# POLITECNICO DI TORINO

Collegio di Ingegneria Elettronica, delle Telecomunicazioni e Fisica (ETF) Corso di Laurea Magistrale in Ingegneria Elettronica (Electronic Engineering)

Tesi di Laurea Magistrale

# Sviluppo di un sistema di gestione dell'energia per satelliti modulari



### **Relatori:**

prof. Leonardo M. Reyneri

prof. Claudio Sansoè

Candidato:

Joseph Samuel Bonasera

"Chi sa concentrarsi su qualche cosa e perseguirla come unico scopo ottiene, alla fine, la capacità di fare qualsiasi cosa."

### Sommario

Questo lavoro di tesi ha come obiettivo lo sviluppo di un sistema di gestione dell'energia per satelliti di tipo modulare, ed in particolare di tipo ARAMIS[1].

In generale, questo genere di satelliti sono soluzioni a basso costo e di piccole dimensioni sempre più in via di sviluppo, adattabili a svariati tipi di applicazioni e missioni.

Per ARAMIS si intende *Architettura Altamente Modulare per Infrastrutture Satellitari*, esso viene visto come un nuovo approccio per la realizzazione di nanosatelliti, ovvero sistemi miniaturizzati aventi forma cubica denominati CubeSat[2]. Esso è caratterizzato dall' utilizzo di schede PCB (che forniscono le funzioni base di una struttura satellitare, ad esempio power management system, magnetometro) che costituiscono le facce fisiche laterali vere e proprie del cubo costituente il satellite. Nella parte esterna di queste schede sono opportunamente posizionati dei pannelli solari che rappresentano la fonte primaria di alimentazione dell'intero sistema. Tutto lo spazio interno invece è lasciato a disposizione per l'inserimetno dell'opportuno *payload* caratterizzante la missione.

L' approccio utilizzato si basa su un'architettura fortemente modulare, derivandone diversi vantaggi sia in termini di costi sia di tempi (sviluppo e testing). Infatti i diversi moduli possono essere riutilizzati per diversi tipi di situazioni, evitando di dover realizzare appositi sottosistemi per ogni specifica missione.

Pertanto riassemblando i singoli blocchi, si riesce ad ottenere le specifiche necessarie per il profilo di missione desiderata.

Essendo che quest'ultima può avere diverse durate e dato un aumento della complessità dei nanosatelliti, l'utilizzo di un sistema di gestione dell'energia a bordo risulta di fondamentale importanza non solo perché una perdita delle sue funzionalità porterebbe al fallimento della missione stessa, ma anche perché la necessità di ridurre costi, masse e volumi richiede lo sviluppo di soluzioni ad elevata efficienza.

Per garantire il corretto funzionamento dell'intero sistema per tutto il periodo della missione, è utilizzata un ulteriore fonte di energia detta secondaria, in grado di fornire potenza al satellite nel caso in cui il sistema primario non sia in grado di funzionare, o di soddisfare a pieno il fabbisogno energetico richiesto dallo scenario operativo (ad esempio quando il satellite si trova in zone cosiddette d'ombra).

La sorgente secondaria utilizzata è costituita da un banco batterie a polimeri di litio (Li-Po) che in funzione della tensione presente sul PDB (power distribution bus) viene caricato e scaricato mediante circuiti appositamente progettat. E' previsto inoltre un opportuno sistema di monitoraggio al fine di evitare il distruggimento delle celle e della circuiteria sopra indicata .

Nel seguente elaborato ci si occupa della descrizione delle fasi di progettazione e realizzazione di questi circuiti, che permettono la gestione di tutte le attività relative alle sorgenti secondarie a bordo del satellite. In particolare il **CAPITOLO 1** è dedicato alla descrizione del funzionamento generale del sistema ARAMIS. Nel dettaglio vengono

illustrati i due moduli principali, denominati *Tile*. Il primo è il *Power Management and ACS Tile (PMT)[3]* il cui compito è quello di accumulare, gestire e distribuire potenza a tutto il satellite. Il secondo è il *On-Board Computer and Telecommunication Tile (TT)* utilizzato per la gestione dell'unita informativa e delle telecomunicazioni. Viene inoltre indicato l'ambiente in cui il satellite è sottoposto a lavorare, fondamentale per definire le specifiche operative e le eventuali problematiche da tenere in conto durante la fase progettuale.

Nel **CAPITOLO 2** sono introdotti i principali tools utilizzati e le motivazioni che hanno spinto all'utilizzo di quest'ultimi, andandone a descrivere le funzioni basi. Elementi chiave sono:

-)la gestione del progetto mediante la libreria *AraMis\_Mentor\_Lib*, che attraverso il software di sviluppo *Mentor Graphics 7.9.4* permette la realizzazione di blocchi circuitali che possono essere utilizzati facilmente da tutti i diversi utenti

-)la descrizione dell'intero progetto in linguaggio UML mediante l'utilizzo del software *Visual Paradigm 11.2.* Questo tipo di linguaggio permette con l'utilizzo di elementi di tipo grafico (blocchi, diagrammi) e testuali di definire le specifiche elettriche, meccaniche, e funzionali del sistema, garantendo un elevato grado di cooperatività tra i vari sviluppatori.

-) Il software di simulazione *LTspice IV*, considerato un ottimo simulatore per regolatori switching, con cui sono state eseguite la gran parte delle simulazioni presenti nel seguente elaborato.

Nel **CAPITOLO 3** si descrivono brevemente le caratteristiche:

-) del sistema *1B1\_Power\_Management\_Subsystem* che gestisce la potenza proveniente dal modulo PMT.

-) del sistema *1B126\_Power\_Distribution\_Bus* che descrive la distribuzione della potenza attraverso il PDB, assorbita e generata dei vari dispositivi.

E si definisce in modo chiaro quali sono le necessità e le specifiche di progetto delle varie parti costituenti il sistema di gestione dell'energia da realizzare. Quest'ultime saranno descritte nel dettaglio nei capitoli successivi, andandone a definire i processi decisionali che hanno portato alle scelte attuate, e le relative simulazioni di validazione delle stesse.

Nel **CAPITOLO 4** si descrive nel dettaglio la fonte di energia secondaria selezionata, ovvero le batterie, definendone: le caratteristiche elettriche e meccaniche principali, e i vincoli e le problematiche derivanti dal loro utilizzo. Come ad esempio, il metodo di carica da utilizzare e i fenomeni di sbilanciamento che si presentano durante questa fase.

Si illustrano inoltre le linee guida per un migliore e efficiente utilizzo delle batterie implementate con i circuiti realizzati in seguito.

Nel **CAPITOLO 5** si descriver il blocco *Bk1B118\_Battery\_Discharger\_V2*, che permette la scarica delle celle utilizzate, nel momento che l'energia prodotta dai pannelli solari non è sufficiente ad alimentare l'intero sistema.

In particolare si descrivono le problematiche incontrate sia da un punto di vista teorico che pratico e le innovative soluzioni adottate, con i relativi schematici sia del blocco generale sia dei suoi sottoblocchi e le simulazioni ad essi annesse.

Nel **CAPITOLO 6** si esamina invece il *Bk1B113\_Battery\_Charger\_V3*. Quest'ultimo svolge una funzione complementare alla precedente. Esso infatti permette la carica della fonte secondaria di energia qualora i pannelli solari, grazie ad una posizione favorevole del satellite, rieascono a produrre un quantitativo di energia superiore alla richiesta necessaria per mantenere in funzione il sistema globale. Si descrivono nel dettaglio, i relativi

schematici del circuito complessivo e dei blocchi che lo costituiscono, validandone il funzionamento con mirate simulazioni.

Nel **CAPITOLO 7** è descritto l'ultimo macroblocco progettato chiamato *Bk1B114\_Battery\_Monitor*. L'utilizzo di questo sottosistema, permette di monitorare constantemente la corrente di carica e scarica del banco batterie (in questo caso due celle poste in serie),la tensione ai loro capi, e la temperatura dell'intero sistema. Inoltre è presente anche un dispositivo di bilanciamento delle due celle, fondamentale per evitare un eccessiva carica di una delle due, che ne comporterebbe la sua distruzione.

La descrizione dettagliata dei blocchi principali, porta alla realizzazione del sistema generale di gestione dell'energia che viene mostrato nel **CAPITOLO 8**. Esso è chiamato *Bk1B114\_Battery\_System\_*V2 ed è costituito, oltre che dalle parti mostrate nei precedenti capitoli, da interfacce che permettono di interagire con l'intero satellite, dalle batterie vere e proprie e da un uP MSP430F5437 che attraverso opportuno software ne permette il suo corretto funzionamento.

Nel **CAPITOLO 9** viene mostrato il PCB dell'intero sistema realizzato, la board in formato 3D, e la sua collocazione all'interno della struttura satellitare con conseguente analisi meccanica ed infine nel **CAPITOLO 10** vengono riportati gli aspetti peculiari, le conclusioni e i possibili sviluppi futuri.

## Indice

| Capitolo                                                                                                        | l AraMis                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1 I                                                                                                           | ntroduzione                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                      |
| 1.2 \$                                                                                                          | pecifiche tecniche di AraMis                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                      |
| 1.3                                                                                                             | mbiente Operativo                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                      |
| 1.3.1                                                                                                           | Radiazioni ed interferenze elettromagnetiche                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                      |
| 1.3.2                                                                                                           | Temperatura                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                      |
| 1.3.3                                                                                                           | Vuoto                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                                                                                                                                      |
| Capitolo                                                                                                        | 2 Tools ed ambinenti di sviluppo                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                     |
| 2.1                                                                                                             | Visual Paradigm 10.2                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                     |
| 2.1.1                                                                                                           | Case Diagram                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                     |
| 2.1.2                                                                                                           | Class Diagram                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                     |
| 2.2 I                                                                                                           | Ientor Graphics 7.9.4                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                                                                                                                     |
| 2.2.1                                                                                                           | Aramis_Mentor_Lib                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                                                                                                                     |
| 2.2.2                                                                                                           | Design Capture e Expedition PCB                                                                                                                                                                                                                                                                                                                                                                                               | 18                                                                                                                                                                     |
| 23                                                                                                              | assaggio da Mentor Graphics all'ambiente di simulazione LTSpice IV                                                                                                                                                                                                                                                                                                                                                            | 19                                                                                                                                                                     |
| 2.0 1                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                        |
| Capitolo                                                                                                        | 3 1B1_Power_Management_Subsystem                                                                                                                                                                                                                                                                                                                                                                                              | 23                                                                                                                                                                     |
| Capitolo<br>3.1                                                                                                 | B126_Power_Distribution_Bus                                                                                                                                                                                                                                                                                                                                                                                                   | <b>23</b><br>25                                                                                                                                                        |
| Capitolo<br>3.1 1<br>3.2 5                                                                                      | 3 1B1_Power_Management_Subsystem                                                                                                                                                                                                                                                                                                                                                                                              | <b>23</b><br>25<br>26                                                                                                                                                  |
| Capitolo<br>3.1<br>3.2<br>3.2.1                                                                                 | 3 1B1_Power_Management_Subsystem                                                                                                                                                                                                                                                                                                                                                                                              | <b>23</b><br>25<br>26<br>27                                                                                                                                            |
| Capitolo<br>3.1<br>3.2<br>3.2.1<br>3.2.2                                                                        | 3 1B1_Power_Management_Subsystem                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>23</li> <li>25</li> <li>26</li> <li>27</li> <li>28</li> </ul>                                                                                                 |
| Capitolo<br>3.1<br>3.2<br>3.2.1<br>3.2.2<br>3.2.3                                                               | 3 1B1_Power_Management_Subsystem                                                                                                                                                                                                                                                                                                                                                                                              | <ol> <li>23</li> <li>25</li> <li>26</li> <li>27</li> <li>28</li> <li>29</li> </ol>                                                                                     |
| Capitolo<br>3.1<br>3.2<br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4                                                      | 3 1B1_Power_Management_Subsystem                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>23</li> <li>25</li> <li>26</li> <li>27</li> <li>28</li> <li>29</li> <li>29</li> </ul>                                                                         |
| Capitolo<br>3.1<br>3.2<br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5                                             | 3 1B1_Power_Management_Subsystem                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>23</li> <li>25</li> <li>26</li> <li>27</li> <li>28</li> <li>29</li> <li>29</li> <li>30</li> </ul>                                                             |
| Capitolo<br>3.1<br>3.2<br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5<br>3.2.6                                    | 3 1B1_Power_Management_Subsystem B126_Power_Distribution_Bus cenario degli elementi attivi sul Power Distrubution Bus Primary Source Energy Storage Load Battery Source Battery Charger Active Shunt                                                                                                                                                                                                                          | <ul> <li>23</li> <li>25</li> <li>26</li> <li>27</li> <li>28</li> <li>29</li> <li>29</li> <li>30</li> <li>32</li> </ul>                                                 |
| Capitolo<br>3.1<br>3.2<br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5<br>3.2.6<br>3.2.7                           | 3 1B1_Power_Management_Subsystem                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>23</li> <li>25</li> <li>26</li> <li>27</li> <li>28</li> <li>29</li> <li>29</li> <li>30</li> <li>32</li> <li>33</li> </ul>                                     |
| Capitolo<br>3.1<br>3.2<br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5<br>3.2.6<br>3.2.7<br>3.3<br>(               | <ul> <li>3 1B1_Power_Management_Subsystem</li> <li>B126_Power_Distribution_Bus</li> <li>cenario degli elementi attivi sul Power Distrubution Bus</li> <li>Primary Source</li> <li>Energy Storage</li> <li>Load</li> <li>Battery Source</li> <li>Battery Charger</li> <li>Active Shunt</li> <li>Overvoltage Protector</li> <li>Comportamento globale del Power Distribution Bus</li> </ul>                                     | <ul> <li>23</li> <li>25</li> <li>26</li> <li>27</li> <li>28</li> <li>29</li> <li>29</li> <li>30</li> <li>32</li> <li>33</li> <li>34</li> </ul>                         |
| Capitolo<br>3.1<br>3.2<br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5<br>3.2.6<br>3.2.7<br>3.3<br>Capitolo        | <ul> <li>3 1B1_Power_Management_Subsystem</li> <li>B126_Power_Distribution_Bus</li> <li>cenario degli elementi attivi sul Power Distrubution Bus</li> <li>Primary Source</li> <li>Energy Storage</li> <li>Load</li> <li>Battery Source</li> <li>Battery Charger</li> <li>Active Shunt</li> <li>Overvoltage Protector</li> <li>Comportamento globale del Power Distribution Bus</li> </ul>                                     | <ul> <li>23</li> <li>25</li> <li>26</li> <li>27</li> <li>28</li> <li>29</li> <li>30</li> <li>32</li> <li>33</li> <li>34</li> <li>37</li> </ul>                         |
| Capitolo<br>3.1<br>3.2<br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.2.5<br>3.2.6<br>3.2.7<br>3.3<br>Capitolo<br>4.1 | <ul> <li>3 1B1_Power_Management_Subsystem</li> <li>B126_Power_Distribution_Bus</li> <li>cenario degli elementi attivi sul Power Distrubution Bus</li> <li>Primary Source</li> <li>Energy Storage</li> <li>Load</li> <li>Battery Source</li> <li>Battery Charger</li> <li>Active Shunt</li> <li>Overvoltage Protector</li> <li>Comportamento globale del Power Distribution Bus</li> <li>Batterie</li> <li>Batterie</li> </ul> | <ul> <li>23</li> <li>25</li> <li>26</li> <li>27</li> <li>28</li> <li>29</li> <li>29</li> <li>30</li> <li>32</li> <li>33</li> <li>34</li> <li>37</li> <li>37</li> </ul> |

| 4.3   | B Pro  | blematiche relative allo sbilanciamento delle batterie                     | 43   |
|-------|--------|----------------------------------------------------------------------------|------|
| 4.4   | l Spi  | ce Netlist della batteria Mikroe1120                                       | 45   |
| Capi  | tolo 5 | Bk1B118_Battery_Discharger_V2                                              | 47   |
| 5.1   | Asj    | petti teorici e problematiche dell'utilizzo di un convertitore DC-DC Boost | 47   |
| 4     | 5.1.1  | Inadeguatezza dei convertitori isolati                                     | 53   |
| 4     | 5.1.2  | Boundary Condition Conduction Mode (BCCM)                                  | 54   |
| 5.2   | 2 Ele  | menti principali del Bk1B118_Battery_Discharger_V2                         | 55   |
| 4     | 5.2.1  | Bk1B118_V2_Boost_Converter                                                 | 56   |
|       | 5.2.1. | 1 Progettazione del Bk1B118_V2_Boost_Converter                             | 56   |
|       | 5.2.1. | 2 SpiceNetlist e componenti del Bk1B118_V2_Boost_Converter                 | 58   |
| 4     | 5.2.2  | Bk1B118_V2_BCCM_Control                                                    | 59   |
|       | 5.2.2. | 1 Progettazione del Bk1B118_V2_BCCM_Control                                | 60   |
|       | 5.2.2. | 2 Simulazioni del Bk1B118_V2_BCCM_Control                                  | 67   |
|       | 5.2.2. | 3 Spice Netlist del Bk1B118_V2_BCCM_Control e lista dei componenti         | 72   |
| 4     | 5.2.3  | Bk1B118_V2_Feedback_Net                                                    | 72   |
|       | 5.2.3. | 1 Progettazione del Bk1B118_V2_Feedback_Net                                | 73   |
|       | 5.2.3. | 2 Simulazioni del Bk1B118_V2_Feedback_Net                                  | 76   |
|       | 5.2.3. | 3 Spice Netlist del Bk1B118_V2_Feedback_Net e lista dei componenti         | 79   |
| 5.3   | B Bk   | 1B121L_Load_switch_slow e Bk1B121H_Load_switch_slow                        | 80   |
| 4     | 5.3.1  | Progettazione del Bk1B121L_Load_switch_slow                                | 80   |
| 4     | 5.3.2  | Progettazione del Bk1B121H_Load_switch_slow                                | 82   |
| -     | 5.3.3  | Spice Netlist e lista dei componenti dei Bk1B121L_Load_switch_slow e       |      |
| [<br> | Bk1B12 | 21H_Load_switch_slow                                                       | 83   |
| 5.4   | S1S    | tema completo del Bk1B118_Battery_Discharger_V2                            | 84   |
| -     | 5.4.1  | Simulazioni del sistema Bk1B118_Battery_Discharger_V2                      | 87   |
| ~     | 5.4.2  | Spice Netlist del sistema Bk1B118_Battery_Discharger_V2                    | 96   |
| Capi  | tolo 6 | Bk1B113_Battery_Charger_V3                                                 | 97   |
| 6.1   | Bk     | 1B113_V3_Feedback_Net                                                      | 98   |
| (     | 5.1.1  | Progettazione del Bk1B113_V3_Feedback_Net                                  | 99   |
| (     | 5.1.2  | Simulazioni del Bk1B118_V2_Feedback_Net                                    | .102 |
| (     | 5.1.3  | Spice Netlist e lista componenti del Bk1B113_V3_Feedback_Net               | .108 |
| 6.2   | 2 Ele  | menti principali del sistema Bk1B113_Battery_Charger_V3                    | .109 |
| 6     | 5.2.1  | Bk1B113_V3_Buck_Converter_charger                                          | .110 |
|       | 6.2.1. | 1 Progettazione del Bk1B113_V3_Buck_Converter_charger                      | .110 |

| 6.2.1.2    | 2 Spice Netlist del Bk1B113_V3_Buck_Converter_charger e lista dei     |       |
|------------|-----------------------------------------------------------------------|-------|
| comp       | onent utilizzati                                                      | .113  |
| 6.2.2      | Bk1B113_V3_Compensator                                                | 114   |
| 6.2.2.     | 1 Progettazione del Bk1B113_V3_Compensator                            | .114  |
| 6.2.2.2    | 2 Spice Netlist e componenti del Bk1B113_V3_Compensator               | .117  |
| 6.2.3      | Bk1B113_V3_Triwave_Gen                                                | .117  |
| 6.2.3.     | 1 Progettazione del Bk1B113_V3_Triwave_Gen                            | .118  |
| 6.2.3.2    | 2 SpiceNetlist del Bk1B113_V3_Triwave_Gen e componenti utilizzati     | .121  |
| 6.3 Bk1    | B121I_Load_Switch_Delayed/Bk1B121G_Load_Switch_Shunt                  | .121  |
| 6.3.1      | Progettazione del Bk1B121I_Load_Switch_Delayed                        | .122  |
| 6.3.2      | Progettazione del Bk1B121G_Load_Switch_Shunt                          | .123  |
| 6.3.3      | Spice Netlist del Bk1B121I_Load_Switch_Delayed e del                  |       |
| Bk1B12     | 1G_Load_Switch_Shunt e i relative component utilizzati                | .124  |
| 6.4 Sist   | ema completo del Bk1B113_Battery_Charger_V3                           | .125  |
| 6.4.1      | Simulazioni del sistema Bk1B113_Battery_Charger_V3                    | .128  |
| 6.4.2      | SpiceNetlist del sistema Bk1B113_Battery_Charger_V3                   | .136  |
| Capitolo 7 | Bk1B114_Battery_Monitor                                               | 138   |
| 7.1 Bk1    | B1142_Equalizer_V1                                                    | .138  |
| 7.1.1      | Progettazione del Bk1B1142_Equalizer_V1                               | 138   |
| 7.1.2      | Bk1B137E_Diff_V_Sensor_V1                                             | 142   |
| 7.1.3      | Simulazioni relative al blocco Bk1B1142_Equalizer_V1                  | .143  |
| 7.1.4      | Spice Netlist del Bk1B1142_Equalizer_V1 ,del                          |       |
| Bk1B13     | 7E_Diff_V_Sensor_V1 e componenti utilizzati                           | .149  |
| 7.2 Bk1    | B123H_BID_Current_Sensor                                              | .150  |
| 7.2.1      | Progettazione del Bk1B123H_BID_Current_Sensor                         | .151  |
| 7.2.2      | Simulazioni del blocco Bk1B123H_BID_Current_Sensor                    | . 152 |
| 7.2.3      | Spice Netlist del Bk1B123H_BID_Current_Sensor e componenti utilizzati | .154  |
| 7.3 1B1    | 33A_Temperature_Sensor_V1                                             | .155  |
| 7.3.1      | Progettazione del 1B133A_Temperature_Sensor_V1                        | .155  |
| 7.3.2      | Spice Netlist del blocco 1B133A_Temperature_Sensor_V1 e componenti    | . 156 |
| 7.4 Bk1    | B131B_Voltage_Sensor_V1                                               | .157  |
| 7.4.1      | Progettazione del Bk1B131B_Voltage_Sensor_V1                          | .157  |
| 7.4.2      | Spice Netlist del blocco Bk1B131B_Voltage_Sensor_V1 e componenti      | .158  |
| 7.5 Sist   | ema completo del Bk1B114_Battery_Monitor                              |       |

| 7.5     | .1 Spice Netlist del blocco Bk1B114_Battery_Monitor e componenti | utilizzati . 160 |
|---------|------------------------------------------------------------------|------------------|
| Capitol | o 8 Bk1B114_Battery_System_V2                                    | 162              |
| 8.1     | Bk1B14221W_Tile_Processor_4M_V1                                  | 164              |
| 8.2     | Bk1B4854_JTAG_Interface                                          | 165              |
| 8.3     | Bk1B4851_I2C_Interface                                           | 166              |
| 8.4     | 1B1262A_Inter_Tile_Distribution                                  | 167              |
| 8.5     | Sistema finale Bk1B114_Battery_System_V2                         | 167              |
| 8.5     | .1 Simulazione del sistema finale Bk1B114_Battery_System_V2      | 169              |
| 8.5     | .2 Spice Netlist del sistema Bk1B114_Battery_System_V2           | 170              |
| Capitol | o 9 Progettazione della scheda Bk1B114_Battery_System_V2         | 2 e analisi      |
| meccan  | ica a bordo del satellite                                        | 171              |
| 9.1     | PCB                                                              | 171              |
| 9.2     | Risultati                                                        | 172              |
| 9.3     | Analisi meccanica del PCB realizzato                             | 175              |
| Capitol | o 10 Conclusioni e sviluppi futuri                               |                  |
| Append  | lice A                                                           |                  |
| Append  | lice B                                                           | 196              |
| Bibliog | rafia                                                            |                  |

## Capitolo 1 AraMis

#### **1.1 Introduzione**

Negli ultimi anni l'interesse rivolto sia dall'ambito industriale sia da quello accademico verso lo spazio, e le attività connesse ad esso, è in forte crescita.

