
break;

case 7 :
data[7]=WriteRegister(RXB2D7);
break;

120



Appendix B Bk1C601E

default:
return false;
break;
}
}
break;
}

return true;
}

121



BIBLIOGRAPHY

(1) John Catsoulis, Designing Embedded Hardware, O'Reilly Media (2005)

(2) M. Rizwan, De los Rios,  Leonardo M. Reyneri,  1B48 ARAMIS Module

Interface Control Document (2014)

(3) Marco Di Natale, Haibo Zeng, Paolo Giusto, Arkadeb Ghosal, 

Understanding and Using the Controller Area Network Communication 
Protocol Theory and Practice, Springer Verlag, New York (2012)

(4) IEEE Standard Test Access Port:

http://fiona.dmcs.pl/~cmaj/JTAG/JTAG_IEEE-Std-1149.1-2001.pdf

(5) CAN Specification 2.0:

http://www.bosch-semiconductors.de/media/ubk_semiconductors/pdf_1/

canliteratur/can2spec.pdf

(6) Datasheet MPU 9250:

https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-

01-v1.1.pdf

(7) Datasheet MAX31725:

http://datasheets.maximintegrated.com/en/ds/MAX31725.pdf

(8) Datasheet 24AA01T-I/OT:

http://ww1.microchip.com/downloads/en/DeviceDoc/21711J.pdf

(9) Datasheet MSP430f5437:

http://www.ti.com/lit/ds/symlink/msp430f5437.pdf

(10) Datasheet MCP2515:

http://ww1.microchip.com/downloads/en/DeviceDoc/20001801H.pdf

(11) Datasheet SN65HVD230:

http://www.ti.com/lit/ds/symlink/sn65hvd230.pdf

123

http://fiona.dmcs.pl/~cmaj/JTAG/JTAG_IEEE-Std-1149.1-2001.pdf
http://www.ti.com/lit/ds/symlink/sn65hvd230.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/20001801H.pdf
http://www.ti.com/lit/ds/symlink/msp430f5437.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21711J.pdf
http://datasheets.maximintegrated.com/en/ds/MAX31725.pdf
https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
https://www.invensense.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
http://www.bosch-semiconductors.de/media/ubk_semiconductors/pdf_1/canliteratur/can2spec.pdf
http://www.bosch-semiconductors.de/media/ubk_semiconductors/pdf_1/canliteratur/can2spec.pdf
http://www.bosch-semiconductors.de/media/ubk_semiconductors/pdf_1/

	Summary
	1 Introduction
	1.1 Testing Problem
	1.2 Proposed Idea
	1.3 Proposed Solution
	1.4 Thesis Organization

	2 Standards Used
	2.1 Serial Peripheral Interface – SPI
	2.2 Inter Integrated Circuit – I2C
	2.3 JTAG
	2.4 AraMiS Standards - Module
	2.5 Controller Area Network - CAN bus
	2.5.1 Physical Layer
	2.5.2 Data Link Layer

	2.6 Component Library

	3 Design of 1C603A Multi-sensor
	3.1 Specification
	3.1.1 Functional Specification
	3.1.2 Mechanical Specification

	3.2 Components
	3.2.1 IMU sensor - MPU 9250
	3.2.2 Temperature Sensor - MAX31725MTA+
	3.2.3 Memory - 24AA01T-I/OT

	3.3 Design – 1C603A Multi-Sensor
	3.3.1 Reusable Block – Bk1B4855_SPI-FPC-SLV

	3.4 PCB
	3.4.1 Electrical Characteristics

	3.5 Software
	3.5.1 Initializing Procedure
	3.5.2 Disable Function
	3.5.3 Configuration Functions
	3.5.3.1 Enable Gyroscope
	3.5.3.2 Enable Accelerometer
	3.5.3.3 Disable Gyroscope
	3.5.3.4 Disable Accelerometer
	3.5.3.5 Configure Accelerometer
	3.5.3.6 Configure Gyroscope
	3.5.3.7 Configure Magnetometer
	3.5.3.8 Configure Thermometer

	3.5.4 Read Functions
	3.5.4.1 Read Accelerometer
	3.5.4.2 Read Gyroscope
	3.5.4.3 Read Magnetometer
	3.5.4.4 Read Thermometer

	3.5.5 Onboard Memory Functions
	3.5.5.1 Memory Map
	3.5.5.2 Write Memory
	3.5.5.3 Read Memory



	4 Optimization of Bk1B4221WTile Processor 4M V3
	4.1 Specification
	4.2 Main Components
	4.2.1 Microcontroller - MSP430F5437

	4.3 Design
	4.4 Software

	5 Design of Bk1B4853 CAN Interface
	5.1 Specification
	5.2 Main Components
	5.2.1 CAN Interface - MCP2515T-I/ST
	5.2.2 CAN Transceiver – SN65HVD230DR

	5.3 Design
	5.4 Software
	5.4.1 SPI Operation
	5.4.1.1 Reset
	5.4.1.2 Read Register
	5.4.1.3 Write Register
	5.4.1.4 Read RX Buffer
	5.4.1.5 Load TX Buffer

	5.4.2 Configuration
	5.4.2.1 Change Mode
	5.4.2.2 Read Mode

	5.4.3 Message Transmission
	5.4.3.1 Set Identifier
	5.4.3.2 Set Data
	5.4.3.3 Set Priority and Start
	5.4.3.4 Check Status Message

	5.4.4 Message Reception
	5.4.4.1 Set Message Mask
	5.4.4.2 Read Identifier
	5.4.4.3 Read Data



	6 Design of Bk1C601E Acquisition module
	6.1 Specification
	6.1.1 Functional Specification
	6.1.2 Mechanical Specification

	6.2 Main Components
	6.3 Design
	6.3.1 Reusable Block - Bk1B4854_JTAG_Interface
	6.3.2 Reusable Block - Bk1B4855_SPI-FPC-MST_Interface
	6.3.3 Power Management
	6.3.4 Connector
	6.3.5 Mechanical

	6.4 PCB
	6.4.1 Electrical Characteristics

	6.5 Bk1C601E Acquisition Module box

	7 Conclusions and Future Works
	7.1 Software Bk1C601E
	7.2 1C603A Electrical test
	7.3 1C603A Software test
	7.4 Bk1C601E Electrical Test
	7.5 1B4853 CAN interface Software Test

	Appendix A 1C603A
	Appendix B Bk1C601E
	BIBLIOGRAPHY