Tuttavia i costi elevati di una progettazione ad-hoc dei satelliti e soprattutto dell'accesso di quest'ultimi nello spazio, hanno portato alla ricerca di soluzioni alternative e economicamente più accessibili.

La miniaturizzazione continua della componentistica elettronica ha giocato un ruolo fondamentale per l'ottenimento di ciò, permettendo la realizzazione di satelliti di dimensioni e pesi sempre più ridotti ma con complessità progressivamente crescente. Questo porta ad avere elevati vantaggi in termini economici, poiché più grande è il satellite più grande deve essere il razzo per portarlo in orbita, con conseguente aumento dei costi.

Inoltre satelliti più piccoli, oltre che ad essere messi in orbita con minori sforzi, danno la possibilità di lanciarne contemporaneamente un maggior numero col medesimo lanciatore. Dando la possibilità di condivisione di quest'ultimo tra i diversi produttori, e quindi fornendo opportunità di lancio più accessibili (low cost) anche ad Università e ad aziende medio/piccole.

Si è reso necessario quindi la definizione di diverse categorie per i satelliti, in particolare al momento sono classificati nel seguente modo:

• *Mini-satellite*, satellite con massa compresa tra 100 Kg e 500 Kg. Mantiene la

tecnologia del satellite standard nonostante la sua massa ridotta.

- *Micro-satellite*, satellite con massa compresa tra 10Kg e 100 Kg.
- *Nano-satellite*, satellite con massa compresa tra 1Kg e 10 Kg.
- *Pico-satellite*, satellite con massa compresa tra i 100g e 1Kg.
- *Femto-satellite*, satellite con massa inferiore a i 100g.

Di nostro particolare interesse è la categoria dei *Nano-satelliti*, il cui primo è stato sviluppato nel 1999 dal *Politecnico Statale della California* e dall' *Università di Stanford*, con la collaborazione dello *Space System Development Laboratory (SSDL)*, e che fu denominato CUBESAT[4], in Figura 1.1.



Figura 1.1: Satellite CUBESAT.

Esso oggi rappresenta lo standard di riferimento principale per la realizzazione di questo tipo di satelliti, e il suo nome è strettamente correlato alla forma fisica definita in fase di progetto perfettamente cubica. Infatti le caratteristiche principali che lo caratterizzano(e che definiscono le linee guida per chiunque si volesse cimentare nella progettazione dei nanosatelliti) sono:

- Forma cubica di dimensioni 10cm x 10cm x 10cm .
- Massa totale inferiore a 1.33Kg.

La struttura meccanica del satellite deve essere compatibile con il lanciatore *Poly-PicoSatellite Orbital Deployer (P-POD)*(in Figura 1.2). Inoltre una particolarità della fase di progettazione di questi satelliti è l'utilizzo di soli componenti *COTS (Commercial Offthe-Shelf component)*. Ovvero componenti facilmente reperibili sul mercato e acquistabili a prezzi decisamente più competitivi ai corrispettivi per applicazioni specifiche, ma che comunque forniscono un ottimo livello di affidabilità.



Figura 1.2: Poly-PicoSatellite Orbital Deployer (P-POD).

Nel 2004 anche il Dipartimento di Elettronica e Telecomunicazioni (DET) del Politecnico di Torino sviluppò il suo primo prototipo di nanosatellite a basso costo che fu chiamato *PicPot (Piccolo Cubo del Politecnico di Torino)*[5],Figura 1.3.



Figura 1.3:satellite PicPot.

Le specifiche salienti di questo satellite, molto simili al CubeSat, sono:

- Forma cubica di dimensioni 13cm x 13cm x 13cm.
- Massa totale non superiore ai 5 Kg.
- Potenza massima pari a 1.5W.
- Almeno 90 giorni di vita in orbita.

In particolare l'obiettivo finale era quello di monitorare la temperatura e illuminamento con conseguente trasmissione dei dati alla stazione di terra, inviando il satellite ad un'altezza tra i 600Km e gli 800Km dalla superficie terrestre, ovvero all'interno della cosidetta orbita *LEO (Low Earth Orbit)*. Tuttavia l'esito del lancio avvenuto nel Luglio 2006 dalla base sovietica di Baykonour non è andato a buon fine, a causa di un problema tecnico verificatosi sul lanciatore e che ha portato per questioni di sicurezza alla distruzione del satellite stesso.

Dopo un iniziale insuccesso si è deciso di lanciarsi in una nuova sfida, andando a definire delle specifiche di progetto ancora più restrittive, per ottenere una maggiore affidabilità e accuratezza oltre che prestazioni migliori portando all'inizio di un nuovo progetto chiamato *AraMis ( Architettura Altamente Modulare per Infrastrutture Satellitari)*.

Come si può notare dal nome oltre ai vantaggi precedentemente scritti, porta ad un nuovo approccio quale quello della modularità.

#### **1.2** Specifiche tecniche di AraMis

Come detto in precedenza AraMis si basa su un concetto di elevata modularità, ed a differenza del suo diretto predecessore, il PicPot, permette una fase di progettazione più flessibile non dovendo definire un progetto dedicato e con specifiche caratteristiche. Questo permette di evitare la ridefinizione dell'intero progetto qualora si cambiassero dimensioni e *payload* (strumentazione di bordo) del satellite da realizzare.

Infatti quest'ultimo approccio è un modo più efficiente di rendere contenuti i costi di missioni micro e nano satellitari, attraverso la riduzione di costi di non ricorrenti fasi di: progettazione, fabbricazione e testing, il quale rappresentano circa il 90% della spesa generale. Esso permette di riutilizzare moduli precedentemente definiti indipendentemente dall' obiettivo della missione e riducendo in modo sostanziale i tempi di lancio.

Queste peculiarità portano il progetto AraMis oltre ad un fine prettamente didattico, ad una ambiziosa intenzione di proporsi come valida alternativa allo standard già presente CUBESAT.

Le specifiche principali di questo nuovo progetto sono :

- Forma cubica di dimensioni 16.5cm x 16.5cm x 16.5cm
- Massa non superiore ai 5Kg
- Potenza massima generata dai pannelli solari 6W
- Tempo di vita di almeno 5 anni
- Modularità a livello meccanico, elettronico e di testing

Si prevede anche in questo caso l'utilizzo di soli componenti *COTS* e il suo utilizzo all'interno dell'orbita LEO. Infine dato l'elevato numero di utenti che collaborano contemporaneamente e nel corso degli anni alla realizzazione del progetto si è reso necessario unificare la descrizione del lavoro svolto. Si è scelto a tal fine una descrizione attraverso il linguaggio UML per la sua facilità di comprensione e rapidità di definire progetti in modo chiaro ed efficiente.

Come detto in precedenza l'elemento chiave dell'architettura *AraMis* è la sua modularità, ovvero la possibilità di definire e progettare sottosistemi completamente indipendenti l'uno dall'altro e facilmente interfacciabili. I principali di essi, che risultano essere presenti in un qualsiasi sistema satellitare e che ne garantiscono le funzioni critiche necessarie ad ogni satellite, sono:

- Sistema di generazione e gestione della potenza
- Sistema di controllo della posizione
- Housekeeping
- Gestione dell'analisi e del controllo dei dati nel satellite
- Sistema di Telecomunicazione

A differenza dei nanosatelliti standard dove non vi è una separazione ne a livello fisico ne a livello software di questi blocchi, *AraMis* si propone di suddividerli in due solo macrocategorie denominate *Tiles* (ovvero mattonelle). Esse sono circuiti stampati (*Print Circuit Board*,*PCB*), la maggior parte dei quali posizionati nelle superfici esterne del cubo, che costituiscono la sua stessa struttura fisica. Essi hanno quindi oltre ad un' utilità funzionale anche quella meccanica, e sono caratterizzate dall'avere sulla faccia esterna dei pannelli solari utilizzati per l'immagazzinamento dell'energia (Figura 1.4).



Figura 1.4: Pannelli solari poste sulle facce esterne del satellite

Questo permette di lasciare maggior spazio possibile all'interno della struttura per l'inserimento del definito *payload* caratterizzante la missione in questione, come possiamo vedere in Figura 1.5:



Figura 1.5:Struttura con le tiles di un satellite AraMis

Pertanto abbiamo:

• La *Power Management and ACS Tile* (Figura 1.6), con il compito di immagazzinare, gestire e controllare la potenza. Composto principalmente dai

pannelli solari, dalle batterie ricaricabili, un modulo di housekeeping basato su un microcontrollore per il processamento dei dati e del controllo delle operazioni (tensioni,correnti,temperatura) relative alla tile. Inoltre sono presenti una ruota di reazione e una bobina magnetica che formano il controllo di assetto attivo ACS.



Figura 1.6: Power Management and ACS Tile

• La *On-Board Computer and Telecomunication Tile* (Figura 1.7), composta da due processori ridondanti, una FPGA e da un sistema di telecomunicazione a doppio canale (uno a 437 MHz e uno a 2.4GHz).



Figura 1.7: On-Board Computer and Telecommunication Tile

Come si può notare dalle precedenti immagini le batterie vengono rivolte verso l'interno del cubo, dove viene inserito il relativo carico (o *payload*). Quindi la scelta delle dimensioni delle accumulatori risulta essere di particolare importanza oltre che da un punto di vista elettrico, anche da quello meccanico.

Un altro fondamentale punto che caratterizza la fase progettuale del satellite *AraMis* è la ridondanza, che permette di garantire la sopravvivenza del satellite anche in presenza di fenomeni di guasto.

Si deve pertanto garantire per ogni PM Tile:

- Un pannello solare
- Una batteria
- Una ruota di inerzia
- Una bobina magnetica
- Un sensore per il posizionamento
- Un sensore solare
- Un sistema di housekeeping

Quanto scritto dà una panoramica generale sull'intera architettura *AraMis*, tuttavia nel seguito di questo elaborato ci si concentrerà nello sviluppo di alcune parti costituenti la *Power Management and ACS Tile*.

Prima di soffermarci nel dettaglio su quest'ultimi si illustrano alcune considerazioni generali sull'ambiente in cui è utilizzato il satellite e le varie problematiche da tenere in considerazione durante la fase di progettazione.

#### **1.3 Ambiente Operativo**

Come detto in precedenza il satellite è progettato per essere immesso in un' orbita compresa tra i 600Km e i 800 Km rispetto la superficie terrestre, ovvero all'interno della cosiddetta *LEO (Low Earth Orbit)*. Questo porta ad essere vicini alla fascia di Van Allen[6] con i conseguenti svantaggi e vantaggi. In particolare anche se sono presenti radiazioni in questa zona, esse risultano essere ridotte rispetto a fasce più lontane, permettendo l'utilizzo di componenti COTS come imposto da progetto.

#### 1.3.1 Radiazioni ed interferenze elettromagnetiche

Infatti la fascia di Van Allen, che è un toro di particelle cariche all'interno della magnetosfera terrestre trattenute dal campo magnetico terrestre per effetto della forza di Lorentz, è costituita in realtà di due fasce che circondano il nostro pianeta, una interna e una più esterna. La fascia più interna è molto stabile ed è costituita da un plasma di elettroni e di ioni positivi ad alta energia, a differenza della più esterna costituita da soli elettroni ad alta energia. La prima quindi risulta essere caratterizzata da un comportamento molto più dinamico (es. tempeste solari).

Tuttavia anche se nelle fasce più esterne la quantità di radiazioni è più ridotta, le particelle presenti tendono ad impattare sul satellite influenzando il comportamento dell'elettronica a semiconduttore presente a bordo. Infatti uno dei principali fenomeni che si viene a creare è quello della ionizzazione diretta, che genera in essi una coppia elettrone-lacuna causato dai comuni processi di diffusione e deriva che possono portare a comportamenti anomali, come i *Single Event Effects (SEE)*.

Tra questi si ha il *Single Event Latch-Up (SEL)* che si verifica quando i transistori parassiti bipolari BJT di un dispositivo CMOS iniziano a condurre, innescando una reazione positiva che porta ad un forte passaggio di corrente tra alimentazione e il riferimento di massa con la conseguente distruzione del dispositivo. E il *Single Event Up-Set (SEU)* che genera un cambiamento di stato del dispositivo (che può essere un microcontrollore, una memoria a semiconduttore o un transistore di potenza).

E' ovvio che tutti i fenomeni appena citati sono dei fenomeni istantanei.Tuttavia si deve tener anche conto dell'esistenza di fenomeni a lunga durata, ovvero che si manifestano dopo un eccessivo accumulo di radiazioni assorbite nel tempo dal satellite in orbita. Si definisce per tanto *TotalDose* la massima quantità di radiazioni cumulabile da un dispositivo prima di presentare malfunzionamenti.

Ad esempio la soglia di un transistore MOS tende ad aumentare con la quantità di radiazioni assorbite, causandone eventuali variazioni dei tempi di propagazione dei segnali e un malfunzionamento del sistema generale.

Inoltre la componentistica costituente il satellite potrebbe essere influenzata da rumori a varie frequenza generate sia da sorgenti interne che esterne.

Per quanto riguarda il rumore esterno, la struttura completamente metallica del satellite permette una buona schermatura contro l'emissioni elettromagnetiche (EMI). Mentre per quanto riguarda le interferenze interne tra le varie boards e all'interno di una board stessa ci si basa su un'accurata progettazione dei layout dei circuiti stampati (PCB) e dell' opportuno posizionamento di piani di massa sia delle unità RF sia di quelle analogico/digitali.

#### 1.3.2 Temperatura

Un altro aspetto di fondamentale importanza nella definizione delle specifiche è di certo il range di temperatura nel quale si trova ad operare il satellite in orbita.

Le sue facce, durante tutta la durata della missione, tenderanno ad essere sottoposte a condizioni di temperatura differenti in basa alla sua posizione rispetto al sole. Infatti si avranno superfici illuminate che assorbono i raggi solari, mentre altre saranno in zone cosiddette d'ombra.

Questo determina un forte gradiente termico a cui è sottoposta l'intera struttura, che viene accentuato dalla quasi totale mancanza di atmosfera, e per il quale l'irraggiamento raggiunge valori pari ai 1300 Wm<sup>2</sup>, decisamente maggiori rispetto ai valori terrestri.

Esso non è l'unica causa dell'elevato innalzamento della temperatura, infatti a tale aumento contribuisce anche il surriscaldamento dei componenti elettronici a bordo, attraverso i fenomeni di conduzione e irraggiamento.

Secondo una stima teorica la temperatura di lavoro del satellite è compresa in un intervallo tra i [-30, 40] °C, quando la potenza massima Pj dissipata dai circuiti interni è di circa i 200W (Figura 1.8).



Figura 1.8: Temperatura vs Pj su AraMis

#### 1.3.3 Vuoto

Immettendo il satellite nella zona finora considerata in cui l'atmosfera è quasi inesistente, si devono fare anche delle considerazioni sul sistema sottoposto in una situazione di vuoto.

In questa condizione a causa della mancanza del fenomeno di convenzione, grazie al quale un corpo caldo (ad esempio un componente elettronico) dissipa energia a contatto con un fluido più freddo (ad esempio aria), si ha una riduzione della capacità di dissipazione della potenza, che avviene solo per conduzione od irraggiamento.

Inoltre bisogna prestare attenzione alla presenza di fluidi all'interno dei componenti sia elettronici sia meccanici, poiché potrebbero innescare fenomeni quali surriscaldamento ed esplosioni.

Un esempio potrebbe essere quello dei condensatori elettrolitici, che spiega il motivo per cui all'interno del progetto sono stati utilizzati solo condensatori ceramici. O quello rappresentato dalle batterie ad ioni di Litio, che presentano una pressione interna di 0.3 bar trascurabile sulla Terra, ma che nel vuoto tende a creare una elevata forza per unità di superficie che rischia di far esplodere la batteria.

Motivo per il quale la scelta del tipo di batterie da utilizzare e ricaduta su una cella a polimeri di litio (*Li-Po*), in cui l'elettrolita in sale di lito non è contenuto in un solvente organico ma in un composto di polimero solido, come ad esempio il poliacrilonitrile.

## Capitolo 2 Tools ed ambienti di sviluppo

Uno dei principali punti forti del progetto AraMis è la possibilità di collaborazione tra diverse persone, che pur lavorando su parti annesse possano svolgere in modo del tutto indipendente il loro compito, e con la possibilità di non interfacciarsi mai con gli altri collaboratori, attraverso uno standardizzazione dell'intero progetto. Questo è reso possibile dall'utilizzo di linguaggi di descrizione unificati, come quello UML attraverso il software *Visual Paradigm 10.2*. Inoltre all'interno di questo capitolo verranno descritti gli altri ambienti di sviluppo principali utilizzati: *Mentor Graphics 2005* per la progettazione degli schemi elettrici, l'utilizzo della libreria di progetto *Aramis\_Mentor\_Lib*, la realizzazione di PCB (Print Circuit Board) attraverso il tools *ExpeditionPCB*, e la generazione delle netlist di descrizione dei circuiti progettati, in seguito simulati mediante il programma di simulazione *LTSpiceIV* risultante migliore per la gestione di circuiti a commutazione.

#### 2.1 Visual Paradigm 10.2

Il linguaggio *UML (Unified Modeling Language)* è un linguaggio semiformale di modellizzazione, visualizzazione, comunicazione e documentazione di un qualsiasi progetto sia software sia hardware o che ne preveda entrambe le parti. Esso è reso indipendente dal suo ambito, attraverso l'utilizzo di notazione grafiche quali diagrammi o grafici combinate all'uso di elementi di programmazione orientata agli oggetti.

L'utilizzo significativo del linguaggio *UML* per la gestione del progetto dell'architettura *AraMis*, è fatto mediante il software compatibile *Visual Pardigm 10.2*. Questo ambiente di sviluppo oltre a supportare tale linguaggio, consente di convertire i codici ad alto livello che rappresentano i diagrammi realizzati, in eventuali codici a livello inferiore eseguibili da macchine come ad esempio un microprocessore. Vi è la possibilità anche di processo inverso.

Attraverso l'uso di *Visual Paradigm* si riesce pertanto a gestire un progetto con un numero elevato di sviluppatori e un elevato quantitativo di risorse, basandosi su un sistema di gestione dati, ad esempio un server, nel quale qualsiasi componente può caricare il proprio lavoro rendendolo accessibile in tempi rapidissimi agli altri. Ed avere il loro in modo facile e veloce.

Per la descrizione di un progetto in modo dettagliato e approfondito vi sono a disposizione un grande numero di strutture ed in particolare :

- Diagrammi per le specifiche prestazionali
- Diagrammi per le specifiche funzionali
- Diagrammi per le specifiche con allegata documentazione HW/SW
- Diagrammi sequenziali per l'analisi dei sistemi e dei relativi sottosistemi

Tra le strutture grafiche UML maggiormente utilizzate si riportano i *Case Diagram* (diagramma dei casi d'uso) e i *Class Diagram* (diagramma delle classi).

#### 2.1.1 Case Diagram

Il *Case Diagram* [7] è un diagramma dedicato alla descrizione delle funzioni di un sistema, attraverso una rappresentazione dell'interazione degli utenti( o attori), in genere rappresentati con "un omino, con il sistema stesso. Ovvero si rappresenta la relazione tra gli attori e i relativi casi d'uso (che sono mostrati tramite ellissi da sfondo blu) nei quali essi saranno coinvolti, che viene chiamata *associazione*. Un attore può essere associato ad un qualsiasi numero di casi d'uso e viceversa, tramite una linea con una freccia la cui forma ne determina la tipologia di associazione. In seguito viene mostrato un esempio di diagramma dei casi d'uso, Figura 2.1 :



Figura 2.1: Esempio di Case Diagram all'interno di Visual Paradigm

#### 2.1.2 Class Diagram

Uno degli elementi fondamentali del paradigma ad oggetti è che i concetti di classe e di ereditarietà si prestino a rappresentare in modo diretto e intuitivo, la realtà in ogni ambito. Il diagramma delle classi[8] pertanto è un'astrazione grafica che attraverso degli oggetti permette di descrivere la struttura di un sistema, dei suoi componenti e delle loro relazioni. L'insieme di oggetti appartenenti ad una medesima categoria costituiscono una *classe*. Essa è caratterizzata da :

- Nome della classe
- Attributi, che descrivono le caratteristiche dell'oggetto
- *Operazioni*, che descrivono le operazioni dell'oggetto e quindi il suo comportamento.

Due classi possono essere legate da diversi tipi di relazioni che rappresentano i legami che possono esserci tra i vari oggetti appartenenti alle classi associate. Ad esempio: associazione, aggregazione, composizone, dipendenza, generalizzazione e realizzazione. Queste sono distinte l'una dalle altre dal tipo di freccia che connette le due classi coinvolte. Riportiamo in seguito un esempio di Class Diagram, Figura 2.2 :



Figura 2.2: Esempio di descrizione tramite Class Diagram in Visual Paradigm

Si mostrano in seguito particolari funzioni, che sono state utili nella fase di realizzazione dei *Class Diagram*, per la descrizione più accurata del progetto mostrato nel corso di questo elaborato.

Esso rappresenta anche una linea guida per la realizzazione di tutti i diagrammi delle classi all'interno del progetto *AraMis*.

All'interno di *Visual Paradigm* per ogni classe è presente un apposito menù, in cui è possibile inserire descrizioni dettagliate associate ad essa.

In questo modo vi è la possibilità di fornire maggiori informazioni per ciascun blocco, rendendo la sua comprensione e la sua funzionalità all'interno dell'intero sistema più immediata ed efficiente, come mostrato in Figura 2.3 :

| General       Attributes       Operations       Relations       Chart Relations       Template Parameters       Class Code Details         ame:       Bk1B118_V2_Feedback_net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Java Annota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ations Ster                                                                                                                                                                                                                     | eotypes                                                                                                         | Tagged Values                                                                                                                                               | Constraints                                                                                          | Diagrams                                                            | Traceability                                                           | References                                                       | Project Management                                                                                   | Quality               | Comments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------|----------|
| me:       Bk1B118_V2_Feedback_net         meret:       Image: Image                                                                                        | General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Attribut                                                                                                                                                                                                                        | es                                                                                                              | Operations                                                                                                                                                  | Relations                                                                                            | Chart                                                               | Relations                                                              | Template                                                         | Parameters                                                                                           | Class Code            | Details  |
| Bk1B118_V2_Feedback_net         mt       Bk1B118_Battery_Discharger_V2         bitty:       publc         scription:    This network allows to generate the feedback signal to obtain the correct discharge battery current. The network is composed by two functions that generate two voltage the owner of these will be selected by diod. The first function will determinate the feedback signal when 12 5-VQugs.cf32 and the lbugs is bygettynem; zero and a maxvalue. The network is powered by the battery, and it uses a voltage reference to 2.5V. The network has some parameters fixed and some parameters variable depending on bug_max, Vbug_max, and Vbattery_max/battery_discharge_max. Where bug_max= (Vbattery_max*fbattery_discharge_max)/Vbug_min The variable parameters are: Xeed R16-R22-25Kohms 233 = (12-5Vbug_max)/2.5VVbug_max) Extended to 200Kohms 239 = (12-5Vbug_max/b)_((1-Vbug_minVbug_max))/(bug_max*(g))* RL Ex2P+R22+R29-R24 freed to 200Kohms 229 = ((12-5(lbug_max*K))). ((1-Vbug_minVbug_max))/(bug_max*K))* RL Ex2P+R22+R29-R24 freed to 200Kohms 229 = ((12-5(lbug_max*K))). ((1-Vbug_minVbug_max))/(bug_max*K))* RL Ex3P+R28-RL* [1-(2-5/bug_max*K)] where 2.5V is the desidered feedback voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                 |                                                                                                                 |                                                                                                                                                             |                                                                                                      |                                                                     |                                                                        |                                                                  |                                                                                                      |                       |          |
| ent               kiB118_Battery_Discharger_V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | me: Bk1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B118_V2_Feedb                                                                                                                                                                                                                   | ack_net                                                                                                         |                                                                                                                                                             |                                                                                                      |                                                                     |                                                                        |                                                                  |                                                                                                      |                       |          |
| billy:       publc         scription:         This network allows to generate the feedback signal to obtain the correct discharge battery current. The network is composed by two functions that generate two voltage the ower of these will be selected by diode. The first function will determinate the feedback signal when 12.5-V_buss_13.5 and the bus is beetween, zero and a maxvalue. The network is powered by the battery, and it uses a voltage reference to 2.5V.         The network is powered by the battery, and it uses a voltage reference to 2.5V.         The network has some parameters fored and some parameters variable depending on bus_max, Vbus_max, and Vbattery and battery_discharge_max.         Where [bus_max= (Vbattery_max*battery_discharge_max)/Vbus_min         The variable parameters are:         toxed R16+R32-25KNbus_max)/(25V/Vbus_max)         2172(1-Vbus_max)/25V/Rbus_max)/25V *RL/ (bus_max*k)         22172(1-Vbus_max)/25V/Rbus_max)/25V *RL/         2212(25/Ubus_max*di) (-(Vbus_min/Ybus_max))/(bus_max*k))         2212(25/Ubus_max*di) (-(Vbus_min/Ybus_max))/(bus_max*k)]* RL         234+R28= RL* [1-(2.5/lbusmax*k)]         where 2.5V is the desidered feedback votage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ent: 📔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bk1B118_Batte                                                                                                                                                                                                                   | ery_Discha                                                                                                      | arger_V2                                                                                                                                                    |                                                                                                      |                                                                     |                                                                        |                                                                  |                                                                                                      |                       |          |
| scription:<br>his network allows to generate the feedback signal to obtain the correct discharge battery current. The network is composed by two functions that generate two voltage the<br>ower of these will be selected by diode. The first function will determinate the feedback signal when 12.5 A second one will be useful to determinate the feedback when the Vous is beer than 12.5 A network is powered by the battery, and it uses a voltage reference to 2.5V. The network has some parameters fixed and some parameters variable depending on bus_max, Vous_max, and Vosttery and Ibattery_discharge_max. Where bus_max = (Vbattery_max*battery_discharge_max)/Vous_min The variable parameters are: Ked R16+R32-25Kohms 133 = (1-2.5/Vbus_max)/2.5/V/bus_max) 25 = (2.5/Vbus_max)/2.5/V/bus_max) 25 = (2.5/Vbus_max)/2.5/V/bus_max) 124 = (1-2.5/Vbus_max)/(1-(Vbus_min/Vbus_max*K)) HutPart = 2.5/V is the desidered feedback voltage 134 + R28 = RL* [1-(2.5/bus_max*K)] where 2.5V is the desidered feedback voltage 14 between the desidered feedback voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bility: Dub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lic                                                                                                                                                                                                                             |                                                                                                                 |                                                                                                                                                             |                                                                                                      |                                                                     |                                                                        |                                                                  |                                                                                                      |                       | •        |
| his network allows to generate the feedback signal to obtain the correct discharge battery current. The network is composed by two functions that generate two voltage the second one will be useful to determinate the feedback with the 12.5-Vubus_r13.5 and the tbus is between zero and a <u>maxxalue</u> . The second one will be useful to determinate the feedback with the 12.5-Vubus_r13.5 and the tbus is between zero and a <u>maxxalue</u> . The network is powered by the battery, and it uses a voltage reference to 2.5V. The network has some parameters fixed and some parameters variable depending on tbus_max, Volus_max, and Vbattery and tbattery_discharge_max. Where tbus_max = (Vbattery_max*tbattery_discharge_max)/Vbus_min The variable parameters are: too Volus_max)/2.5V/Vbus_max) = (Vbattery_max*tbattery_discharge_max)/Vbus_min The variable parameters are: too Volus_max/V2.5V/Vbus_max) = (Vbattery_max*tbattery_discharge_max/tbus_max)/(tbus_max*ts)) = (1-(Vbus_min/tbus_max))/(tbus_max*ts)) = (1-(2.5V/Vbus_max))/(tbus_max*ts)) = (1-(2.5V/Vbus_max*ts)) = (1-(2.5V/Vbus_max*ts) | scription:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                 |                                                                                                                 |                                                                                                                                                             |                                                                                                      |                                                                     |                                                                        |                                                                  |                                                                                                      |                       |          |
| Laberert     Losf     Doct     Action     Business and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ower of the<br>The second<br>The networ<br>The networ<br>Vhere [buss<br>The variable<br>ixed R16+F<br>R33= (1-2.5<br>R33= (1-2.5<br>R33= (1-2.5)<br>R33= (1-2.5) | ese will be selec<br>d one will be use<br>k is powered by<br>k has some par<br>_max= (Vbatter<br>e parameters ar<br>R32=25Kohms)<br>GVbus_max)/(2<br>pus_min/Vbus_n<br>p <sup>+200</sup> uAV * RL<br>p <sup>+200</sup> uAV * RL | ted by dic<br>ful to dete<br>the batte<br>ameters fi<br>y_max*[bg<br>e:<br>5V/Vbus_<br>tax)* 2.5V<br>ed to 200K | ode.The first function<br>srminate the feedback<br>ry, and it uses a volt<br>xed and some param<br>tittery_discharge_max<br>"max)<br>(thus_max*(i)<br>cohms | will determinate th<br>c when the Vbus is<br>age reference to 2<br>eters variable dep<br>c)VVbus_min | e feedback sig<br>s lower than 12<br>2.5V.<br>ending on <u>lbus</u> | nal when 12.5< <u>v</u><br>2.5V and the curr<br>_max, <u>Vbus</u> _max | bus<13.5 and the<br>ent remain always<br>and <u>Vbattery</u> and | <u>bus</u> is <u>beetwenn</u> zero ar<br>s to the maximum value.<br>d <u>[battery_</u> discharge_max | d a <u>maxvalue</u> , |          |
| vhere 2.5V is the <u>desidered</u> feedback voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29= [((2.5)<br>134+R28=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /(lbus_max*Kl))-<br>RL* [1-(2.5/lbusi                                                                                                                                                                                           | ((1-(Vbus<br>nax* <u>Ki)]</u>                                                                                   | _min/Vbus_max))/(lb                                                                                                                                         | us_max*Kij)]* RL                                                                                     |                                                                     |                                                                        |                                                                  |                                                                                                      |                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | where 2.5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / is the <u>desider</u> e                                                                                                                                                                                                       | d feedbac                                                                                                       | ck voltage                                                                                                                                                  |                                                                                                      |                                                                     |                                                                        |                                                                  |                                                                                                      |                       |          |
| ADSU ALL LEAI KOUL ALUVE DUSITIESS ITIOUEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | □ Leaf                                                                                                                                                                                                                          | Root                                                                                                            | Active 🕅 Busine                                                                                                                                             | ess model                                                                                            |                                                                     |                                                                        |                                                                  |                                                                                                      |                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                 |                                                                                                                 |                                                                                                                                                             |                                                                                                      |                                                                     |                                                                        |                                                                  |                                                                                                      |                       |          |

Figura 2.3: Descrizione di una classe

Nello stesso menù è possibile anche inserire i *Tagged Values*, che permettono di mostrare in modo compatto, le specifiche chiave relative all'oggetto preso in considerazione, Figura 2.4:

| General Attributes        | Operations            | Relations   | Chart    | Relations  | Templat                     | e Parameters |                                                              | Class Code De | tails   |
|---------------------------|-----------------------|-------------|----------|------------|-----------------------------|--------------|--------------------------------------------------------------|---------------|---------|
| Java Annotations Stereoty | pes Tagged Values C   | Constraints | Diagrams | Traceabili | ity References              | Project Ma   | anagement                                                    | Quality C     | omments |
| Name                      | Туре                  | Value       |          |            | Multiplicity                | :            | Stereotype                                                   |               |         |
| MANUFACTURER              | Text                  |             |          |            | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| MODEL                     | Text                  | INA 138     |          |            | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| TOLERANCE                 | Floating Point Number |             |          |            | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| SUPPLY_VOLTAGE_MIN        | Floating Point Number |             |          | 2.7        | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| SUPPLY_VOLTAGE_MAX        | Floating Point Number |             |          | 36         | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| SUPPLY_CURRENT_MAX        | Floating Point Number |             |          |            | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| SUPPLY_CURRENT_STANDBY    | Floating Point Number |             |          |            | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| SUPPLY_CURRENT_NOMINAL    | Floating Point Number |             |          | 25e-6      | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| SUPPLY_CURRENT_PEAK       | Floating Point Number |             |          |            | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| TEMPERATURE_MIN           | Floating Point Number |             |          | -40        | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| TEMPERATURE_MAX           | Floating Point Number |             |          | 125        | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| TEMPERATURE_JUNCTION_MAX  | Floating Point Number |             |          |            | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| TEMPERATURE_MINSTORAGE    | Floating Point Number |             |          | -65        | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| TEMPERATURE_MAXSTORAGE    | Floating Point Number |             |          | 150        | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td>~</td></component<>  | t>>           | ~       |
| TEMPERATURE_SOLDERING     | Floating Point Number |             |          | 300        | <unspecified></unspecified> | <            | < <component< td=""><td>t&gt;&gt;</td><td></td></component<> | t>>           |         |
| ПD                        | Floating Point Number |             |          |            | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| RADIATION_FLUX            | Floating Point Number |             |          |            | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| /IBRATION                 | Floating Point Number |             |          |            | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| PACKAGE                   | Text                  |             |          |            | <unspecified></unspecified> | <            | <component< td=""><td>t&gt;&gt;</td><td></td></component<>   | t>>           |         |
| DUTPUT_CAPACITANCE        | Floating Point Number |             |          | 40e-12     | <unspecified></unspecified> | L            | lser-Defined                                                 |               |         |
| COMMON_MODE_MIN           | Floating Point Number |             |          | 13e6       | <unspecified></unspecified> | L            | lser-Defined                                                 |               |         |
| COMMON_MODE_MAX           | Floating Point Number |             |          | 2.7        | <unspecified></unspecified> | L            | lser-Defined                                                 |               |         |

Figura 2.4: Tabella dei Tagged Values di una classe

E' possibile inoltre inserire delle classi di simulazione (*Simulation*) (vedi Figura 2.2), associate ai corrispettivi oggetti , in cui all'interno della loro descrizione è possibile inserire i nomi dei test con relativa descrizione (Figura 2.5).

| Java Annotatio     | s Stereotypes           | Tagged Values           | Constraints              | Diagrams           | Traceability      | References            | Project Management              | Quality        | Comments 🛒 |
|--------------------|-------------------------|-------------------------|--------------------------|--------------------|-------------------|-----------------------|---------------------------------|----------------|------------|
| General            | Attributes              | Operations              | Relations                | Chart Re           | elations          | Template              | Parameters                      | Class Code     | Details    |
| Name               | an Dk1D110 Dattory      | Discharger V2           |                          |                    |                   |                       |                                 |                |            |
| Name: Simulat      | Dri_DK1D118_Dattery_    | Discharger_vz           |                          |                    |                   |                       |                                 |                | <b>'</b>   |
| Parent:            | 1B118_Battery_Disch     | arger_V2                |                          |                    |                   |                       |                                 |                |            |
| Visibility: public |                         |                         |                          |                    |                   |                       |                                 |                | •          |
| Description:       |                         |                         |                          |                    |                   |                       |                                 |                |            |
| B∙≣∙               | ≡• F• <b>≣</b> •        | · 📝 🌆 👫 🖬 🖬             | 🗟 - 🛍 🜔                  | ,                  |                   |                       |                                 |                |            |
| TEST1_Bk1B1        | 8_Battery_Discharge     | r_V2: transient behav   | ior for battery disc     | harger, in particu | lar is show the   | Vbus and Ibus fo      | or VBus=13.5 and Vbatter        | y=7.4.         |            |
| TEOTO DUADA        |                         |                         |                          |                    | I                 | Maria and Bring &     | - ) (Due 10.5                   |                |            |
| TEST2_BKIB1        | o_battery_Discharge     | r_v2: transient benav   | for for battery disc     | narger, in particu | lar is snow the   | Vous and ious to      | or vous=12.5 and voatter        | y=1.4.         |            |
| TEST3_Bk1B1        | 8_Battery_Discharge     | r_V2: simulation for lb | us vs <u>Vbus</u> to eva | luate bus battery  | discharger cha    | aracteristic (also i  | n transient).                   |                |            |
|                    |                         |                         |                          |                    |                   |                       |                                 |                |            |
| TEST4_Bk1B1*       | 8_Battery_Discharge     | V2: simulation of dy    | namic behavior of        | battery discharge  | er. In particular | the behavior whe      | n variation of <u>VBus</u> from | 12.85V to 12.2 | V.(this    |
| Dellavior was      | lotalited by current ge | merator pulse).         |                          |                    |                   |                       |                                 |                |            |
| TESTS BH181        | 8 Battery Discharge     | r V2: simulation of dv  | namic behavior of        | hattery discharge  | er. In particular | the behavior whe      | n variation of VBus from        | 13 1V to 14V ( | this       |
| behavior was       | btained by current ge   | nerator pulse).         |                          | ballory alconarg   | and particular    |                       |                                 |                |            |
| TEST6 Bk1B1        | 8 Battery Discharge     | r V2: simulation for lb | us vs Vbus to eva        | luate bus batterv  | charger chara     | cteristic (also in ti | ansient). In particular is b    | een considered | d two      |
| Bk1B118_Batte      | ry_Discharger_V2 blo    | ocks in parallel betwee | en the BATTERY a         | nd the PDB. (test  | in battery_disc   | harger_blocks_pa      | arallel folder)                 |                |            |
|                    |                         |                         |                          |                    |                   |                       |                                 |                |            |
|                    |                         |                         |                          |                    |                   |                       |                                 |                |            |
|                    |                         |                         |                          |                    |                   |                       |                                 |                |            |
|                    |                         |                         |                          |                    |                   |                       |                                 |                |            |
|                    |                         |                         |                          |                    |                   |                       |                                 |                |            |
|                    |                         |                         |                          |                    |                   |                       |                                 |                |            |
|                    |                         |                         |                          |                    |                   |                       |                                 |                |            |
|                    |                         |                         |                          |                    |                   |                       |                                 |                |            |
| Abstract           | Leaf Root               | Active Busine           | ess model                |                    |                   |                       |                                 |                |            |
| Peret              |                         |                         |                          |                    |                   |                       | OK Carcol                       | Apply          | Help       |

Figura 2.5: Descrizione dei Test eseguiti sui vari blocchi

All'interno della stessa classe è possibile aggiungere i riferimenti alle cartelle contenenti gli inerenti file di simulazione per una verifica immediata delle specifiche funzionali delle classi associate (Figura 2.6).

| Class Specification                                                      |                                                                                               | X                                                                                        |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| General Attributes Operations Java Annotations Stereotypes Tagged Values | Relations         Chart Relations           Constraints         Diagrams         Traceability | Template Parameters Class Code Details<br>References Project Management Quality Comments |
| Name                                                                     | r Path<br>Path<br>R:\Tesi\Tesi Bonasera Power Manaoement\1B118 Ba                             | Description                                                                              |
| battery_discharger_parallel                                              | R:\Tesi\Tesi_Bonasera_Power_Management\battery_d                                              |                                                                                          |
|                                                                          |                                                                                               |                                                                                          |

Figura 2.6: References a cartelle di simulazione

#### 2.2 Mentor Graphics 7.9.4

Mentor Graphics è un leader tecnologico nell' Electronic Design Automation (EDA), ovvero quella famiglia di software utilizzati per la progettazione e produzione di sistemi elettronici. Se sfruttato al pieno delle sue potenzialità permette lo sviluppo di progetti complessi, le cui varie parti sono condotte contemporaneamente da diversi individui. In particolare si evidenziano le seguenti funzioni :

- La creazione di una libreria denominata *Aramis\_Mentor\_Lib*, costituita da tutti i dispositivi contenuti all'interno del progetto AraMis, i relativi package e i vari modelli di simulazione. Inoltre vi è la possibilità di definire dei particolari blocchi denominati *Reusable Blocks* trattati nel dettaglio più avanti.
- L'utilizzo del tool *Design Capture*, per la realizzazione degli schematici circuitali.
- La simulazione dei circuiti elettronici mediante simulatore HyperLynx fondato sull'utilizzo di modelli *HSpice*, che però non è stato utilizzato nella realizzazione di questo lavoro di tesi per motivi mostrati in seguito e pertanto non trattato.
- La progettazione e realizzazione di circuiti stampati (PCB) mediante l'uso del tool *Expedition PCB*.

#### 2.2.1 Aramis\_Mentor\_Lib

La libreria centrale su cui si fonda il principio di condivisione e cooperabilità tra i diversi operatori si chiama *Aramis\_Mentor\_Lib*. Essa include al suo interno sia tutti i singoli dispositivi elettronici e meccanici utilizzati nella progettazione del satellite Aramis, sia agglomerati di quest'ultimi sotto il nome di *Reusable Blocks*. Tale libreria viene gestita tramite il tool *Library Manager*. Ogni componente che prende il nome di parte (*Parts*)

situato al suo interno è caratterizzato da una rappresentazione sia a livello logico tramite un simbolo (*Symbol*) utilizzato negli schemi elettrici, sia a livello fisico mediante una cella (*Cell*), il cui tra le informazioni chiave contiene il *pad* utile per la progettazione dei PCB.

Ognuna di queste sezioni è suddivisa in partizioni in modo da poter unificare elementi appartenenti alle medesime categorie, facilitandone i criteri di ricerca.

Quest'ultimi vengono resi ancora più rapidi da una precisa procedura con cui inserire ogni singolo componente. In particolare, per ciascuno è definto un:

- *Part Number* rappresentato da <Fornitore>\_<Codice Fornitore>
- *Part Name* rappresentato da <Nome Componente> <Package>
- Part Label rappresentato da <Nome Componente> <Caratteristiche elettriche>

In questo modo è possibile definire ogni componente in modo univoco(Figura 2.7), evitando possibili errori in fase di realizzazione.

| Part Editor - R: WraMiS_<br>Units Verification Output | Mentor_Lib<br>Help |                                      |
|-------------------------------------------------------|--------------------|--------------------------------------|
| artition: Bonasera                                    |                    | × P/                                 |
| arts listing:                                         |                    | 🖤 🎫 🖻 🗠 🔀                            |
| Number                                                | Name               | Label 🗸                              |
| DK_RHM665KHCT-ND                                      | R_665k             | R_665k_0603_100_1                    |
| DK_RHM562KHCT-ND                                      | R_562k             | R_562k_0603_100_1                    |
| DK_RHM402KHCT-ND                                      | R_402K             | R_402K_0603_100_1                    |
| DK_RHM324KHCT-ND                                      | R_324k             | R_324k_0603_63_1                     |
| DK_RHM178KHCT-ND                                      | R_178k             | R_178k_0603_100_1                    |
| DK_RHM165KHCT-ND                                      | R_165K             | R_165K_0603_100_1                    |
| DK_P75KZCT-ND                                         | R_75K              | R_75K_0805_100_0%1                   |
| DK_311-63.4KHCT-ND                                    | R_63k4             | R_63k4_0603_100_1                    |
| DK_RHM40.2KHCT-ND                                     | R_40k2             | R_40k2_0603_100_1                    |
| RS_505-0561                                           | R_24k              | R_24k_0603_100_1                     |
| DK_RHM16.9KHCT-ND                                     | R_16K9             | R_16k9_0603_100_1                    |
| DK_311-16.0KHCT-ND                                    | R_16k              | R_16k_0603_100_1                     |
| ME_71-TNPW06039K53BEEA                                | H_9k53             | R_9k53_0603_100_0%1                  |
| DK_RHM2.49KFCT-ND                                     | H_2K49             | R_2K49_1206_250_1                    |
| RS_661-4197                                           | REG_TPS76150       | REG_TPS76150_LIN_SUT23-5_0A1_16V_5V  |
| HS_737-7234                                           | IRLML6346          | Q_IREME6346_SUT23_NMUS_3_4A_30V      |
| DK_ATP304-TL-HUSUT-ND                                 | ATP304             | Q_ATP304_ATPAK_PMUS_T00A_60V         |
| Selected part information                             |                    | Description:                         |
| Name Valu                                             | ie 🚺               |                                      |
| Type IC                                               |                    |                                      |
| Value 562K                                            |                    |                                      |
| TC 100L                                               |                    |                                      |
| Tolerance 1                                           |                    |                                      |
| Power Dissipation 0.0                                 | E F                | Reference des prefix: IR Pin Mapping |

Figura 2.7: Definizione di una parte attraverso la sezione Part Editor

Come è possibile vedere in basso a sinistra dell'immagine per ogni parte è possibile inserire ulteriori informazioni utili ad effetturare una corretta e completa simulazione, come ad esempio:

• *Value* (indica il valore della specifica grandezza fisica associata al dispositivo, si ricordi che le eventuali sintassi devono essere d'accordo con i simulatori utilizzati, ad esempio per *LTSpice* il suffisso MEG per una quantità pari a 10<sup>6</sup>)

- *Tolerance* (fondamentali per simulazioni contenenti componenti R,L,C)
- *Temperature Coefficient* (per tener conto dell'influenza della temperatura su componenti passivi)
- *Model* ( da porre sula sezione *Model*, e associano ad un dato dispositivo il modello di simulazione indicato)
- *Pin Order* (crea la corrispondenza indicata tra i pin del simbolo e quelli del modello simulativo caratterizzante il comportamento del dispositivo considerato)
- *Reference des Prefix* (importante nella generazione delle netlist ,poiché indica se il modello associato a tale dispositivo sia un resistore R, un capacitore C, un induttore L, un diodo D, un transistore M, o un sottocircuito X. Bisogna tuttavia prestare attenzione in dispositvi quali diodi o transistori, a volte descritti mediante modelli di sottocircuiti e pertanto necessitano l'utilizzo di tale dicitura)

Creata la parte si associa ad essa, come detto precedentemente, un simbolo (già presente in libreria o realizzato appositamente per il dispositivo considerato tramite il tool Symbol una cella (Assign Package Cell, anch'essa già presente od opportunamente Editor), realizzata). E infine si associano i pin del simbolo(livello circuitale) con quelli della cella (livello reale) mediante il Pin Mapping. La sua corretta procedura risulta fondamentale nonché estremamente delicata poiché un assegnamento sbagliato porterebbe ad una progettazione di un circuito stampato all' apparenza corretto ma in realtà malfunzionante e riscontrabile sono in fase di testing. Poniamo inoltre particolare attenzione nell'utilizzo dei precedentemente citati Reusable Blocks, il cui corretto uso da estremi vantaggi in termini di potenza dello strumento, nonchè di gestione di un progetto complesso come quello trattato. I Reusable Blocks sono dei blocchi costituiti da veri e propri schematici contenenti un insieme di componenti elettronici e non, inseriti all'interno della libreria centrale una volta testati e verificati. Essi sono quindi messi a disposizione di tutti gli utenti per la realizzazione a sua volta di altri schematici che a sua volta possono diventare reusable blocks, andando a creare vere e proprie strutture gerarchiche.

I *Reusable Blocks* possono essere:

- Logical Only, ossia costituito solamente da schemi circuitali
- *Physical Only*, composto dal solo layout dello schema elettrico in questione. Utilizzato nella realizzazione di circuiti stampati PCB più complessi
- *Physical and Logical*, costituiti sia dalla componente circuitale sia dal layout ad esso associato.

Un ulteriore vantaggio derivante dall'utilizzo di questi speciale blocco, è dato dalla possibilità di modificare qualsiasi schematico che lo contiene, apportando modifiche direttamente su di esso. Questo comporta il non dover andare a modificare singolarmente

tutti gli schemi circuitali che lo contengono, con un notevole risparmio di tempo ed energie.

#### 2.2.2 Design Capture e Expedition PCB

Design Capture è lo strumento messo a disposizione da Mentor Graphics per la realizzazione di schematici elettrici e la generazione delle relative netlist. Il suo funzionamento molto intuitivo e simile a qualunque altro CAD si basa principalmente sull'utilizzo di una libreria importata dall'utilizzatore, nel nostro caso Aramis\_Mentor\_Lib. Essa permette una progettazione di tipo gerarchico, in cui vengono definiti schematici che rappresentano blocchi (la cui rappresentazione può essere editata tramite Editor Symbol) locali (Local Symbol) o presenti in libreria (Reusable Blocks) di schematici più complessi. Questi schemi devono essere definiti in modo da generare in un uscita una corretta sintassi della Netlist (comando Generate Netlist) per simulazioni successive, ed avere un corretto packaging (Packeger). Quest'ultima operazione analizza tutti i simboli del progetto e li mappa nelle rispettive celle per la creazione del PCB tramite Expedition PCB. Un'altra interessante funzione disponibile in Design Capture è il iCES (interactive CES). Innanzitutto il CES (Constraint Editor System) è una sezione che permette di definire i vincoli relativi al routing delle tracce (dimensioni, distanze, classi, ecc...) per la realizzazione del circuito stampato. Esso è accessibile sia da Design Capture sia da Expedition PCB poiché strettamente correlati, ovvero cambiando qualcosa all'interno di uno dei due ambienti le modifiche si ripercuotono anche sull'altro. L'utilizzo dell' iCES permette invece un approccio più veloce in cui attraverso una finestra di dialogo è possibile definire direttamente da schematico le caratteristiche principali delle varie Net rappresentanti i collegamenti fisici tra i vari dispositivi presenti sul PCB (Figura 2.8).



Figura 2.8: Utilizzo del iCES all'interno di Design Capture

Come è possibile vedere in figura nelle parte destra è presente una schermata di dialogo in cui, semplicemente selezionando la net di interesse è possibile definirne il tipo (o la classe,precedentemente definita) sia da un punto di vista elettrico sia da un punto di vista fisico, evitando le lunghe e noiose operazioni previste dall'utilizzo del *CES*.

Tra le varie opzioni messe a disposizione da Design Capture vi sono anche il *BOM* (*Bill of Material*) che fornisce la lista dei componenti utilizzati all'interno dello schema circuitale, il *Cross Reference* e il *Back Annotation*.

Per quanto riguarda la progettazione di circuiti stampati il software *Expedition PCB* permette la realizzazione di schede a 4 o 8 layer definibili ad inizio progetto. La creazione di un corretto PCB richiede l'esecuzione di un certo numero di passi che vengono di seguito elencati. Dopo aver effettuato come detto in precedenza il *packager* si deve:

- eseguire il *Foward Annotation*, che annota i collegamenti dello schematico elettrico con quelli del circuito stampato
- disegnare la forma della scheda che si vuole realizzare (*Board Outline*), e selezionare l'area in cui è possibile effettuare il routing (*Route Border*)
- posizionare i componenti all'interno dello stampato (*placement*)
- definire le *constraints* tra cui spessore delle linee, distanze tra le linee, distanze tra i componenti, topologia dei *Via* ,ecc...
- eseguire il *Routing*, collegando i dispositivi fisicamente tra loro attraverso delle piste (in genere all'inizio si esegue un autorouting e solo in seguito si modifica il percorso delle piste o si collegano i piedini dei componenti ancora sconnessi a causa di autorouting incompleto)
- Generare i file di uscita utili alla realizzazione fisica del PCB: GerberFile e *NCDrill*

All'interno del tool ci sono molte altre funzioni tra cui la possibilità di un menu di dialogo chiamato Display Control che permette di facilitare tutte le operazioni appena viste: attivando o disattivando le parti e le tracce su uno o più layer, rendendo visibili solo alcune informazioni relative alle celle presenti, specchiando(comando *Mirror*)la visuale della scheda per una migliore visualizzazione del top e del bottom layer.

Infine è disponibile un accesso diretto alla libreria principale *Aramis\_Mentor\_Lib* che permette di aggiornare le informazioni relative alle celle presenti in libreria tramite il comando *Update Cell& Padstack*.

#### 2.3 Passaggio da Mentor Graphics all'ambiente di simulazione LTSpice IV

Durante le simulazioni dei circuiti realizzati con il tool *Design Caputre* di *Mentor Graphics*, si sono riscontrate delle difficoltà a causa del simulatore da esso utilizzato, ovvero *HyperLynx*. *Q*uesto simulatore si basa sull'utilizzo di una sintassi *HSpice* e pertanto necessitava modelli descritti in tale formato. La difficoltà nel reperire questo tipo di informazioni, dettate dalla scelta della maggior parte dei produttori di rendere disponibili sul mercato solo descrizioni di componenti in una linguaggio *PSpice*, hanno portato ad utilizzare una strategia di simulazione completamente differente da quella finora utilizzata.

Per ovviare ai problemi suddetti si è scelto di utilizzare un altro tipo di simulatore affidandoci al software *LTSpice IV*. Esso è disponibile gratuitamente, ed è particolamente idoneo a simulazioni di regolatori switching e di circuiti di potenza (parti fondamentali dell'elaborato in questione). In particolare si è utilizzato questo strumento solo al fine simulativo, non utilizzando la possibilità di realizzare graficamente schematici per mezzo dello stesso.

Si definiscono di seguito i passi da seguire per effettuare la simulazione utilizzando questo tipo di strategia.

1. Prima di tutto si realizza lo schematico mediante il tools *Design Capture* messo a disposizione da *Mentor Graphics*.

Durante questa fase si potrebbero verificare 3 diverse situazioni:

- Il componente da utilizzare è già presente in libreria e anche il suo modello di simulazione => si procede al suo inserimento nello schematico
- Il componente da utilizzare è già presente in libreria ma non il suo modello => si procede cercando il modello spice in rete, una volta trovato lo si inserisce nella cartella *Models (Spice->Passives)* all'interno della cartella *AraMis\_Mentor\_Lib*
- Il componente da utilizzare non è presente in libreria=> si procede realizzando la *parts* legata al componente, e successivamente si esegue il processo definito al punto precedente.
- 2. Una volta realizzato l'intero schematico si genera la Netlist Spice mediante *Design Capture* con l'opzione *Simulation->Netlist*,

Fatto ciò si possono presentare due scenari:

- La generazione della netlist va a buon fine => si passa al punto 3
- La generazione della netlist non va a buon fine => si procede verificando che durante la generazione della netlist sia avvenuto il passaggio automatico dei modelli di simulazione nella cartella *sym* contenuta all'interno della cartella di progetto. Qualora i modelli non siano presenti, procedere con l'inserimento manuale in essa dei modelli mancanti (Copia/Incolla) dalla cartella *Models* di *Aramis\_Mentor\_Lib*.
- 3. Eseguita la generazione della netlist in modo efficace, si avrà un file *.spi* all'interno della cartella *genhdl* situata anch'essa all'interno della cartella di lavoro. Successivamente procedere con la definizione delle sorgenti del circuito, mediante la opzione *Simulation->Sources*. Così facendo si genera un ulteriore file .spi presente sempre nella cartella *genhdl*.
- 4. Fatto ciò, si passa alla generazione del file contenente le modalità di simulazione da eseguire. Per creare questo file, si utilizzi la funzione di *Design Capture Tools*-

*>Simulate-> Settings*, e si proceda al settaggio della simulazione desiderata tenendo tuttavia conto di queste due condizioni:

- Nel caso in cui si voglia settare più di un tipo di simulazione, si ne setti solo una
- Nel caso in cui si voglia eseguire una simulazione montecarlo o in temperatura, si esegui la procedura indicata sopra inserendo un tipo di simulazione casuale (o .DC o .TRAN se si è interessati anche ad una di queste)
- 5. Successivamente si importi il file di simulazione generato all'interno dell'ambiente *LTSPICE IV ( File->Open* e selezionando il file desiderato).

Fatto questo si hanno due possibilità:

- Eseguire il file di simulazione (*Simulate->Run*) dopo aver prima cancellato le seguenti righe:
  - .include "resultDisplayFile.Aqr
  - ➢ .option dcmode=all
  - ➢ .option trmode=fast
  - .option tnom=27 (facoltativo)
- Inserire o modificare il tipo di simulazione desiderata attraverso le seguenti sintassi ed eseguire successivamente il passo al punto sopra.
  - Montercarlo: .step param <passo iniziale> <passo finale> <entità passo> Ad esempio .step param 1 3 1 , parte dal passo 1 fino al tre con incremento di uno quindi in totale un numero di casi pari a 3.
  - Temperatura: .step TEMP <temp iniziale> <temp finale> <passo di incremento>.
  - Analisi temporale: .tran <print time interval> <tempo finale> <tempo iniziale> <precisione di simualzione>
  - Analisi DC: .dc <nome parametro> <valore inziale> <valore finale> <passo di incremento>
- 6. Una volta mandato in esecuzione la simulazione ,si possono verificare le seguenti situazioni:
- Simulazione funziona=> si attende il termine
- Si presenta un errore relativo alla netlist spice generata=> rimuovere il '+' nell'ultima riga che include il file sorgenti=> Riseguire la simulazione
- Il passo di simulazione è troppo preciso, ridurre il passo di simulazione (*Tools-> Control Panel-> Spice*)=>Riseguire la simulazione

7. Una volta terminata la simulazione si ottiene in uscita la schermata in figura sotto dove è possibile studiare le forme d'onda di interesse.



Figura 2.9: Ambiente di simulazione LTSpice IV

# Capitolo 3 1B1\_Power\_Management\_Subsystem

Nel primo capitolo si è descritta l'architettura generale del sistema *AraMis*. Essa come già detto è costituita da due macrosistemi principali detti *Tiles*, uno di questi è il *Power Management Tile (PMT)* che si occupa della potenza presente a bordo del satellite. In particolare all'interno di quest'ultima è il sistema *1B1\_Power\_Management\_Subsystem* (Figura 3.1) che si occupa di gestire la potenza proveniente dalla *PMT* stessa.



Figura 3.1: Diagramma a blocchi del 1B1\_Power\_Management\_Subsystem

Questo sottosistema può essere visto come l'insieme di quattro sotto-sistema più piccoli, che sono :

- *1B1\_Power\_Generation\_and\_Storage*, il cui compito prevede l'immagazzinamento, la gestione e la generazione dell'energia
- *1B12\_Power\_Distribution*, blocco di distribuzione della potenza all'interno dell' intera struttura *AraMis*. In particolare si definisce le caratteristiche del *PDB* (*Power Distribution Bus*)
- *Bk1B13\_Sensors*, costituito dall'insieme di tutte i dispositivi (sensori) per il monitoraggio del corretto funzionamento del *1B1\_Power\_Management\_Subsystem*

• *1B14\_Centralized\_Power\_Management,* in cui viene descritto il blocco di gestione sia software che hardware dell'intero sistema *1B1\_Power\_Management\_Subsystem* 

E' possibile osservare la suddivisione di questo sottosistema, in maniera chiara ed intuitiva, dalla sua descrizione in *Visual Paradigm* tramite un diagramma delle classi(Figura 3.2).



Figura 3.2: 1B1\_Power\_Management\_Subsystem Class Diagram

Come è facilmente intuibile, il sistema appena descritto rappresenta una delle parti chiavi dell'intera struttura, poiché esso è il diretto responsabile del mantenere in vita il satellite nello spazio.

Questo porta ad una definizione estremamente accurata e restrittiva delle sue specifiche e della sua progettazione, non dovendo garantire solo il suo funzionamento, ma qualora si manifestasse un guasto non danneggiare le altre possibili *Tiles* di gestione della potenza che lavorano in parallelo. La presenza di molteplici sottosistemi è resa possibile dall'approccio altamente modulare della architettura considerata.

Infatti potrebbero essere presenti più banchi batterie e più fonti di energia primarie (panelli solari) per ogni modulo, legate al quantitativo di potenza, necessari al corretto funzionamento del satellite o al solo fine di ottenere un sistema più robusto (capace di tollerare uno o più malfunzionamenti mantenendo prestazioni accettabili). Questo rende necessario un sistema di gestione delle *Tiles* e anche del funzionamento della singola più complesso sia dal punto di vista software sia da quello hardware, che ne determini le priorità e la distribuzione delle risorse tra i vari elementi. Come ad esempio il diverso quantitativo di energia erogato dai pannelli solari montati sulle facce esterne del satellite, e sottoposti a differenti radiazioni solari e condizioni termiche dipendenti dalla posizione di quest'ultimo rispetto al sole (possibili zone d'ombra).

Per questo si è reso necessario, la definizione di un opportuno bus di distribuzione *PDB* (*Power Distribution Bus*) le cui caratteristiche e il suo funzionamento vengono descritti all'interno del sistema 1B126\_Power\_Distribution\_Bus.

#### 3.1 1B126\_Power\_Distribution\_Bus

Il *Power Distribution Bus (PDB)* è il sistema di distribuzione dell'energia utilizzato all'interno dell'architettura *AraMis*. La sua particolare struttura permette il collegamento contemporaneo di diversi tipi di elementi siano essi: erogatori di energia, immagazzinatori di energia, regolatori, e carichi, garantendone così un elevato grado di modularità e flessibilità.

In particolare per erogatori di energia all'interno della struttura esaminata, si intendono sia i pannelli solari che ne costituiscono la fonte principale (*Primary Source*) sia le batterie durante la loro fase di scarica (*Secondary Source*). Quest'ultime sono incluse anche nella categoria degli accumulatori nel momento che vengono usati durante la loro fase di carica. Si definisco di seguito le caratteristiche principali, che caratterizzano il funzionamento del sistema di distribuzione (*PDB*):

- Tutte le *Power Management Tile (PMT)* all'interno dell'architettura devono essere collegate al *PDB*.
- I livelli di tensione presenti sul *PDB* devono essere compresi tra i 12V e i 19V, con un valore di tensione nominale pari a 14V.

- Il *PDB* deve essere in grado di gestire contemporaneamente sia l'energia proveniente dai pannelli solari sia dalla batteria (supposta precedentemente caricata), qualora il fabbisogno delle risorse da parte del sistema lo richiede.
- Se il quantitativo di potenza presente sul bus è superiore alla richiesta degli utilizzatori, il PDB deve essere in grado di immagazzinare energia nelle batterie o, qualora queste fossero già cariche, dissipare il contenuto energetico tramite opportuni circuiti al fine di non danneggiare se stesso e dispositivi ad esso collegati.
- Tutti i circuiti collegati al PDB devono essere di tipo analogico, permettendo una velocità di intervento molto più elevata rispetto ad un approccio digitale. Lo stato dei dispositivi connessi dipende dal valore di tensione presente sul bus, che ne determina quindi l'attivazione e la disattivazione.

Vista l'importanza del ruolo assunto dal *Power Distribution Bus* si rende necessaria una chiara e dettagliata descrizione delle sue specifiche.

Infatti dato che ad esso vengono collegati tutti i dispositivi caratterizzanti le funzioni chiavi del satellite, una definizione ambigua potrebbe portare ad una progettazione errata dei sottosistemi compromettendone la riuscita dell'intero sistema.

Come tutti i precedenti blocchi illustrati si utilizza ancora una descrizione ad oggetti su *Visual Paradigm*, dove i principali elementi che si connettono al bus vengono chiamati *attori*.

#### 3.2 Scenario degli elementi attivi sul Power Distrubution Bus

Come detto in precedenza gli elementi principali che svolgono attività sul *PDB* sono: il *Primary Source*, l' *Energy Storage* e i *Loads* (Figura 3.3). Ad essi, si aggiungono altri dispositivi, quali:

- Battery Source (o Battery Discharger)
- Battery Charger

Quest'ultimi sono direttamente collegati all'utilizzo degli elementi principali, ad esempio il *battery charger* consente l'immagazzinazione dell'energia nel *Energy Storage*. Sono presenti anche ulteriori circuiti che hanno una funzione di supervisione e protezione del sistema in generale:

- Active Shunt
- Overvoltage Protection

La totalità dei dispositivi opera tra loro col/e mediante il bus di potenza permettendo di implementare tutti i concetti fondamentali su cui si basa il funzionamento del *1B126\_Power\_Distribution\_Bus*.



Figura 3.3: attori principali sul PDB.

Descriviamo in seguito ogni attore nel dettaglio.

#### **3.2.1 Primary Source**

Il *Primary Source è c*ostituito dai pannelli solari, e rappresenta la fonte primaria di generazione dell'energia elettrica a bordo del satellite.

Questo dispositivo deve fornire nel modo più efficiente possibile una tensione sul PDB, ottenuta dalla conversione in energia elettrica dell'energia proveniente dalle radiazioni solari, compresa tra i 12V e i 16 V (con una tensione nominale di 13.2V).

Esso durante il suo funzionamento deve erogare una corrente di circa 0.5 A (valore nominale di 0.4A) per tutto il range di queste tensioni (Figura 3.4).


Figura 3.4: Caratteristica elettrica tensione-corrente del Primary Source

Dall' andamento del grafico si può notare un ulteriore aspetto importante relativo alla potenza in uscita al pannello solare. Questa deve mantenersi circa costante per tutto l'intervallo delle grandezze considerate. Inoltre deve essere garantito il suo funzionamento per tensione comprese tra i 0V e i 25V, e delle correnti di perdita medie minori ai 100µA (1mA di picco) ed anche una resistenza di uscita differenziale tra  $\pm 0.5$  V/A e  $\pm \infty$ . Il suo funzionamento è caratterizzato da due possibili stati:

- ACTIVE, il dispositivo è abilitato e fornisce al PDB l'energia necessaria convertita
- *IDLE*, il dispositivo è disabilitato (rimane in attesa di un'eventuale abilitazione)

### 3.2.2 Energy Storage

*L' Energy Storage è* costituito dalle celle a polimeri di litio *Li-Po*, che rappresentano la fonte di energia secondaria a bordo del satellite. Essi sono degli accumulatori di energia utilizzati, per equilibrare gli scompensi energetici generati dal movimento del satellite intorno all'orbita, che alterano le condizioni termiche e di illuminamento a cui sono sottoposti di continuo i pannelli solari. Questo elemento pertanto funge da serbatoio, immagazzinando energia nei momenti in cui essa è presente in eccesso a bordo del satellite e cedendola in caso di carenza. Anche in questo caso il funzionamento del dispositivo è caratterizzato da differenti stati operativi:

- *ACTIVE*, le batterie sono abilitate e in base alla tensione presente sul *PDB* vengono caricate (*Battery Charger*) o scaricate (*Battery Discharger*)
- *IDLE*, le batterie non sono abilitate (attendono un segnale di abilitazione)
- *EMPTY*, le celle sono completamente scariche e necessitano di essere caricate
- *FULL*, la tensione della cella ha raggiunto il suo massimo valore ammissibile, ed eventuali esuberi di energia dovranno essere dissipati opportunamente per evitare la distruzione della batteria

Il tipo di batterie scelte e i problemi ad esse associati sarà illustrato nel dettaglio nel successivo capitolo, permettendoci di definire tutti i vincoli a cui saranno soggetti i successivi sottosistemi definiti.

# 3.2.3 Load

E' costituito da qualsiasi tipo di circuito che collegato al *PDB*, ne assorbe la potenza per il suo funzionamento (incluso il *payload*). Affinché vi sia compatibilità con le specifiche del *PDB*, i carichi collegati al bus devono lavorare ad una tensione compresa tra i 12V e i 18 V, e non devono subire danneggiamenti per tensioni inferiori ai 25V. Essi dovranno presentare una resistenza differenziale -dV/dI compresa tra  $\pm$  0.5 V/A e possono assumere due differenti modalità di funzionamento:

- *ACTIVE*, il dispositivo è abilitato e assorbe potenza
- *IDLE*, il dispositivo è scollegato dal bus e pertanto non produce nessun consumo di potenza. In particolare deve assorbire una corrente media inferiore ai 100µA e di picco inferiore a 1mA

# 3.2.4 Battery Source

Il *Battery Source* o *Battery Discharger* è quel circuito di interfaccia(innalzatore di tensione) tra il bus di potenza e le batterie. Esso ha la funzione di prelevare corrente da quest'ultime (quando queste risultano essere cariche) aumentando la quantità di energia disponibile sul satellite, e rendendola compatibile alle caratteristiche elettriche definite per il *PDB* (ovvero minore è la tensione sul bus di potenza maggiore sarà la corrente richiesta dal bus alle batterie)(Figura 3.5). Come si vede nella figura sotto il circuito opera per tensioni di bus inferiori ai 13.5V. In particolare ha un andamento lineare per tensioni comprese tra i 12.5V e 13.5V e mostra una resistenza differenziale di uscita pari a -1 $\Omega$  (±10%). Inoltre deve erogare valori di corrente costanti e massimi per tensioni inferiori ai 12.5V. Anche esso ha diversi possibili stati di funzionamento :

• *ACTIVE*, il circuito è abilitato e procede alla scarica delle batterie

- *IDLE*, il circuito è spento e le batterie sono scollegate dal bus (dal lato di scarica)
- *EMPTY*, le batterie sono scariche e non è possibile fornire energia



Figura 3.5: Caratteristica I-V di uscita ideale e normalizzata del Battery Discharger

Il grafico mostrato in figura si riferisce ad un valore di corrente normalizzato, e che può variare in base a diversi fattori tra cui la scelta del numero e del tipo di celle utilizzate e in particolare dalla corrente di scarica di quest'ultime. Si riportano in seguito le specifiche elettriche e le tolleranze dei sistema considerato:

$$V = \begin{cases} 13.5 \pm 250 \text{mV} \\ 12.5 \pm 250 \text{mV} \end{cases}$$

Si deve inoltre garantire che il circuito non si distrugga per tensioni inferiori ai 25V e che il suo assorbimento di corrente in condizione di inattività deve essere inferiore a  $100\mu$ A per correnti medie e 1mA per correnti di picco.

#### 3.2.5 Battery Charger

Il *Battery Charger* è quel circuito di interfaccia (abbassatore di tensione) tra il bus di potenza e le batterie, in grado di generare l'energia necessaria alla carica di quest'ultime in maniera compatibile alle caratteristiche elettriche presenti sul PDB (ovvero maggiore è la

tensione sul bus, maggiore sarà la corrente di carica delle batterie). Ovviamente questo è reso possibile qualora la potenza presente a bordo del satellite, è superiore alla quantità richiesta per mantenere attive le sue funzionalità(Figura 3.6). Questa condizione sarà facilmente comprensibile dal livello di tensione presente sul *PDB*. Come si vede dalla figura sotto, questo circuito lavora per tensioni superiori ai 14.5 V, e assorbe una corrente di bus massima costante per tensioni superiori ai 15.5V. Per tensioni comprese tra i 14.5V e 15.5V l'andamento si mostra lineare presentando una resistenza differenziale di uscita pari a 1 $\Omega$  (±10%). Anche tale dispositivo ha diversi possibili stati di funzionamento :

- *MASTER*, il circuito abilitato in questa modalità assorbe l'energia necessaria a caricare le celle con una priorità più alta rispetto a tutti gli altri circuiti di carica, ma condividendo comunque le risorse disponibili con tutti i dispositivi *master*
- *SLAVE*, il circuito abilitato in questa modalità assorbe l'energia necessaria a caricare le celle condividendo le risorse disponibili con gli altri circuiti *slave*, solo qualora non siano abilitati altri circuiti di carica con priorità più alta (*Master*)
- *IDLE*, il circuito è spento e le batterie sono scollegate dal bus (dal lato di carica)
- *FULL*, le celle hanno raggiunto il loro massimo valore di tensione, e un' ulteriore carica porterebbe al danneggiamento irreversibile delle stesse



Figura 3.6: Caratteristica I-V di uscita ideale e normalizzata del Battery Charger

Anche questo grafico si riferisce ad un valore di corrente normalizzato, e che può variare in base a diversi fattori tra cui come detto in precedenza la scelta del numero e del tipo di celle(in particolare della loro massima corrente di carica).

Si riportano in seguito le relative specifiche elettriche e le tolleranze del sistema di carica:

$$V = \begin{cases} 14.5 \pm 250 \text{mV} \\ 15.5 \pm 250 \text{mV} \end{cases}$$

Si deve inoltre garantire che il circuito non si distrugga per tensioni inferiori ai 25V e che il suo assorbimento di corrente in condizione di inattività deve essere inferiore a  $100\mu$ A per correnti medie e 1mA per correnti di picco.

### 3.2.6 Active Shunt

L' Active Shunt è un dispositivo di dissipazione ottenuta per mezzo di opportuni resistori. Viene utilizzato quando l'energia presente sul *PDB* è talmente alta da superare la richiesta a bordo del satellite, incluso eventuali erogazioni alle batterie nel caso non fossero completamente caricate. Pertanto per salvaguardare il bus di potenza si scarica l'energia in eccesso, tramite resistori serie (detti *shunt*) e di conseguenza irradiata nello spazio sotto forma di calore.

Il circuito opera per tensioni sul PDB comprese tra i 16.5V e i 17.5V(Figura 3.7).



Figura 3.7: Caratteristica I-V di uscita ideale e normalizzata del Active Shunt

Dall' andamento lineare in figura si può osservare un valore di resistenza differenziale di uscita pari a  $1\Omega (\pm 10\%)$ . Il circuito dovrà dissipare una corrente costante e massima per tensioni sul bus superiori ai 17.5V, garantendone il suo funzionamento senza danni per tensioni comprese tra 0V e TDB, dove per TDB si intende il valore di tensione massimo corrispondente alla massima potenza dissipabile dalle resistenza, secondo la legge:

$$P_j = \frac{TDB^2}{R}$$
$$TDB = \sqrt{R * P_j}$$

Il suo funzionamento può essere caratterizzato dal passaggio tra due stati:

- DISABLE, il circuito è disabilitato pertanto non dissipa energia. In questa configurazione il dispositivo deve assorbire una corrente media inferiore ai 100µA e una corrente di picco inferiore a 1mA
- *ACTIVE*, il circuito è abilitato e dissipa l'energia in eccesso sotto forma di energia termica

Anche in questo caso vengono definite le specifiche elettriche e le tolleranze relative al circuito descritto:

$$V = \begin{cases} 16.5 \pm 250 \text{mV} \\ 17.5 \pm 250 \text{mV} \end{cases}$$

### 3.2.7 Overvoltage Protector

L'*Overvoltage Protector* è il circuito di protezione e prevenzione contro le sovratensioni presenti sul *PDB*.

Esso vista la sua criticità, è sempre abilitato, intervenendo per tensioni sul *Power Distribution Bus* superiori ai 17.5V attraverso un assorbimento di corrente. Quindi permette di fornire una protezione continua all'intero sistema.

Il circuito, oltre a dover garantire il suo funzionamento senza essere soggetto a danni per tensioni comprese tra i 0V e i 25V, deve garantire un assorbimento di corrente quando non interviene direttamente sul bus pari a 100 $\mu$ A e una sua corrente di picco di assorbimento inferiore a 1 mA. Esso presenta anche una resistenza differenziale di uscita pari a 1 $\Omega$  (±10%) come è possibile osservare dalla Figura 3.8.

Le specifiche elettriche e le relative tolleranze caratterizzanti l'uso di questo dispositivo, sono:

$$V = \begin{cases} 17.5 \pm 250 \text{mV} \\ 18.5 \pm 250 \text{mV} \end{cases}$$



Figura 3.8: Caratteristica I-V di uscita ideale e normalizzata del Overvoltage Protection

Come tutti gli altri casi anche questo grafico si riferisce a valori di correnti sul bus normalizzati.

## 3.3 Comportamento globale del Power Distribution Bus

Avendo definito singolarmente tutti gli elementi che operano direttamente ed indirettamente in funzione della tensione presente sul *Power Distribution Bus* (che presenta quindi anche un contenuto informativo), è possibile ottenere il comportamento globale del *PDB* attraverso una caratteristica tensione-corrente che ne mostra l'attività dei suddetti dispositivi (Figura 3.9).

In particolare, per ragioni di comodità si fa rifermento a correnti normalizzate per tutti i blocchi (condizione in realtà impossibile nel *PDB*), andando a valutare l'andamento per tensioni di bus comprese tra i 12V e i 19V e considerando le relative tolleranze a cui sono soggetti la totalità dei dispositivi.

Dal grafico sotto si può osservare tali incertezze siano state scelte opportunamente, in modo da garantire che ogni dispositivo lavori in una situazione univoca e non interferisca con il funzionamento degli altri attori.

E' inoltre garantito che all'interno di tale range di tensione non vi è nessun caso in cui tutti i dispositivi rimangano inattivi.



Figura 3.9: Caratteristica ideale complessiva del Power Distribution Bus (PDB)

Al solo fine dimostrativo vengono illustrate delle simulazioni (Figura 3.10 e Figura 3.11), effettuate in periodi precedenti, che mostrano il funzionamento del PDB all'interno della struttura *AraMis* così caratterizzata:

- Cubo 2 x 2 x 2
- 20 Power Management Tiles (PMT)
- 20 Pannelli solari (40 W di picco)
- 20 Batterie (580 Wh)
- Tensione di bus nominale pari a 14V con valori di corrente di picco pari ad 20 A
- Connessione in parallelo: potenza massima nominale 280 W
- Periodo di rivoluzione 100min e rotazioni di 1Hz
- Tre carichi attivati casualmente da 15W, 100W e 200W.

In cui la capacità delle batterie è stata ridotta per diminuire la lunga durata delle simulazioni.



Figura 3.10:Simulazione del comportamento globale del PDB (parte1)



Figura 3.11: Simulazione del comportamento globale del PDB (parte2)

# **Capitolo 4 Batterie**

Come detto nel precedente capitolo, le batterie rappresentano a bordo del satellite *AraMis* la fonte di energia secondaria. La scelta di utilizzare delle batterie, è strettamente legata alle ridotte dimensioni del satellite che non consentono l'utilizzo di fonti non rinnovabili, come ad esempio del carburante. Infatti senza esse l'unica fonte di alimentazione, deriverebbe direttamente dai pannelli fotovoltaici posti sulle superfici esterne della struttura. Tuttavia quando il satellite in orbita transita nelle zone cosiddette d'ombra, la quantità di energia prodotta dai pannelli stessi risulta essere limitata, rischiando di non essere sufficiente a mantenere in vita il satellite. Per questo motivo risulta fondamentale, al fine di garantire un'adeguata alimentazione anche in tali situazioni, l'utilizzo di un sistema che immagazzini e prelevi energia da tali accumulatori quando è necessario.

# 4.1 Batteria Mikroe 1120

La scelta delle batterie da utilizzare a bordo del satellite è ricaduta sulle *Mikroe 1120* (Figura 4.1). Queste sono batterie *Li-Po* (polimeri di litio) [9] caratterizzate da un elettrolita in sale di litio che non è contenuto nel solvente organico, ma in un composito di polimero solido (che non è infiammabile a differenza del precedente). Risultano essere così meno pericolose e più idonee ad applicazioni spaziali.

Esse inoltre a differenza delle classiche celle *Li-Ion* non sono contenute all'interno di contenitori rigidi di forma cilindrica o prismatica, ma presentano una struttura a fogli flessibili (spesso pieghevoli) caratterizzata dall'essere più leggera, e con la possibilità di essere sagomata per ricoprire lo spazio che gli è stato riservato, fornendo notevoli vantaggi dal punto di vista meccanico.

Questo è un aspetto fondamentale in sistemi come *AraMis*, in cui l'area occupata rappresenta un degli elementi chiave.



Figura 4.1: Batteria Li-Po Mikroe 1120

| Details                | Parameters               |                  | Remarks                                                                                       |  |  |
|------------------------|--------------------------|------------------|-----------------------------------------------------------------------------------------------|--|--|
| Rated voltage          | 3.7V                     |                  |                                                                                               |  |  |
| Rated capacity         | 2000mAh                  |                  | discharge with 0.2C to 2.75V<br>after fully charge within 1h,<br>measuring the discharge time |  |  |
| Limited charge voltage | 4.2∨                     |                  |                                                                                               |  |  |
| Internal resistance    | ≤160mΩ                   |                  |                                                                                               |  |  |
| charge mode            | C.C/C.V.                 |                  |                                                                                               |  |  |
| Charge time            | 6H                       |                  | Standard charging 0.2C<br>400mA                                                               |  |  |
| Max Charge Current     | 2000mA                   |                  |                                                                                               |  |  |
| Max discharge current  | Continuous: 2000mA       |                  |                                                                                               |  |  |
| Marking topporature    | charging                 | <b>0~45°</b> ℃   |                                                                                               |  |  |
| working temperature    | discharging              | <b>-10~60°</b> ℃ |                                                                                               |  |  |
| Storago tomporaturo    | 1 Month                  | <b>-10~35°</b> ℃ | Charge to 40%~50% of                                                                          |  |  |
| Storage temperature    | 6 months                 | <b>-10~30°</b> ℃ | capacity when storage                                                                         |  |  |
| ESD ability            | Touch discharge ≥ 20000∨ |                  |                                                                                               |  |  |
| ESD ability            | Air discharge≥20000∨     |                  |                                                                                               |  |  |
| Cycle life             | 300 times                |                  | capacity≥80%                                                                                  |  |  |

Vediamo in particolare le caratteristiche elettriche(Figura 4.2) e meccaniche (Figura 4.3) salienti, che contraddistingue l'uso di questa cella:

*Figura 4.2*: Specifiche elettriche *Mikroe 1120* 

| Parameters                                                 |                                                                          | Tolerance                                                                                                                                                                                                | Term                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           | Remark/ condition                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No mechanical<br>damage, leakage ,<br>sink ,drum and so on |                                                                          | /                                                                                                                                                                                                        | 50cm distance<br>under 40W<br>daylight lamp                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                           | Visual                                                                                                                                                                                                                                                                                                                                                    |
| Length                                                     | 61.0mm                                                                   | Max<br>61.0mm                                                                                                                                                                                            |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                           |
| Width                                                      | 43.0mm                                                                   | Max<br>43.0mm                                                                                                                                                                                            | Digital caliper                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                           |
| Thickness                                                  | 6.7mm                                                                    | Max<br>6.7m                                                                                                                                                                                              |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                           |
|                                                            |                                                                          | m                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                           |
| Detalls                                                    |                                                                          | Parameters                                                                                                                                                                                               |                                                                                                                                                                                                                                                                         | Remarks                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                           |
| Storago humidity                                           |                                                                          | <75%                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                         | rolativo humidity                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                           |
| Weight                                                     |                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                         | 101                                                                                                                                                                                                                                                                                                                       | auvo numiaity                                                                                                                                                                                                                                                                                                                                             |
|                                                            | Parar<br>No med<br>damage,<br>sink ,drum<br>Length<br>Width<br>Thickness | Parameters         No mechanical damage, leakage , sink ,drum and so on         Length       61.0mm         Width       43.0mm         Thickness       6.7mm         Ils       P         umidity       0 | Parameters     Tolerance       No mechanical<br>damage, leakage,<br>sink, drum and so on     /       Length     61.0mm       Width     43.0mm       Width     43.0mm       Thickness     6.7mm       Ils     Parameters       umidity     ≤75%       uht     Approx.45g | Parameters     Tolerance     Telerance       No mechanical<br>damage, leakage,<br>sink ,drum and so on     /     50cm of<br>under<br>daylig       Length     61.0mm     Max<br>61.0mm       Width     43.0mm     Max<br>43.0mm       Thickness     6.7mm     Max<br>6.7mm       Ils     Parameters       umidity     ≤75% | Parameters     Tolerance     Term       No mechanical<br>damage, leakage ,<br>sink ,drum and so on     /     50cm distance<br>under 40W<br>daylight lamp       Length     61.0mm     Max<br>61.0mm       Width     43.0mm     Max<br>43.0mm       Thickness     6.7mm     Max<br>6.7mm       Ils     Parameters     Index       umidity     ≤75%     role |

Figura 4.3: Specifiche meccaniche Mikroe 1120

Come vediamo dalle specifiche elettriche la tensione di batteria garantita è di soli 3.7V.

Per questa ragione si utilizzeranno due celle poste in serie in modo da aumentare il quantitativo di energia immagazzinabile e reso disponibile dal banco batterie.

Questa strategia seppur necessaria porta ad avere durante la fase di carica problemi di sbilanciamento.

Alcune tecniche per la risoluzione di tale problema verranno sono illustrate di seguito, mentre il circuito che implementa la soluzione adottata sarà illustrato nei capitoli successivi.

Altre caratteristiche elettriche fondamentali per quanto riguarda l'utilizzo delle batterie sono: la corrente di carica e scarica delle batterie (che in questo caso risulta essere la stessa, e pari a 2A), e la massima tensione di cella pari a 8.4V (oltre il quale quest'ultima subisce danni irreversibili).

Inoltre è garantito il funzionamento corretto della batteria per le temperature operative del satellite.

Nelle caratteristiche mostrate in figura è prnsente anche il metodo di carica delle batterie da utilizzare che è il modo CC-CV (corrente costante - tensione costante). Tale metodo sarà illustrato nel dettaglio nel successivo paragrafo, insieme ad una breve discussione su delle analisi precedentemente sostenute dal gruppo *AraMis* riguardanti lo studio dell'efficienza e della durata della vita di tipologie di celle campione.

# 4.2 Metodo di carica delle batterie CC-CV (costant current - costant voltage) e analisi sull'efficienza delle batterie

Il metodo di carica più idoneo utilizzato per caricare batterie sia di tipo *Li-Ion* sia di tipo *Li-Po*, è quello *CC-CV*[14] il cui termine significa: corrente costante-tensione costante. Questo metodo è caratterizzato da due fasi di funzionamento distinte. Nella prima fase CC viene applicata alla batteria una corrente costante che induce ad un innalzamento della tensione di batteria fino al raggiungimento del voltaggio prestabilito (minore al limite massimo di tensione di carica specificato dalle caratteristiche elettriche della cella utilizzata).

Inoltre la corrente di carica dovrà essere minore al valore massimo segnalato per la batteria stessa, poiché caricando con amperaggi di valore superiore si possono causare danni alle prestazioni della cella e alle sue specifiche di sicurezza, producendo una generazione di calore e delle perdite.

Successivamente al raggiungimento della tensione predefinita, tale tensione viene mantenuta costante (fase CV) e la corrente decrementata progressivamente fino al raggiungimento di una corrente minima definita di *cutoff*.

Raggiunto tale valore, la batteria risulta essere carica e il processo viene arrestato. Le differenti fasi del metodo di carica CC-CV sono riportate in Figura 4.4. Tale grafico attraverso l'uso di linee tratteggiate delimita temporalmente la durata di quest'ultime, mostrando una prima fase a corrente costante e una seconda a tensione costante.



Figura 4.4: Andamento di carica di una batteria con il metodo CC-CV

Inoltre si noti la fase di carica detta flottante , in cui il processo di carica si interrompe prima che la corrente di carica raggiunga lo zero in modo tale da rendere l'intero procedimento più veloce. Successivamente solo quando la tensione di batteria raggiunge un valore inferiore ad una certa soglia, a causa dell'utilizzo delle celle o al fenomeno di autoscarica a cui esse sono soggette, il processo di carica riprende la sua esecuzione.

E' importante sottolineare che un 'aumento della corrente di carica utilizzato nella prima fase non velocizza di tanto l'intero processo. Questo perché una corrente maggiore, porta ad avere una seconda fase molto più lunga. Pertanto il valore della corrente utilizzata altera il tempo corrispettivo alla varie fasi ma non quello totale. Tuttavia una prima fase in cui si ha una corrente costante massima permetterebbe di raggiungere livelli di tensione e di carica (percentuali) in tempi considerevolmente più veloci, suggerendo un metodo di carica (Figura 4.5) leggermente diverso da quello appena illustrato.



Figura 4.5: Andamento della carica di una batteria con la strategia "charge and run"

Questo prevede di caricare la batteria in tempi brevissimi utilizzando una strategia detta "charge and run".

Infatti come si nota dal grafico la capacità di batteria cresce rapidamente durante la fase a corrente costante, raggiungendo valori tra il 70% - 80%, per poi tendere al 100% nella successiva fase (tensione costante).

Questo risulta estremamente importante in una situazione simile a quella in cui si trova il nostro sistema, dove non è prevedibile a priori per quanto tempo il satellite avrà potenza in eccesso da poter fornire al dispositivo di carica. Poiché esso dipende dal numero di utilizzatori collegati al *PDB* e ai loro relativi consumi.

Pertanto nel sistema progettato si utilizza la massima corrente possibile (il cui valore è strettamente legato alla tensione presente sul bus di potenza), al fine di ridurre i tempi relativi alla prima fase della carica delle batterie e all'occorrenza sacrificare il restante 20% finale derivante dalla seconda fase.

A differenza di molte batterie le celle a polimeri di litio (e anche quelle a ioni di litio) tollerano processi di sovraccarica. Difatti queste celle durante la carica prendono solo ciò che possono assorbire., e tutto quello che è extra diventa fonte di stress per la batteria.

La maggior parte di esse lavorano con tensioni pari a 4.20 V/cella con una tolleranza di +/-50mV/cella.

L'utilizzo di valori di tensione superiori potrebbero portare a capacità di carica più elevate, tuttavia l'effetto di ossidazione della cella tenderebbe a ridurne significativamente la durata della vita.

Quest'ultima potrebbe essere aumentata andando ad utilizzare tensioni inferiori a quella massima o evitando di caricare completamente la batteria, stressando meno le celle a discapito di una riduzione delle prestazioni.

Tuttavia visto che la durata della vita del satellite in orbita è comunque limitato nell'intorno di 5-6 anni, si predilige migliori performance di carica ed un miglioramento della capacità massima della batteria andando pertanto ad utilizzare come valore di tensione di carica il massimo previsto dal costruttore.

Un altro aspetto fondamentale da considerare oltre al metodo di carica da utilizzare, è la strategia di carica-scarica delle batterie da applicare al fine di utilizzarle nel modo più efficiente possibile.

A tal riguardo si sono presi in considerazione alcuni test fatti all'interno del team *AraMis* precedenti alla stesura di questo elaborato.

Questi test prevedevano lo studio del comportamento di alcuni set di batterie sottoposti a differenti tipi di cicli di carica-scarica in differenti condizioni ambientali. Con una successiva valutazione dell'andamento della degradazione della capacità e dell'efficienza in termini di energia nel tempo.

I risultati più significativi sono stati ottenuti dal terzo di questi test, in cui consisteva nel utilizzare cicli di carica-scarica pari al 10% della capacità di batteria, ripetendoli per un totale di 5000 volte.

Ogni 50 cicli era inoltre prevista una scarica totale seguita da una successiva carica completa delle batterie. Si riportano di seguito i grafici ottenuti :



*Figura 4.6*: Analisi della degradazione della capacità di un set di batterie in funzione del numero di cicli di carica/scarica



*Figura 4.7*: Analisi dell'efficienza di un set di batterie in funzione del numero di cicli di carica/scarica

I cui dati sono sintetizzati all'interno di una tabella:

| Battery         | Measured or expected life |
|-----------------|---------------------------|
| China 2200 mA/h | 1184 cycles (expected)    |
| Japan 2200 mA/h | 511 cycles (expected)     |
| Japan 2600 mA/h | 811 cycles (expected)     |
| Varta 2200 mA/h | 1441 cycles (expected)*   |

\* This battery is broken open circuit after 360 cycles.

Figura 4.8: Tabella relativa ai cicli di vita che ci si aspetta per ciascuna delle batterie testate

Dall'analisi dei dati si è appurato che questo principio di carica-scarica permetteva di incrementare la durata della vita delle batteria, ponendolo come prima scelta nelle future implementazioni. Questo principio sarà attuato a bordo del satellite mediante opportuno software che tuttavia non sarà trattato all'interno di questo elaborato, a differenza dell'implementazione del metodo di carica *CC-CV* delle batterie.

Quest' ultimo oltre a risultare come abbiamo già detto molto veloce, permette di raggiungere lo stato di carica di una batteria senza utilizzare complessi sistemi di rilevazione della carica, permettendo un'implementazione del tutto analogica.

Nel successivo paragrafo si mostra un'altra delle problematiche legata all'utilizzo delle batterie precedentemente accennata.

#### 4.3 Problematiche relative allo sbilanciamento delle batterie

Come già detto all'interno dell'architettura *AraMis* la sorgente di energia secondaria è costituita da banchi batterie formati da due celle *Li-Po* poste in serie, in modo tale da ottenere livelli di tensione sufficientemente alti. La presenza di due celle in serie porta ad avere maggiori problemi durante la carica delle stesse, a causa del loro sbilanciamento.

Lo sbilanciamento del *SOC* di una cella a polimeri di litio (cosi come quelle *Li-Ion*) è generalmente causato da un aumento dell'impedenza interna della  $R_{CELL}$  o dalla riduzione della capacità dovuta all'invecchiamento della batteria[17]. Questo potrebbe portare alla presenza di una delle celle avente una tensione maggiore rispetto all'altra, che durante la fase di carica potrebbe superare i limiti consentiti. Ovvero supponendo che la tensione di ciascuna delle due celle completamente cariche è pari a 4.2V. Si fissa una tensione massima di carica del banco batterie pari a 8.4V. Se ad esempio una delle celle è caricata ad una tensione pari a 4.2V mentre l'altra presenta una tensione di soli 4V, avremo una tensione del banco batterie misurata di 8.2V. Pertanto esso non risulterà completamente carico è il *battery charger* fornirà ancora corrente di carica alle celle con possibile distruzione di quella maggiormente caricata. Questo problema presente ogni qualvolta si utilizzano delle celle poste in serie risulta essere spesso comune portando in letteratura la presenza di varie soluzioni di bilanciamento di cui si mostrano le più comunemente utilizzate:

#### **Equalizzazione Serie/Parallelo**

In questo caso le celle sono normalmente collegate in serie, ma in fase di carica vengono poste in parallelo mediante l'utilizzo di opportuni switch, e caricate a corrente costante. In questo modo si evita che le due celle abbiano ai loro capi tensioni differenti. Tuttavia lo

svantaggio di tale soluzione sta nella complessità dei collegamenti e della quantità di switch in caso di numero elevato di celle.



Figura 4.9: Circuito di equalizzazione serie/parallelo

#### Equalizzazione resistiva

In questo caso le celle sono in tutte le fasi collegate in serie. Qualora una di esse raggiunge anticipatamente la carica completa, viene leggermente scaricata mediante la propria resistenza di shunt. Il processo è reiterato più volte (potrebbe essere molto lento) finché tutte le celle sono completamente caricate. Questo metodo porta ad una elevata dissipazione di energia dalle batterie.



Figura 4.10:Circuito di equalizzazione resistiva

#### Equalizzazione a capacità commutate

Le celle sono caricate in parallelo, ed in particolare ogni celle è posta in parallelo a quella adiacente per mezzo di un condensatore. Quest'ultimo permette il passaggio della carica in eccesso presente in una cella ad un'altra meno carica, evitando la dissipazione di energia tipica del circuito mostrato in precedenza. Anche in questo caso la presenza di deviatori potrebbe rendere più complesso il circuito da realizzare.



Figura 4.11:Circuito di equalizzazione a capacità commutate

#### Equalizzazione analogica con Shunt

Questo tipo di equalizzazione prevede ancora l'utilizzo di celle in serie, in cui ciascuna di esse ha un proprio regolatore di tensione connesso in parallelo(che permette di implementare la modalità di carica *CC-CV*). Quest'ultimo permette di prevenire la sovraccarica delle celle, andando ad assorbire ,qualora la cella risultasse già carica, la corrente fornita dall'alimentatore della batteria ma mantenendo comunque un percorso di carica per le altre celle. L'alimentatore utilizzato ha una corrente limitata il cui valore, nel caso in cui la tensione di batteria complessiva è inferiore a quella stabilita, sarà costante ed ad un valore fissato. Mentre quando le due tensioni si eguagliano, il valore di corrente sarà definito dalle resistenze e dalle tensioni delle celle interne. Il vantaggio di tale implementazione è la possibilità di caricare celle con capacità differenti , a fronte tuttavia della complessità di progettazione e della dissipazione a causa delle regolatori di shunt.



Figura 4.12:Circuito di equalizzazione analogica con Shunt

Nonostante la vastità di soluzioni presenti in letteratura, utili per la comprensione del problema e di come esso andava affrontato, si è reso necessario, al fine di soddisfare a pieno le specifiche dettate dal progetto *AraMis*, progettare una soluzione ad-hoc che differisce da tutte le possibili soluzioni appena illustrate e che verrà mostrata nel dettaglio nel Capitolo 7.

### 4.4 Spice Netlist della batteria Mikroe1120

Per la simulazione delle batterie selezionate *Mikroe1120* all'interno dei circuiti successivamente realizzati, è stato necessario creare un modello che sintetizzasse il loro comportamento elettrico. Il modello chiamato *LIPO\_Battery.mod* è il seguente:

.subckt LIPO\_BATTERY POS NEG V=3.7 Q=2 R=100M C1 POS NEG (Q\*3600/V) IC={V} RSER={R} .ENDS

Figura 4.13: Modello di simulazione della batteria Mikroe1120

Come possiamo notare dalla figura il modello realizzato è adattabile a qualsiasi tipo di batteria. Infatti è sufficiente impostare i seguenti parametri: V che rappresenta la tensione nominale, Q la capacità di batteria espressa in Ah e R la resistenza serie. In particolare questo tipo di batteria è simulata mediante un condensatore avente capacità pari ad 1945 Farad , avente una tensione iniziale ai suoi capi pari a 3.7V e una resistenza serie di  $100m\Omega$ . Tuttavia a causa degli eccessivi tempi di simulazione richiesti per capacità di questa entità, nel corso dell'elaborato si è simulato il comportamento della batteria con capacità non superiori a 1 F.

Dove è risultato necessario sono state effettuare le opportune considerazioni dovute a tale approssimazione, dando un peso significativo alle simulazioni effettuate.

# Capitolo 5 Bk1B118\_Battery\_Discharger\_V2

Nei capitoli precedenti abbiamo descritto l'architettura e il funzionamento principale del progetto *AraMis*. E' stato trattato in particolare tutta la parte avente il compito di alimentare il satellite ovvero il *1B1\_Power\_Management\_Subsystem*, descrivendone gli attori chiave, le interazioni tra essi e le loro attività svolte sul *Power Distribution Bus*.

Nel corso dei successivi capitoli ci si concentrerà sulla progettazione e lo sviluppo di un particolare sottosistema posizionato all'interno del *1B1\_Power\_Management\_Subsystem*, che ha il compito di gestire completamente tutte le attività che richiedono l'utilizzo delle fonti di energia secondarie a bordo del satellite (ovvero le batterie), e che viene chiamato *Bk1B114\_Battery\_System\_V2*.

Quest'ultimo a sua volta è costituito da un insieme di sottosistemi più piccoli tra i quali è presente il *Bk1B118\_Battery\_Discharger\_V2*.

L'obbiettivo del *Bk1B118\_Battery\_Discharger\_V2* è quello di interfacciare un banco di batterie (due celle poste in serie in questo caso) con il sistema di distribuzione della potenza (il *PDB*). Questo deve permettere di rendere disponibile sul satellite (qualora fosse necessario) un quantitativo di energia supplementare, ottenibile attraverso la scarica delle celle.

Il suo ammontare dipenderà dalla tensione presente sul bus e dallo stato energetico delle celle stesse.

Per far ciò è necessario disporre di un circuito elevatore di tensione , che permetta di rendere compatibile i livelli di tensione forniti dalla sorgente secondaria con quelli disponibili sul *PDB*. Garantendo al tempo stesso di rispettare i vincoli elettrici posti dagli elementi in gioco (massima corrente di scarica).

Il circuito utilizzato è un convertitore DC-DC di tipo boost (chiamato Bk1B118\_V2\_Boost\_Converter) che usato singolarmente presenta diverse problematiche ma con l'aiuto di altri blocchi permette di realizzare le specifiche desiderate.

# 5.1 Aspetti teorici e problematiche dell'utilizzo di un convertitore DC-DC Boost

Per ottenere una compatibilità dei livelli di tensione tra le celle poste in serie e il *Power Distribution Bus*, è necessario un dispositivo elevatore di tensione.

Inoltre la presenza di elevate corrente in gioco e la necessità di ottenere una elevata efficienza, hanno portato alla scelta di un convertitore DC-DC, e in particolare di un convertitore di tipo Boost (o *step up*).

La configurazione classica di questo circuito è la seguente (Figura 5.1):



Figura 5.1: Configurazione convertitore DC-DC di tipo Boost ad anello aperto

L'elemento chiave che caratterizza il funzionamento di questo circuito è il MOSFET di tipo N. Esso opportunamente pilotato attraverso un segnale ad onda quadra (generalmente generato da un modulatore PWM) cambia la sua regione di funzionamento (segnale presente sul gate alto => regione triodo, segnale sul gate basso => regione di interdizione), le cui durate determinano il valore di tensione presente in uscita al convertitore. Quindi comportamento del transistore è quello di un interruttore, esso assume i seguenti stati:

- STATO ON, quando il transistore è in regione triodo
- STATO OFF, quando il transistore è in regione di interdizione

Si definisco due intervalli di tempo differenti associati ai diversi stati assunti dall'interruttore MOS, in particolare si ha un intervallo detto *Ton* e un altro detto *Toff*, in cui il convertitore è visto come due circuiti differenti [10](Figura 5.2).



Figura 5.2: Fasi di funzionamento del convertitore DC-DC di tipo Boost

Come possiamo vedere dai circuiti in figura nella durante il *Ton* l'interruttore risulta chiuso, e l'induttore tende a immagazzinare energia. Mentre durante la fase di *Toff*, l'interruttore si apre, portando in conduzione il diodo e la conseguente scarica dell'induttore, che cede l'energia immagazzinata allo stadio di uscita.

Quanto descritto può essere osservato meglio andando ad analizzare la corrente presente sull'induttore durante le varie fasi (Figura 5.3):



Figura 5.3: Corrente sull'induttore in funzione del tempo in modalita CCM

La pendenza della corrente  $i_L$  varia in base all'intervallo considerato, in particolare abbiamo:

$$\frac{\mathrm{di}_{\mathrm{L}}}{\mathrm{dt}} = \frac{\mathrm{V}_{\mathrm{in}}}{\mathrm{L}}, \quad \text{per } Ton \quad (5.1)$$

$$\frac{\mathrm{d}\mathbf{i}_{\mathrm{L}}}{\mathrm{d}\mathbf{t}} = \frac{\mathbf{V}_{\mathrm{in}} - \mathbf{V}_{\mathrm{o}}}{\mathrm{L}}, \text{ per } Toff (5.2)$$

In questo caso le pendenze sono tali da far si che la corrente sull'induttore non si annulla mai, ed inoltre si considera l'ipotesi di ciclostazionarietà. In queste condizioni si dice che il sistema lavori in *CCM Continuous Conduction Mode*. Andando a scrivere le due relazioni sopra, come la variazione che la corrente  $i_L$  subisce all'interno di ciascun intervallo e andando a definire il guadagno *M* del convertitore abbiamo:

$$\Delta I_{L} = \frac{V_{in}}{L}$$
 Ton e  $\Delta I_{L} = \frac{V_{in} - V_{o}}{L}$  Toff (5.3)

$$M = \frac{V_o}{V_{in}} > 1 \qquad (5.4)$$

Uguagliando le prime due equazioni riusciamo ad ottenere la seguente relazione :

$$M = \frac{1}{1-D} \quad (5.5)$$

Dove *D* rappresenta il *Duty Cycle* della tensione in ingresso al Gate dell'interruttore. Esso è definito come:

$$D = \frac{T_{on}}{T_{on} + T_{off}} \quad (5.6)$$

$$con \quad T_{sw} = T_{on} + T_{off} \quad (5.7)$$

Essendo che il *Duty Cycle D*, può assumere valori compresi tra 0 e 1, il guadagno di tensione *M* teoricamente può assumere valori che vanno da 1 a  $\infty$  (Figura 5.4).

In realtà valori di guadagno troppo alti sono da escludere a causa della non idealità del circuito, per cui valori realistici ottenibili non sono superiori a 5.



Figura 5.4: Grafico dell'andamento del guadagno di tensione M in funzione di D

Una considerazione interessante è relativa al punto di vista del carico. Iinfatti come possiamo vedere dalle relazioni descritte non c'è nessuna dipendenza con quest'ultimo. Questa condizione è estremamente vantaggiosa per il circuito che si deve andare a realizzare, poiché esso funzionerebbe indipendentemente dal numero e dal tipo di utilizzatori collegati sul *Power Distribution Bus*. Purtroppo andando a determinare la f.d.t caratterizzante il convertitore Boost in modalità *CCM* [10] (Figura 5.5), è possibile notare la presenza di un zero a parte reale positiva :

$$\frac{\widehat{V_{0}}}{\widehat{D}} = \frac{V_{I}}{(1-D)^{2}} * \frac{\left(1 - \frac{L}{R} \frac{1}{(1-D)^{2}}s\right)^{*}(1 + \text{ESR*C}_{S})}{1 + \frac{L}{R(1-D)^{2}}s^{+} \frac{LC}{(1-D)^{2}}s^{2}} \quad (5.8)$$

$$\omega_{p} = 1 - \frac{D}{\sqrt{LC}} \rightarrow Q = R(1-D)\sqrt{\frac{C}{L}}, \quad \omega_{RHP-Z} = \frac{(1-D)^{2}R}{L}, \quad \omega_{ESR-Z} = \frac{1}{\text{ESR*C}} \quad (5.9)$$

$$H(f)$$

Figura 5.5: Funzione di trasferimento del convertitore Boost in modalità CCM

Gli effetti della presenza di questo zero portano ad un'elevata instabilità con conseguente difficoltà di controllo del convertitore ad anello chiuso. Configurazione nel quale si vuole che lavori il nostro circuito al fine di ottenere valori di tensione in uscita più costanti possibili. Infatti, la suddetta modalità di controllo permette attraverso la valutazione di alcuni parametri come ad esempio tensioni o correnti d'uscita (influenzati da eventuali variazioni di carico o di tensione di ingresso), di modificare il valore del *Duty Cycle* attuando le opportune correzioni.

In particolare il significato fisico della presenza del *RHP* (*Right Half Plane*) zero è associabile ad una riduzione del trasferimento di potenza in uscita. Infatti, se ad esempio consideriamo di voler aumentare la tensione in uscita al convertitore, lo facciamo aumentando il valore del *D*. Questo porta ad un aumento della durata del *Ton* e di una reciproca riduzione del *Toff*, causando una variazione della corrente dell'induttore che tuttavia sappiamo non essere molto elevata (infatti essa può solo variare lentamente). Una riduzione del *Toff* porta anche un decremento del tempo di attività del diodo, con repentina riduzione del valore medio della corrente su quest'ultimo, e quindi anche in uscita al convertitore. Cosi facendo si ha in ingresso una situazione che ancora non è cambiata mentre in uscita si ha l'abbassamento della potenza.

L'impossibilità di controllare in maniera efficace il nostro convertitore nella seguente modalità porta allo studio dello stesso in *DCM (Discontinuous Conduction Mode)*. Quest'ultima è una modalità di funzionamento caratterizzata da una corrente di induttore del convertitore che tende ad annullarsi, prima della fine del periodo (*Tsw*) (Figura 5.6). L'intervallo di tempo nel quale la corrente  $i_L$  rimane nulla prende il nome di  $T_{idle}$ 



Figura 5.6: Corrente sull'induttore in funzione del tempo in modalita DCM

Le pendenze della corrente sull'induttore rimangono le stesse del caso precedente, pertanto possiamo considerare le stesse relazioni:

$$\Delta I_{L} = \frac{V_{in}}{L}$$
 Ton e  $\Delta I_{L} = \frac{V_{in} - V_{o}}{L}$  Toff (5.10)

Inoltre considerando le seguenti relazioni:

$$T_{sw} = T_{on} + T_{off} + T_{idle} \quad (5.11)$$
$$M = \frac{T_{on} + T_{off}}{T_{off}} = 1 + \frac{T_{on}}{T_{off}} \quad (5.12)$$

E la corrente media sul diodo :

$$I_{D_{ave}} = \frac{V_o}{R_{load}} = \frac{V_{in} * T_{on} * T_{off}}{2 * L * T_{sw}} \quad (5.13)$$

Attraverso opportune sostituzioni si ottiene :

$$M = \frac{R_{load} * T_{on} * D}{2 * L * (M-1)} \quad (5.14)$$

E quindi abbiamo :

$$M = \frac{1 \pm \sqrt{1 + (\frac{2 * R_{laod} * D^2}{L * f_{SW}})}}{2} \quad (5.15)$$

Come si può notare dall'ultima espressione, il guadagno di tensione in questa modalità dipende dal carico. Questo può avere conseguenze catastrofiche per il circuito in esame, poiché ad esempio se consideriamo un carico variabile in uscita del convertitore (come accade nell'architettura *AraMis*), e che questo venga per qualche motivo disconnesso, allora in uscita al circuito si vedrà una resistenza idealmente infinita o comunque molto elevata, R ->  $\infty$ . Questa condizione porta il guadagno di tensione *M* ad assumere anch'esso valori molto alti,  $M \rightarrow \infty$  e di conseguenza V<sub>0</sub> ->  $\infty$ . Valori di tensione troppo elevati potrebbero portare non solo alla distruzione del circuito stesso ma anche di tutti i circuiti ad esso collegati, rendendo il convertitore Boost inutilizzabile con le modalità di funzionamento finora viste.

Si è cercato quindi altri tipi di soluzioni che permettessero di implementare un'interfaccia tra la sorgente di energia secondaria e il *PDB*, senza andare a compromettere il funzionamento degli stessi. Altri circuiti di *step-up* presente in letteratura sono i cosiddetti convertitori isolati.

# 5.1.1 Inadeguatezza dei convertitori isolati

I convertitori isolati sono quella categoria di convertitori caratterizzata dalla presenza di un trasformatore, spesso definiti anche convertitori derivati poiché derivano direttamente da topologie base quali : buck, boost e buck-boost,

La presenza di un trasformatore all'interno di questi circuiti porta diversi vantaggi, tra cui:

- Isolamento galvanico tra sorgente e carico
- Uscite multiple
- Nessuna limitazione della tensione di uscita (sia in termini di polarità sia di ampiezza)
- Maggiori gradi di libertà ( non solo il *Duty Cycle* ma anche il rapporto spire del trasformatore  $N_s / N_p$
- Possibilità di distribuire lo stress nel modo più conveniente all'interno del circuito

Ovviamente facendo fronte ad un maggiore spazio occupato, e ad una progettazione del circuito più complessa.

Essendo che molti di questi circuiti derivano direttamente dalla configurazione buck, presentano una f.d.t. molto simile a quest'ultimo con la possibilità quindi di sistemi di controllo stabile sia in *CCM* sia in *DCM* e con un'uscita indipendente dal carico applicato.

Inoltre attraverso l'utilizzo del trasformatore si ottengono tensioni di uscita comunque maggiori rispetto a quelle di ingresso, andando ad ovviare a tutti i problemi che rendevano inutilizzabili le configurazioni base viste in precedenza. Pertanto la scelta di un convertitore come ad esempio quello foward (Figura 5.7) sembrerebbe risultare idonea.



Figura 5.7 : Schema circuitale del convertitore isolato di tipo Foward

Tuttavia la mancanza della presenza sul mercato di trasformatori ottimizzati sia in termini di volume sia di peso, rendono tali soluzioni inapplicabili per la realizzazione di strutture nanosatellitari, dove questi parametri meccanici risultano essere vincolanti. L'impossibilità dell'utilizzo di queste soluzioni, per la realizzazione delle schede costituenti il satellite *AraMis*, ha portato a ricercare soluzioni valide sia dal punto di vista elettrico sia da quello meccanico all'interno delle topologie base precedentemente illustrate.

# 5.1.2 Boundary Condition Conduction Mode (BCCM)

Come precedentemente visto, un convertitore DC-DC Boost non può essere utilizzato all'interno del sistema *Bk1B118\_Battery\_Discharger\_V2* (necessario per la scarica delle batterie) come circuito innalzatore di tensione, nel caso in cui esso lavori nelle due modalità di funzionamento tipiche dei circuiti di tipo switching (*CCM* e *DCM*).

Infatti l'utilizzo del circuito nelle seguente modalità porta a due principali problematiche:

- Instabilità dovuta alla presenza di uno zero a parte reale positiva (*RHP*) nella funzione di trasferimento del convertitore in *CCM*
- Dipendenza del guadagno di tensione *M* dal carico, con possibile distruzione del dispositivo e degli elementi ad esso collegati.

Per ovviare a tali problemi si è cercato di utilizzare un sistema di controllo che utilizzasse un approccio alternativo, rispetto ai classici *Voltage Mode* e *Current Mode* (che prevedono la correzione del *Duty Cycle* attraverso il monitoraggio di un' opportuna grandezza, ad esempio tensione di uscita o corrente sull'induttore). E che utilizzasse un metodo che agisca non solo sul *D* ma anche sulla frequenza di switching  $f_{sw}$  dell'interruttore.

Il concetto sui cui si basa il controllo utilizzato, è quello di mantenere il sistema in una condizione di funzionamento limite tra il DCM e il CCM a prescindere dal carico applicato, ottenendo quello che in letteratura prende il nome di *Boundary Condition Conduction Mode (BCCM)*. Ovvero una condizione in cui il sistema sembri lavorare in DCM, tendendo cosi ad annullare il valore della corrente che scorre sull'induttore prima della fine del periodo  $T_{sw}$ . Ma mantenendo la condizione di corrente i<sub>L</sub> nulla solo per un istante di tempo più limitato possibile. Questo viene ottenuto forzando la commutazione

dello stato dell'interruttore MOS, che inizia a condurre prima della fine del periodo  $T_{sw}$ modificandone così la frequenza di funzionamento del sistema. L'implementazione di un controllo di questo tipo permette di avere, dato l'annullamento della corrente all'interno del periodo di commutazione, un convertitore che lavora essenzialmente in DCM (e progettato come tale). Avendo quindi il vantaggio di non presentare uno zero a parte reale positiva nella sua funzione di trasferimento. Inoltre essendo limitato il tempo in cui esso rimane in questa condizione (attraverso la commutazione forzata dell'interruttore) fa in modo che non vi sia alcuna dipendenza della tensione di uscita dal carico applicato. E' evidente che all'interno del sistema, l'utilizzo di un circuito di potenza con un tale approccio, porti ad avere diverse frequenze di lavoro difficilmente prevedibili e che dipendano dai circuiti collegati allo stadio di uscita. Questa situazione porta all'irradiazione di campi ad ampio spettro che normalmente causerebbero grossi problemi. elettromagnetici Tuttavia trovandosi all'interno di un satellite che non deve soddisfare specifiche riguardanti la compatibilità elettromagnetica mentre opera nello spazio, ne consente il suo utilizzo. Il controllo appena descritto è stato implementato combinando elementi sia digitali sia analogici, il cui insieme costituisce il blocco denominato Bk1B118\_V2\_BCCM\_Control.

# 5.2 Elementi principali del Bk1B118\_Battery\_Discharger\_V2

Il circuito di scarica progettato prevede innanzitutto l'utilizzo di questi due blocchi : il *Bk1B118\_V2\_Boost\_Converter* e il *Bk1B118\_V2\_BCCM\_Control* che mediante la loro interazione permettono di ottenere un convertitore in grado di innalzare il livelli di tensione forniti dalle batterie in modo del tutto sicuro. E inoltre l'utilizzo di un ulteriore blocco chiamato Bk1B118\_V2\_Feedback\_Net che permette di ottenere sul bus d'uscita la caratteristica desiderata precedentemente definita. Si mostra in seguito un grafico che evidenzi le connessioni che caratterizzano le interazioni tra i tre suddetti blocchi.



*Figura 5.8*:Interazione tra i blocchi principali del *Bk1B118\_Battery\_Discharger\_V2* 

Il principio di funzionamento dell'insieme di tali blocchi, si basa sull' individuare l'istante di tempo in cui la corrente sull'induttore si annulla. Per far ciò la tensione ai capi del diodo all'interno del boost, attraverso i segnali di ingresso *VA\_diode* e *Vk\_diode*, viene misurata dal circuito di controllo BCCM. In particolare, quando la tensione misurata ai suoi capi è nulla ,il circuito di controllo genera un segnale di uscita alto che pilota l' NMOS del convertitore in uno stato di conduzione portando alla nuova carica dell'induttore.

La durata del periodo in cui la corrente dell'induttore del convertitore cresce, dipende dalla tensione di feedback generata dal blocco *Bk1B118\_V2\_Feedback\_Net* il cui valore è legato alle caratteristiche elettriche presenti sul bus in quel dato momento (tensione e correnti sul *PDB*). Questo infatti influenza il valore massimo di corrente presente sull'induttore e conseguentemente il valore di corrente in uscita al convertitore a cui è legato il quantitativo di energia fornito al sistema di distribuzione dal circuito di scarica.

Di seguito si descrive nel dettaglio ogni singolo blocco illustrandone il funzionamento mediante l'utilizzo di opportune simulazioni.

#### 5.2.1 Bk1B118\_V2\_Boost\_Converter

Il principio di funzionamento appena descritto permette di far funzionare il convertitore DC-DC di tipo Boost in modalità *BCCM* (*Bounday Condition Conduction Mode*) che consente di ottenere una corrente nulla solo per un istante di tempo brevissimo.

#### 5.2.1.1 Progettazione del Bk1B118\_V2\_Boost\_Converter

Il dimensionamento del circuito di switching è stato fatto pertanto considerando quest'ultimo come se lavorasse in DCM (anche se per un intervallo ridotto) di modo tale che la corrente di induttore raggiungesse lo zero all'interno del ciclo. Per ottenere un convertitore Boost che lavori in DCM è necessario dimensionare in modo opportuno il valore dell'induttore, in modo che :

$$L > L_{crit}$$
 (5.16)  
con  $L_{crit} = \frac{(1-D)^2 R D}{2 f_{out}}$  (5.17)

Si dimensiona inoltre il condensatore di uscita  $C_{out}$  in funzione del ripple desiderato sulla tensione di uscita :

$$C_{out} = \frac{\Delta I_L}{8 f_{sw} V_{ripple}} \quad (5.18)$$

Ottenendo quindi :

Il circuito reallizzato viene mostrato in Figura 5.9 :



*Figura 5.9*: Schema elettrico del *Bk1B118\_V2\_Boost\_Converter* realizzato in *Mentor Graphics* 

Come si nota dal grafico, all'interno del blocco è presente anche un driver che permette tramite i segnali provenienti dal circuito di controllo di fornire segnale adeguati (giusto quantitativo di corrente al gate) al pilotaggio del NMOS.

Il condensatore in ingresso è stato dimensionato considerando i fenomeni di inrush current che si presentano all' accensione del dispositivo tramite opportuni *Load Switch* (descritti in seguito) al fine di ridurre il più possibile lo stress sulla batteria ed evitare correnti di scarica della stessa tali da poterla danneggiare.

Per quanto riguarda la scelta del diodo e del MOS N sono state fatte considerazioni riguardanti l' efficienza del convertitore da realizzare. E sono state scelte delle soluzioni che riducessero al minimo la potenza dissipata, attraverso la valutazione del caso in cui la corrente in uscita dal convertitore fosse la massima possibile (tensione sul *PDB* di 12.5V). Per il MOS si valutano le perdite di conduzione, le perdite sul gate e quelle di commutazione :

• Perdite di conduzione

$$P_{cond} = I_{RMS}^{2} * R_{dson} \quad (5.19)$$

Con: 
$$I_{RMS} = \sqrt{\frac{(Imax)^2}{3} * \frac{T_{on}}{T}}$$
 (5.20)

Dal datasheet[11] si osserva una  $R_{dson} = 0.029\Omega$  e attraverso simulazioni si ottengono i valori di  $I_{max}$  sull'interruttore. Ottenendo così una  $P_{cond} = 35.6$  mW

• Perdita sul gate

$$P_{gate} = Q_{gs} * V_{gs} * f = 0.724 mW \ (5.21)$$

Con il massimo valore di  $Q_{gs}$ =3.3nC (da datasheet).

• Perdite di commutazione

$$P_{sw} = K * (T_{rise} + T_{fall}) * V_{ds} * I_{ds} * f = 16.92 \text{ mW}$$
 (5.22)

Per il diodo la potenza dissipata è invece calcolata nel seguente modo :

$$P_d = V_f * I_{ave} = 290 mW$$
 (5.23)

Con  $V_f = 0.35 V[12]$ .

Si sono inoltre considerate le perdite sulla resistenza serie parassita dell'induttore :

$$P_{L} = I_{RMS}^{2} * R_{ser} = 320 \text{mW}$$
 (5.24)

Mentre l'utilizzo di condensatori ceramici ha reso trascurabili le perdite sui loro elementi parassiti , poiché presentano resistenze molto basse.

In conclusione si ha una  $P_{diss totale} = P_{con} + P_{gate} + P_{sw} + P_L + P_d = 663 \text{mW}.$ 

Considerando che questi valori sono stati ottenuti considerando la condizione di tensione sul bus di potenza pari a 12.5V significa avere una corrente massima in uscita idealmente pari a 0.96A (come illustrato meglio dopo).

Cosi possiamo calcolare l'efficienza del nostro convertitore essendo :

$$P_{o} = V_{o} * I_{o} \quad (5.25)$$
  
ed  $\eta = \frac{P_{o}}{P_{o} + P_{diss}} = 0.947 \quad (5.26)$ 

Quindi l'efficienza del convertitore è pari al 94.7 %.

#### 5.2.1.2SpiceNetlist e componenti del Bk1B118\_V2\_Boost\_Converter

Si riporta di seguito la netlist del blocco *Bk1B118\_V2\_Boost\_Converter* (Figura5.10):

| *Definition For Project Bk1B118_V2_Boost_converter                   |
|----------------------------------------------------------------------|
| .SUBCKT Bk1B118_V2_Boost_converter OUT EN GATE DGND IN VA_DIODE      |
| LL1 VA_DIODE IN {MC( 33.00000000 , /100)} RSER=94.500000M            |
| XX81 DGND GATE OUTA N1N16 DGND EN IN DGND UCC27425                   |
| XX11 VA_DIODE OUT SL43                                               |
| XM5 VA_DIODE N1N16 DGND irf7311                                      |
| CC3 IN DGND {MC( 100.0000000 , 20.000000 /100)} TC=15.000000U        |
| CC4 N1N261 DGND {MC( 2.200000N , 5.000000 /100)} TC=10.000000U       |
| CC5 OUT DGND {MC( 330.0000000 , 10.000000 /100)} TC=10.000000U       |
| RR25 VA_DIODE N1N261 {MC( 56ohms , 1000.000000M /100)} TC=10.000000U |
| * CROSS-REFERENCE Ø                                                  |
| .ENDS                                                                |

Figura 5.10:Netlist Spice del Bk1B118\_V2\_Boost\_Converter

#### E la lista dei componenti utilizzati:

| # | QTY | Part Number           | PartLabel                      | PartName     | Ref Designator | Value  |
|---|-----|-----------------------|--------------------------------|--------------|----------------|--------|
|   |     |                       |                                |              |                |        |
| 1 | 1   | DK_490-1459-1-ND      | C_2n2_0603_COG_50_5            | C2 n2        | C4             | 2.2n   |
| 2 | 1   | R5_788-3057           | C_100u_1206_10v_X5R_20         | C_100u       | C3             | 1000   |
| 3 | 1   | DK_597D337X902OH2T-ND | C_330U_3226_20v                | C_330U       | C5             | 330u   |
| 4 | 1   | DK_296-25241-1-ND     | DRV_UCC27425_SOIC8             | DRV_UCC27425 | X81            |        |
| 5 | 1   | RS_610-6687           | Q_IRF7311_SO8_N_6A6_20V_double | IRF7311      | M5             |        |
| 6 | 1   | RS_748-7261           | L_33u_4040_4.4_95m_20          | L33u         | L1             | 33u    |
| 7 | 1   | RS_504-7868           | R_56R_0603_100_1               | R56R         | R25            | 56ohms |
| 8 | 1   | DK_SL43-E3/57TGICT-ND | D_SL43_SH_DO-214-AB_4_30       | SL43-E3/57T  | X11            | 1      |

Figura 5.11:Lista dei componenti utilizzati per il Bk1B118\_V2\_Boost\_Converter

## 5.2.2 Bk1B118\_V2\_BCCM\_Control

Il *Bk1B118\_V2\_BCCM\_Control* è un blocco circuitale analogico/digitale che permette di far operare un convertitore DC-DC di tipo Boost nella modalità *BCCM* (*Boundary Condition Conduction Mode*) precedentemente illustrata.

Il sistema è descritto attraverso un *Class Diagram* (Figura 5.12) che mostra le relazioni e le caratteristiche degli attori principali, che sono :

- *Bk1b118\_V2\_Triangular\_waveform*
- Bk1b118\_V2\_Compensator
- *Diode\_current\_measure*
- Logic\_Circuit

In realtà il *Diode\_current\_measure* e il *Logic\_Circuit* non sono veri e propri blocchi all'interno dello schematico (Figura 5.13), ma vengono sintetizzati come blocco all'interno della descrizione in *Visual Paradigm*, per indentificare meglio le azioni che l'insieme dei singoli componenti svolge all'interno del funzionamento complessivo.



Figura 5.12: Class diagram del Bk1B118\_V2\_BCCM\_Control

Altri dispositivi chiave all'interno del circuito, che invece non sono stati inglobati all'interno di altri blocchi sono :

- *LTC6752HS5\_Comparator*, questo circuito compara il segnale di controllo proveniente dal blocco *Bk1b118\_V2\_Compensator* e il segnale triangolare in uscita dal *Bk1b118\_V2\_Triangular\_waveform*, andando a generare un segnale *pwm* in ingresso al *Logic\_Circuit*
- *LT1790-2V5\_Reference*, genera la tensione di riferimento a 2.5V utilizzato dal compensatore *Bk1b118\_V2\_Compensator* per valutare la tensione di feedback.
- *LM1117\_Voltage\_Regulator*, permette di regolare i livelli di tensione provenienti dalla batteria a un valore di 3.3V compatibile con le dinamiche di molti dei dispositivi utilizzati.

# 5.2.2.1 Progettazione del Bk1B118\_V2\_BCCM\_Control

Si mostra in Figura 5.13 il circuito che implementa quanto descritto dal diagramma delle classi, andando successivamente ad analizzare ognuna delle parti.



*Figura 5.13*: Schema elettrico realizzato in *Mentor Graphics* del *Bk1B118\_V2\_BCCM\_Control* 

In alto a sinistra sono presenti l'insieme di dispositivi che costiuiscono il blocco chiamato *Diode\_current\_measure*.

Esso è un comparatore che ha il compito di monitorare la corrente che scorre sul diodo del convertitore Boost, ed in particolare individuare l'instante di tempo (all'interno dell'intervallo *Toff*) in cui la corrente sul diodo (che è la stessa dell'induttore all'interno di questo intervallo) diventi zero(diodo si interdice).

Cosi facendo si va a generare un cambiamento di stato all'interno del *Logic\_Circuit* causando la commutazione forzata dello switch presente nel convertitore.

Nello stato di conduzione del diodo si ha una tensione presente sul morsetto " + " del comparatore maggiore rispetto a quella sul morsetto " - ", generandone una sua uscita alta. Nel stato di interdizione del diodo invece, l'interruttore MOS inizia a condurre portando a zero la tensione al morsetto positivo mentre al morsetto negativo è presente la tensione  $V_o$  del convertitore opportunamente scalata, portando ad un uscita del comparatore un livello di tensione basso.

Come è possibile vedere, agli ingressi del comparatore vengono posti dei partitori di tensione in modo tale da rendere compatibili i livelli di tensione del convertitore con le dinamiche del dispositivo di comparazione.

Sono stati scelti valori di resistenze sufficientemente alti per ridurre al minimo gli assorbimenti di corrente.

In alto a destra è presente il *Logic\_Circuit*, costituito da un insieme di porte logiche, che si comporta come una macchina a stati, la cui attraverso opportuni segnali provenienti dai circuiti adiacenti permette di gestire il controllo desiderato.

Dopo alcune operazioni di sintesi si è riuscito a ridurre al minimo il numero di componenti logici utilizzati, minimizzando lo spazio occupato dal circuito.

Questo infatti è costituito da solo 3 porte NOR (a 3 ingressi, di cui non tutti utilizzati e quindi collegati a *DGND*) incluse all'interno di un unico integrato e una porta NOT.

Il funzionamento di tale macchina a stati è illustrato dalla seguente figura:



Figura 5.14: Rappresentazione del macchina a stati mediante pallogramma

Gli altri blocchi fondamentati che costituiscono il *Bk1B118\_V2\_BCCM\_Control* sono:

#### Bk1b118\_V2\_Triangular\_waveform

Il seguente blocco permette di generare il segnale di forma triangolare, che viene comparato con il segnale di controllo *Vcontrol* proveniente dal compensatore.

Esso è costituito (Figura 5.15) da un gruppo RC collegato alla tensione di alimentazione(in questo caso quella di batteria pari a 7.4V), il cui in funzione dello stato dell'interruttore carica e scarica il condensatore di uscita, generando appunto una variazione di tensione ai suoi capi associabile ad una forma d'onda di tipo triangolare.

La commutazione dell'interruttore dipende dallo stato del segnale *OUT* in uscita al *Logic\_Circuit*, che viene applicato all'ingresso *IN* del seguente blocco e opportunamente invertito dalla presenza di una porta logica NOT posta al gate del MOSFET N.

Pertanto l'input a tale blocco non deve superare la dinamica di ingresso di tale porta logica (5.5V).



*Figura 5.15*: Schema elettrico del *Bk1B118\_V2\_Triangular\_Waveform* 

Dal grafico inoltre è possibile notare la presenza di un diodo posto in serie all'interruttore . Il suo inserimento permette di ottenere una tensione minima in uscita pari alla sua tensione di soglia V $\gamma$  uguale a 0.4V.

Nel caso in cui non ci fosse tale dispositivo, si avrebbe la completa scarica del condesatore e quindi una tensione di uscita al *Bk1B118\_V2\_Triangular\_Waveform* nulla. Con questo valore di tensione, anche in presenza di una tensione di controllo bassa (pari a zero) si avrebbe erroneamente in uscita dal comparatore un livello di tensione che rimane sempre alto(a meno che non si disabiliti l' intero sistema).

La tensione massima di uscita al blocco considerato può assumere asintoticamente un valore pari: alla tensione di alimentazione *VAL* ripartita sul resistore  $6_R27$  (ovviamente questa condizione si verifica quando l'ingresso è mantenuto sempre ad un livello alto). Si noti anche la presenza di un ulteriore resistore  $6_R26$  necessario ad evitare il cortocircuito della batteria, causato dalla chiusura dell'interruttore.

Il suo valore è stato scelto in modo tale da rendere l'assorbimento di corrente dalla batteria trascurabile .

In seguito viene mostrato il *TEST\_ Bk1B118\_V2\_Triangular\_waveform* effetuato per verificare il corretto funzionamento di tale circuito (Figura 5.16):


Possiamo vedere che quando l'ingresso è basso il transistore inizia a condurre scaricando il condensatore di uscita, mentre quando il segnale di ingresso diventa alto il condensatore inizia a caricarsi ma soltanto dopo un tempo di ritardo dovuto al tempo di propagazione dell'inverter e al tempo di spegnimento dell'interruttore pari a circa 12ns.

#### Bk1b118\_V2\_Compensator

Considerando di utilizzare il nostro convertitore Boost in modalità DCM, anche se per un breve periodo, abbiamo che la sua funzione di trasferimento sarà caratterizzata da un polo e da uno zero[10] come si vede dalla curva in rosso in Figura 5.17:



Figura 5.17: Comportamento in frequenza del sistema e compensazione desiderata

La sua relazione sarà :

$$\frac{\widehat{V_{o}}}{\widehat{d}} = \frac{2V_{o}}{D} \frac{M_{DCM}-1}{2M_{DCM}-1} \frac{1+\frac{s}{\omega_{ESR}-Z}}{1+\frac{s}{\omega_{p}}} \frac{1}{\widehat{V_{tri}}} \quad (5.27)$$
$$\cos \omega_{p} = \frac{2M-1}{RC (M-1)} \quad e \; \omega_{ESR-Z} = \frac{1}{ESR*C_{out}} \; (5.28)$$

dove  $V_{trl}$  è l'ampiezza massima dell'onda triangolare posta in ingresso al modulatore PWM.

La presenza di un solo polo anche se si hanno due componenti reattivi, è dovuta principalmente alla totale scarica dell'induttore all'interno del ciclo, che fa si che la sua memoria venga ogni volta resettata, portando ad avere un polo a frequenze superiori ad fsw/2 (e quindi al di fuori della nostra frequenza di funzionamento).

In particolare quando si realizza un sistema ad anello chiuso, si vuole ottenere un guadagno di anello T che in frequenza abbia un andamento simile a quello di un integratore (curva in verde). Questo principalmente per due ragioni:

- una f.d.t. di questo tipo permette di avere un elevato guadagno alle basse frequenze, riducendo quindi l'errore in DC.
- Il margine di fase del sistema in questo modo sarà circa 90°. Questo non sarebbe molto buono poiché un margine di tale tipo significherebbe una risposta dinamica abbastanza lenta. Tuttavia considerando la non idealità dei componenti si otterrà un margine di fase di circa 50° (che rappresenta un ottimo margine)

Per ottenere un guadagno di anello simile ad un intgratore, dobbiamo realizzare un opportuno compensatore con caratteristica simile a quella rappresentata in blu. Per far ciò si utilizza un compensatore di tipo 2 (PI) [10] (Figura 5.18).



Figura 5.18: Compensatore di tipo 2 (controllore PI)

Al fine di soddisfare il criterio di Nyquist consideriamo una frequenza di crossover  $f_c$ inferiore ad almeno la metà di  $f_{sw}$  ed in particolare prendiamo fc= 25kHz (sei volte più piccola).

Poniamo inoltre la fz del compensatore pari alla frequenza del polo del convertitore Boost (il cui valore è determinato da un dimensionamento precedente del boost) e la sua  $f_p$  pari a fsw/2.

La funzione di quest'ultimo polo detto anche di chiusura è quella di ridurre la banda del sistema e di diminuire il rumore introdotto a frequenze superiori di fsw/2. Avendo le seguenti equazioni :

$$A_{0} = \frac{2V_{0}}{D} \frac{M_{DCM}-1}{2M_{DCM}-1} \frac{1}{V_{tri}} (5.29)$$
$$A_{1} = \frac{f_{c}}{f_{p}A_{0}} (5.30)$$
$$f_{z} = f_{sw}/2 (5.31)$$

Le relazioni di progettazione del compensatore sono :

$$f_{p} = \frac{1}{2\pi R_{2}C_{2}} (5.32)$$
$$f_{z} = \frac{1}{2\pi R_{2}C_{2}} (5.33)$$
$$A_{1} = \frac{R_{2}}{R_{1}} (5.34)$$

Come possiamo notare, abbiamo un sistema di tre equazioni e quattro incognite. Fissiamo il valore di  $C_1$  pari ad 100 pF, e di conseguenza calcoliamo il resto delle variabili ottenendo:

$$R_2 \approx 13K\Omega$$
  
 $R_1 \approx 39K\Omega$   
 $C_2 \approx 100 pF$ 

In realtà il valore di  $C_2$  è stato leggermente ridotto rispetto a quello ottenuto per rendere il controllo più veloce.

Si ottiene quindi il blocco Bk1b118\_V2\_Compensator in Figura 5.19 :



Figura 5.19:Schema del Bk1b118\_V2\_Compensator realizzato in Mentor Graphics

#### 5.2.2.2Simulazioni del Bk1B118\_V2\_BCCM\_Control

Il principio di funzionamento che implementa il controllo *BCCM*, prevede innanzitutto un segnale di enable al circuito *En\_delayed\_dis*. Esso risulta utile, come vedremo meglio nel circuito complessivo, poiché permette di disabilitare il circuito di controllo quando ancora le tensioni in gioco non sono arrivate a regime. In questo modo si riesce ad evitare comportamenti anomali e indesiderati non facilmente prevedibili a priori.

Quando questo segnale *En\_delayed\_dis* è allo stato logico 'zero', l'uscita dell inverter è a '1. Ouesto porta indipendentemente dallo stato logico degli altri segnali ad avere un 'l' in ingresso ad una porta NOR. E quindi la sua uscita OUT che va a controllare il driver dell'interruttore MOS del circuito switching, pari a 'zero' (ovvero switch OFF), definendo una condizione iniziale in cui partirà sempre il sistema complessivo quando è attivato (Figura 5.21). Infatti prima dell'abilitazione del circuito logico, si presenterà il seguente sul diodo (e sull'induttore) sarà nulla generando un'uscita scenario: la corrente V\_comp\_diode dal "blocco" Diode\_current\_measure anch'essa a 'zero'. Inoltre essendo a avremo una Vtri (uscita dal blocco 'zero' l'uscita OUT del Logic\_Circuit Bk1b118 V2 Triangular waveform) a livello basso. Così facendo all'ingresso della NOR( in alto a sinistra, che da ora in poi chiameremo NOR1) si ha una configurazione "000", che dalla tabella della verità di una NOR (Figura 5.20) si può vedere che essa causi in uscita un livello logico alto. E di conseguenza si avrà in uscita della NOR in alto a destra (che chiameremo NOR2) un valore logico basso.

| A | В | С | Y |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

Figura 5.20: Tabella della verità di una NOR a 3 ingressi

Partire da tale condizione è importante poiché un segnale *En\_delayed\_dis* alto, porta ad avere in ingresso della NOR avente in uscita il segnale *OUT*(che da adesso in poi chiameremo NOR3), la configurazione in ingresso "000" andando a determinare una transizione basso-alta della uscita logica. Ciò attiva sia l'interruttore MOS (del convertitore) sia il circuito di generazione dell'onda triangolare (generazione del fronte di salita della forma d'onda), portando alla carica dell'induttore. Quanto detto è illustrato dal grafico sotto, che ritrae la parte iniziale del T*EST\_Bk118\_V2\_BCCM\_Control*.



*Figura 5.21*: Prima parte del *TEST\_Bk118\_V2\_BCCM\_Control* 

Dal grafico si nota nella prima fase la condizione iniziale descritta, all'arrivo del segnale di enable alto (in celeste) l'uscita del "blocco" *Logic\_Control*, chiamata in questo caso V(q), si porta ad un valore alto. Questo attiva il circuito di generazione d'onda triangolare che

possiamo vedere inizia il suo fronte di salita (Vchargetri), così come la corrente sull'induttore. Ouando il segnale triangolare supera il valore della tensione Vcontrol, l'uscita del comparatore subirà una transizione basso-alta, che porta ad avere in ingresso della NOR3 un '1' logico andando a forzare in accordo con la sua tabella della verità l'uscita OUT (o V(q) nel grafico) a 'zero' (Figura 5.22). Questo porta all'apertura del NMOS del convertitore, alla conseguente conduzione del diodo e alla scarica dell'induttore. Il diodo in stato ON genera in uscita del circuito di misura di corrente, un valore di Vcomp alto. Questa situazione risulta essere una condizione critica del sistema, poiché la transizione ad un livello logico basso del segnale OUT genera il fronte di discesa dell'onda triangolare, pertanto è necessario garantire che: il segnale Vcomp sia a livello alto prima che il segnale Vchargetri diventi inferiore alla tensione di controllo Vcontrol (segnale Vtri all'uscita del comparatore basso). Pertanto si deve avere un tempo  $T_{Vchargetri} < Vcontrol^{1}$ maggiore rispetto al tempo  $T_{turnoff delay MOS}^2$ , affinché si eviti la generazione di impulsi all'uscita del sistema *Bk118\_V2\_BCCM\_Control*. Questi spuri porterebbero a commutazioni indesiderate del dispositivo, aumentandone la potenza dissipata e causandone possibili malfunzionamenti. La scelta del transistore MOS è stata fatta considerando anche questo vincoli, cercando un dispositivo in grado di soddisfare tali limiti di velocità ma che fosse anche compatibile con le specifiche elettriche derivanti dall'utilizzo del convertitore.



<sup>&</sup>lt;sup>1</sup> tempo necessario alla *Vchargetri* per passare dal suo valore massimo assunto durante il periodo *Ton* del convertiore ad un valore di tensione inferiore a *Vcontrol* 

<sup>&</sup>lt;sup>2</sup> Tempo necessario a far passare il MOSFET N del convertitore dal suo stato di conduzione ad interdetto. Tempo considerato a partire dall'arrivo alto del segnale di spegnimento al driver che pilota il transistore.

Dal grafico si osserva inoltre che la *Vchargetri* non decresce subito dopo l'arrivo del segnale V(q) basso, ma continua a crescere per un aggiuntivo intervallo di tempo legato sia al ritardo della porta NOT sia al tempo di accensione del MOS N all'interno del blocco *Bk1b118\_V2\_Triangular\_waveform*.

Successivamente si ha la scarica dell'induttore che tende ad annullarsi, presentando uno scenario simile a quello iniziale con la differenza del segnale di enable *En\_delayed\_dis*, già abilitato.

Quindi l'annullarsi della corrente sul diodo ( e quindi anche sull'induttore) fa commutare il segnale *Vcomp* a zero.

In ingresso alla NOR1 avremo "000" che genera un '1' alla sua uscita portando basso il livello dello stadio di uscita della NOR2.

Cosi facendo in ingresso alla NOR3 si avrà di nuovo "000" forzando un'altra volta il transistore MOS alla conduzione (induttore immagazzina energia), *OUT*= "alta" (Figura 5.23).



Figura 5.23: Terza (e ultima) parte del TEST\_Bk118\_V2\_BCCM\_Control

Si mostra infine un caso in cui si verifica la condizione critica precedentemente descritta (Figura 5.24):



Come possiamo vedere si hanno commutazioni spurie, questo porta ad avere transizioni dello segnale V(q) anche quando la corrente dell'induttore i<sub>L</sub> non raggiunge lo zero. Facendo lo zoom (Figura 5.25) in particolare possiamo vedere, che questo è causato dal segnale *Vtri* in uscita al comparatore che va a 'zero' prima che *Vcomp* sia a '1'.



# 5.2.2.3 Spice Netlist del Bk1B118\_V2\_BCCM\_Control e lista dei componenti

Si riporta di seguito la netlist del blocco *Bk1B118\_V2\_BCCM\_Control* (Figura 5.26):

.SUBCKT Bk1B118 V2 BCCM Control OUT V battery AGND DGND En delayed dis VK diode VA diode feedback XX3 DGND N1N37 OUT N1N32 N3V3 DGND 74HC27 XX80 En\_delayed\_dis N1N30 N3V3 DGND INVERT2 X0 V comp diode DGND Vpwm N1N37 N3V3 DGND 74HC27 CC1 N1N1026 AGND {MC( 100.000000N , 10.000000 /100)} TC=100.000000U XBk1B118\_V2\_Triangular\_waveform DGND N3V3 Vtri OUT V\_battery AGND Bk1B118\_V2\_Triangular\_waveform XBk1B118\_U2\_Compensator Vcontr AGND N3V3 feedback N2v5 Bk1B118 V2 Compensator XU4 N1N1026 AGND N2v5 LT1790-25 X1 N1N32 N1N30 Upwm OUT N3U3 DGND 74HC27 RR7 N1N202 AGND {MC( 10Kohms , 1000.000000M /100)} TC=100.000000U 1000.000000M /100)} TC=100.000000U RR8 AGND N1N203 {MC( 10Kohms CC9 V\_battery DGND {MC( 100.000000N , 10.000000 /100)} TC=100.000000U XX5 Utri Ucontr N3U3 AGND Upwm LTC6752 XX6 N1N203 N1N202 N3V3 AGND V\_comp\_diode LTC6752 XU2 V\_battery N3V3 DGND LM1117 CC2 N3V3 DGND {MC( 1uF , 10.0000000 /100)} TC=10.000000U RR10 V battery N1N1026 {MC( 1Kohms , 1000.000000M /100)} TC=100.0000000 RR12 VK\_diode N1N202 {MC( 100Kohms , 100.000000M /100)} TC=100.000000U RR13 VA\_diode N1N203 {MC( 100Kohms , 100.000000M /100)} TC=100.000000U \* CROSS-REFERENCE 2 \* 2v5=N2v5 \* 3V3=N3V3 .ENDS



| #                                                                             | QTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Part Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PartLabel                                                                                                                                                                                                                                                                                                                                                                                                   | PartName                                                                                                                                      | Ref Designator                                                                                                         | Value                                                                                                                                   |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 1<br>  2<br>  2<br>  1<br>  2<br>  1<br>  2<br>  2<br>  1<br>  2<br>  2<br>  1<br>  2<br>  1<br>  2<br>  2<br>  1<br>  2<br>  1<br>  2<br>  1<br>  2<br>  1<br>  1<br>  2<br>  1<br>  2<br>  1<br>  1<br>  2<br>  1<br>  1<br>  1<br>  2<br>  1<br>  1<br>  1<br>  1<br>  1<br>  1<br>  1<br>  1<br>  1<br>  1 | DK_587-2400-1-ND<br>RS_264-4630<br>  DK_311-1024-1-ND<br>  DK_445-5496-2-ND<br>  DK_4747578-1-ND<br>  RS_650-4069<br>  DK_LTC6752HSC6-1#TRMPBFCT-ND<br>  DK_296-10501-1-ND<br>  RS_504-8928<br>  RS_504-8934<br>  RS_504-8 | <pre> C_1U_0603_X55_50_10<br/> C_100p_0603_X7R_16_10<br/> C_100p_0402<br/> C_100p_0402_X5R_10_10<br/> DIG_74HC27_NOR_TSSOP_3_1<br/> DIG_74LVC04A_NOT_TSSOP_6_1<br/> Q_IRF7821_S08_N_13A6_30V<br/> OA_LTC6752H55_TSOT23_1_3_6V<br/> OA_TLV221110BVR_SOT23_2V7_10V<br/> R_1K_0603_100_1<br/> R_10K_0603_100_1<br/> R_10K_0603_100_1<br/> R_10K_0603_3_0%1<br/> R_39K_0603_100_1<br/> R_10K_0603_125_0%1</pre> | C1U<br>C100n<br>C100p<br>DIG_74HC27<br>DIG_74LVC04A<br>IRF7821<br>OA_LTC6752H55<br>OA_TLV2211<br>R1K<br>R10K<br>R10K<br>R13K<br>R39K<br>R100K | C2<br>C1,C9<br>C6<br>C7,C8<br>X3<br>X4,X80<br>M6<br>X5,X6<br>X9<br>R10<br>R26<br>R7,R8<br>R28<br>R28<br>R29<br>R12,R13 | 1uF<br>100n ,100n<br>100pF<br>100pF,100pF<br>,<br>,<br>,<br>1Kohms<br>10Kohms<br>10Kohms<br>13Kohms<br>39Kohms<br>100kohms,<br>100kohms |
| 16<br>17<br>18<br>19                                                          | 1<br>  1<br>  1<br>  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <br>RS_504-9656<br> DK_LT1790BCS6-2.5<br> DK_LM1117MPX-3.3/NOPBTR-ND<br> DK_SL43-E3/57TGICT-ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br>R_150K_0603_100_1<br> REF_LT1790_V_SOT23-6_2V5_0%1<br> REG_LM1117_T0252_0.8A_3.3V<br> D_SL43_SH_D0-214-AB_4_30                                                                                                                                                                                                                                                                                          | <br> R150K<br> REF_LT1790-2V5<br> REG_LM1117<br> SL43-E3/57T                                                                                  | R27<br>U4<br>U2<br>X12                                                                                                 | 150Kohms<br> <br> <br> <br>                                                                                                             |

E la lista dei componenti utilizzati (Figura 5.27):

Figura 5.27:Lista compenti utilizzati per il Bk1B118\_V2\_BCCM\_Control

#### 5.2.3 Bk1B118\_V2\_Feedback\_Net

L'ultimo dei tre blocchi da analizzare visti in precedenza è il circuito di generazione del feedback *Bk1B118\_V2\_Feedback\_Net*. Esso è l'elemento fondamentale per ottenere sul bus d'uscita la caratteristica desiderata e illustrata nei capitoli precedenti.

In particolare si richiedeva una resistenza differenziale di uscita dV/dI associata al modulo di scarica pari a -1 $\Omega$  (Figura 5.28).



Figura 5.28: Caratteristica di uscita del Bk1B118\_Battery\_Discharger\_V2

#### 5.2.3.1 Progettazione del Bk1B118\_V2\_Feedback\_Net

Per implementare ciò, si utilizza una rete analogica (Figura 5.29) con il compito di generare una tensione di uscita (*feedback*) paragonabile alla tensione di riferimento del compensatore *Bk1b118\_V2\_Compensator*, scelta pari a 2.5V.



Figura 5.29: Schema elettrico del Bk1B118\_V2\_Feedback\_Net

Se ad esempio dal carico viene richiesta una corrente di 1A a una tensione di 13V, la rete presenterà un valore di tensione di feedback lontano dal riferimento, rendendo impossibile che ciò avvenga seguendo pertanto le specifiche definite.

Il grafico illustrato è riferito ad un valore di corrente normalizzata, in realtà la rete considerata è stata realizzata per un preciso valore di corrente massima, così determinato:

$$I_{PDBmax} = \frac{V_{BATmin} * I_{DISCHARGEmax}}{V_{PDBmin}} \quad (5.35)$$

La corrente massima è calcolata considerando il caso peggiore, che si ha quando la tensione sul PDB è quella minima (ed è richiesta la massima corrente in uscita) e la tensione di batteria è al minimo ( con tensione massima di scarica della batteria).

Un dimensionamento diverso potrebbe portare ad una richiesta di potenza alla batteria maggiore alla sua disponibilità.

Pertanto si ha:

$$V_{BATmin} * I_{discharge} = V_{PDBmax} * I_{PDBmax}$$
 (5.36)

Il valore massimo di corrente sul Power Distribution Bus è di 0.96 A.

Il funzionamento della rete è in particolare caratterizzato dalla presenza di due caratteristiche(o regioni di lavoro): una compresa tra i 12.5V e i 13.5V lineare, e una al di sotto ai 12.5V parallela all'asse delle ascisse.

La selezione di una delle due curve avviene mediante l'uso del diodo  $6_D1$  (in funzione del suo stato di conduzione o interdizione, sceglie la curva più bassa) collegato in uscita all'operazionale  $6_X8$ .

In particolare la rete realizzata è stata resa parametrica, andando a definire alcuni elementi chiave per la progettazione.

In questo modo eventuali cambiamenti, ad esempio un diverso tipo di batterie utilizzate, non comportino una ridefinizione totale della rete.Ma attraverso opportune relazioni si riesce a cambiare il valore di alcuni resistori rendendo perfettamente funzionale l'intero sistema.

Il processo decisionale che ha portato alla scelta dei valori dei resistori utilizzati e della configurazione della rete illustrata in precedenza è stata fatto in modo tale che nel primo tratto (quello lineare) l'uscita dell'operazionale  $6_X8$  (che chiameremo V1, vedi 5.37) risultasse inferiore all'uscita  $6_X7$  (che chiameremo V2, vedi 5.38):

$$V_{1} = V_{PDB} * \frac{6_{R_{30}+6_{R_{22}}}}{6_{R_{30}+6_{R_{22}}+6_{R_{23}}}} + I_{PDB} * K_{i} * \frac{6_{R_{18}}}{6_{R_{18}+6_{R_{19}+6_{R_{20}+6_{R_{24}}}}} (5.37)$$

$$V_{2} = I_{PDB} * K_{i} * \frac{6_{R_{20}} + 6_{R_{18}}}{6_{R_{20}} + 6_{R_{18}} + 6_{R_{19}} + 6_{R_{24}}}$$
(5.38)

Successivamente nel tratto piano (inferiore ai 12.5 V) la tensione V2 assumerà valori inferiori rispetto alla tensione V1. e sarà selezionata dal diodo  $6_D1$  come tensione di feedback.

Ovviamente si vuole che nel tratto in cui vengono selezionate le due tensioni V1 e V2, esse tendano ad assumere valori prossimi alla tensione di riferimento scelta.

La corrente di uscita dell'intero sistema utilizzata nelle espressioni precedenti, come si può notare dal grafico, è misurata attraverso l'utilizzo di un particolare dispositivo, l' *INA138*[13].

Esso attraverso l'utilizzo di una resistenza serie  $6_R31$  posta uguale a 100m $\Omega$ , rileva la corrente e la converte in tensione con un fattore di conversione (transconduttanza) pari a  $6_R31*K_i*R_L$ .

Dove Ki dipende da parametri interni al dispositivo ed è pari ad  $200\mu A/V^2$ , e R<sub>L</sub> è la resistenza in uscita al dispositivo (in questo caso dato dalla somma di 6\_R19+6\_R24+6\_R20+6\_R18) posta a 200K $\Omega$  per ottenere un guadagno K<sub>i</sub> pari a 4. Considerando quindi tali valori :

$$\begin{cases} I_{BUSMAX} = 0.96A \\ V_{BUSmax} = 13.5V \\ V_{BUSmin} = 12.5V \\ V_{ref} = 2.5V \\ R_L = 200K\Omega \\ K_i = 4 \\ 6\_R_{30} + 6\_R_{22} = 25K\Omega \\ 6\_R_{14} = 6\_R_{15} = 6\_R_{16} = 6\_R_{17} = 1.6M\Omega \end{cases}$$

e attraverso l'utilizzo delle relazioni che caratterizzano la scelta dei valori dei resistori utilizzati, ottenute mediante l'uso di formule inverse e di imposizioni fatte :

$$6_R23 = \frac{1 - \frac{V_{ref}}{V_{PDBmax}}}{\frac{V_{ref}}{V_{PDBmax}}} (5.39)$$

$$6_R24 + 6_R19 = R_L * (1 - \frac{V_{ref}}{I_{BUSmax}*K_i})$$
 (5.40)

$$6_R20 = \left[\frac{V_{\text{ref}}}{I_{\text{PDBmax}}*K_i} - \frac{1 - \frac{V_{\text{PDBmin}}}{V_{\text{PDBmax}}}}{I_{\text{PDBmax}}*K_i}\right] * R_L \quad (5.41)$$

$$6_{R18} = \frac{\left(1 - \frac{V_{BUSmin}}{V_{BUSmax}}\right) * V_{ref}}{I_{BUSmax} * K_{i}} * R_{L} (5.42)$$

Si ottengono i seguenti valori di resistori :

$$6_R23 = 110K\Omega$$
  
 $6_R18 = 9.53K\Omega$   
 $6_R20 = 120K\Omega$   
 $6_R24 = 1.8K\Omega$   
 $6_R19 = 68K\Omega$ 

#### 5.2.3.2 Simulazioni del Bk1B118\_V2\_Feedback\_Net

Si riportano le simulazioni effettuate per validare il funzionamento della rete realizzata.

Il TEST1\_Bk1B118\_V2\_Feedback\_net (Figura 5.30) prevede come segnali in ingresso :



Figura 5.30: Grafico relativo al TEST1\_Bk1B118\_V2\_Feedback\_net

Il TEST2\_Bk1B118\_V2\_Feedback\_net (Figura 5.31) prevede come segnali in ingresso :

 $V_{BUS}$  (o  $V_{PDB}$ )=13.5V  $I_{BUS}$  (o  $I_{PDB}$ )=45mA



Figura 5.31: Grafico relativo al TEST2\_Bk1B118\_V2\_Feedback\_net

Si può notare che per entrambe le combinazioni delle sorgenti di ingresso si ha un valore della tensione di feedback pari a 2.5V, in accordo alle specifiche desirate. In realtà il valore di corrente tale per cui la tensione di feedback è pari a 2.5V non è esattamente nullo ma assume un valore comunque accettabile. Inoltre vista la criticità dell'accuratezza della rete in esame per l'intero sistema e considerato che essa è realizzata da un certo numero di resistori (ognuno con proprie tolleranze di fabbricazione), è necessario effettuare simulazioni di tipo Montercarlo per avere risultati considerabili significativi. Si è effettuato pertanto un test con gli stessi segnali di ingresso del primo test visto in precedenza:





Figura 5.32: Grafico relativo al TEST1\_1\_Bk1B118\_V2\_Feedback\_net\_MONTECARLO

Facendo uno zoom sulla *V(feedback)* (Figura 5.33) si osservano valori molto vicini ai 2.5V idealmente desiderati. Ottenendo delle incertezze di circa lo 0.9 % considerate trascurabili.



Figura 5.33:Zoom V(feedback) -TEST1\_1\_Bk1B118\_V2\_Feedback\_net\_MONTECARLO

Lo stesso si è fatto per il secondo test visto in precedenza (medesimi segnali d'ingresso alla rete):

TEST2\_1\_Bk1B118\_V2\_Feedbak\_Net\_MONTECARLO



Figura 5.34: Grafico relativo al TEST2\_1\_Bk1B118\_V2\_Feedback\_net\_MONTECARLO

E lo zoom della tensione *V*(*feedback*) (Figura 5.35):



Figura 5.35:Zoom V(feedback) -TEST2\_1\_Bk1B118\_V2\_Feedback\_net\_MONTECARLO

Anche in questo caso si possono notare tolleranze sulla *V*(*feedback*) relativamente basse e considerabili accettabili pari a 0.92%.

# 5.2.3.3Spice Netlist del Bk1B118\_V2\_Feedback\_Net e lista dei componenti

Si riporta di seguito la netlist del blocco *Bk1B118\_V2\_Feedback\_Net* (Figura 5.36):

```
*Definition For Project Bk1B118_V2_Feedback_net
.SUBCKT Bk1B118 V2 Feedback net Iout measured feedback AGND V bus out converter VAL
RR14 N1N483 N1N542 {MC( 1.6MEGohms , 1000.000000M /100)} TC=100.000000U
RR9 feedback N1N199 {MC( 10Kohms , 1000.000000M /100)} TC=100.000000U
XR31 out_converter V_bus N1N937 N1N939 RES_4WIRE R={MC(100Mohms,1000.000000M/100)} TC=100.000000U
RR30 N1N436 AGND {MC( 1Kohms , 1000.000000M /100)} TC=100.000000U

      RR18
      N1N483
      AGND {MC( 9.53Kohms , 1000.000000M /100)}
      TC=100.000000U

      RR19
      Iout_measured
      N1N877 {MC( 68Kohms , 1000.000000M /100)}
      TC=100.000000U

      RR20
      N1N170
      N1N483 {MC( 120Kohms , 1000.000000M /100)}
      TC=100.000000U

      RR20
      N1N170
      N1N483 {MC( 120Kohms , 1000.000000M /100)}
      TC=100.000000U

      XX7
      N1N170
      N1N199
      ULL AGND
      N1N199

      TL
      TL
      TL
      TL
      TL

DD1 N1N589 feedback MBRM140
XU3 N1N937 N1N939 VAL AGND Iout measured INA138
RR22 N1N441 N1N436 {MC( 24.000000K , 1000.00000M /100)} TC=100.00000U
RR23 out_converter N1N441 {MC( 110Kohms , 1000.000000M /100)} TC=100.000000U
XX8 N1N542 N1N557 VAL AGND N1N589 TLV2211
RR24 N1N877 N1N170 {MC( 1.8Kohms , 1000.000000M /100)} TC=100.000000U
RR15 N1N441 N1N542 {MC( 1.6MEGohms , 1000.000000M /100)} TC=100.000000U
RR16 N1N557 feedback {MC( 1.6MEGohms , 1000.000000M /100)} TC=100.000000U
RR17 N1N557 AGND {MC( 1.6MEGohms , 1000.000000M /100)} TC=100.000000U
* CROSS-REFERENCE 0
 .ENDS
```

```
Figura 5.36: Netlist Spice del Bk1B118_V2_Feedback_Net
```

E la lista dei componenti utilizzati :

| #                               | QTY                             | Part Number                                                                                                                                   | PartLabe]                                                                                                                                                                         | PartName                                                                       | Ref Designator                                    | Value                                                                                           |
|---------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 1<br>1<br>2<br>1<br>1<br>1<br>4 | DK_MBRM140T3G05CT-ND<br>DK_IN4I38NA/250G4-ND<br>DK_296-10501-1-ND<br>RS_566-333_K<br>RS_504-8928<br>RS_504-8928<br>RS_504-9943<br>RS_678-9954 | D_MBRM140T3_SH_D0216AA_40V_1A<br>OA_INA138NA_SOT23-5_1_36V_2.7V<br>OA_TLV22111DBVR_SOT23_2V7_10V<br>R_OR1_1206_250_1<br>R_1K_0603_100_1<br>R_1K8_0603_100_1<br>R_1MEG6_0603_100_1 | MBRM140T3<br>OA_INA138NA<br>OA_TLV2211<br>ROR1<br>R1K<br>R1K<br>R1K8<br>R1MEG6 | D1<br>U3<br>X7,X8<br>R31<br>R30<br>R24<br>R14-R17 | ,<br>100Mohms<br>1Kohms<br>1.8Kohms<br>1.6MEGohms,<br>1.6MEGohms,<br>1.6MEGohms,<br>1.6MEGohms, |
| 8<br>9<br>10<br>11<br>12<br>13  | 1<br>1<br>1<br>1<br>1<br>1<br>1 | RS_504-8934<br>RS_504-8243<br>RS_678-9699<br>RS_504-9224<br>ME_71-TNPW06039K53BEEA<br>RS_505-0561                                             | R_10K_0603_100_1<br>R_68K_0603_100_1<br>R_110K_0603_100_1<br>R_120K_0603_100_1<br>R_9k53_0603_100_0%1<br>R_24k_0603_100_1                                                         | R10K<br>R68K<br>R110K<br>R120K<br>R_9K53<br>R_24k                              | R9<br>R19<br>R23<br>R20<br>R18<br>R22             | 1.6MEGohms<br>10Kohms<br>68Kohms<br>110Kohms<br>120Kohms<br>9.53Kohms<br>24k                    |

Figura 5.37:Lista dei componenti utilizzati per il Bk1B118\_V2\_Feedback\_Net

#### 5.3 Bk1B121L\_Load\_switch\_slow e Bk1B121H\_Load\_switch\_slow

Il Sistema *Bk1B118\_Battery\_Discharger\_V2* è caratterizzato infine dalla presenza di due load switch: uno collegato in ingresso al sistema (lato batteria) e l' altro all'uscita (lato *PDB*). Questi dispositivi permettono, qualora si volesse, di isolare il sistema considerato tramite opportuni comandi di enable. In questo modo il sistema non essendo più collegato alla batteria e al *PDB*, consente prima di tutto di evitare l'ulteriore scarica della batteria , condizione molto utile quando ad esempio la batteria è quasi scarica e ha quasi raggiunto il valore minimo impostato da progetto di 6V (considerato le due celle poste in serie). Ed inoltre permette di ridurre l' assorbimento sul bus di potenza.

## 5.3.1 Progettazione del Bk1B121L\_Load\_switch\_slow

Il *Bk1B121L\_Load\_switch\_slow* è il load switch posto sul lato delle celle costituenti la sorgente di energia secondaria. Lo schema elettrico di questo circuito è il seguente :



Figura 5.38: Schema elettrico del Bk1B121L\_Load\_switch\_slow

Come si può notare è presente un PMOS in configurazione high-side, che in funzione dello stato del NMOS pilotato dal segnale di enable *EN*, conduce o è interdetto. In particolare quando il segnale *EN* è alto il MOS  $6_M2$  conduce , portando il gate del PMOS  $6_X82$  ad un livello di tensione basso e quindi alla conduzione di quest'ultimo. Quando invece il segnale *EN* è basso il  $6_M2$  è interdetto, sui resistori non scorre praticamente corrente e la tensione al gate assume lo stesso valore di quella presente sul source, portando allo spegnimento dell'interruttore. Il transistore di tipo P è stato scelto in funzione della sua resistenza di conduzione  $R_{on}$  (desiderata la più piccola possibile) poiché visto l'elevata corrente di scarica pari a 2A valori troppo alti di resistenza, avrebbero portato a cadute di tensione sulla stesso non trascurabili, oltre ad una elevata dissipazione termica. I valori delle altre resistenze sono scelte invece, in base a due ragioni:

- Aumentare il tempo di chiusura e di apertura del PMOS, in modo da ridurre la corrente di inrush current sul capacitore di ingresso del convertitore Boost, ed evitare che una sovracorrente all'accensione del sistema distrugga il banco batterie
- Ridurre il valore di corrente assorbita dalla batteria quando il sistema *Bk1B118\_Battery \_Discharger\_V2* è scollegato, aumentando la durata della batteria stessa

Considerando il sistema sempre scollegato( scarica della batteria dovuta alla corrente di leakage), con questi valori di resistori e considerata la resistenza  $R_{off}$  del transisore, la durata della batteria è molto superiore a quella di vita del satellite.

Il PMOS essendo un transistore di potenza presenta un diodo in parallelo per la bidirezionalità di corrente all'interno del dispositivo stesso. Questo porterebbe ad un passaggio di corrente indesiderato dal circuito alla batteria anche quando il sistema dovrebbe essere disconnesso.

Per evitare ciò è stato inserito un ulteriore NMOS  $6_M1$  che ha anch'esso una duplice funzione:

- Interdire il diodo in parallelo al transistore PMOS evitando un passaggio di corrente tra batteria e circuito quando quest'ultimo in realtà deve essere scollegato.Infatti quando il 6\_M1 conduce la tensione all'anodo del diodo diventa inferiore rispetto al catodo (tensione di batteria) interdicendolo.
- Portare la tensione a zero all'uscita del Load Switch quando l'intero sistema di scarica deve essere disconnesso. In questo modo tutti i dispositivi del circuito che sono collegati a quella net non sono più alimentati, riducendone la dissipazione di potenza.

E' presente infine un resistore in serie al  $6_M1$  che consenti di non forzare la tensione ai capi del condensatore d'ingresso del circuito di switching a zero. Evitando così forti escursioni di corrente che potrebbero portare alla distruzione dei dispositivi.

In questo modo la tensione all'uscita del *Bk1B121L\_Load\_switch\_slow* tenderà a zero dopo un transitorio di scarica il cui tempo dipende dal dimensionamento del condensatore e della resistenza. In questo caso i tempi del transitorio sono comunque da considerarsi

trascurabili, rispetto ai tempi di scarica della batteria. Si riportano di seguito i valori dei resistori utilizzati e le principali caratteristiche del dispositvo:

$$6_R4 = 220k\Omega$$
  $6_R1 = 324k\Omega$   $6_R2 = 1.5K\Omega$ 

| Parameter | Min    | Max   |
|-----------|--------|-------|
| EN        | 1.2V   | 12V   |
| IN        | 5V     | 20V   |
| tdelayon  | 1.25ms | 121ms |
| tdelayoff | 3.9ms  | 210ms |

Quando il circuito è disabilitato il massimo ingresso ammesso è fino ai 60V.

## 5.3.2 Progettazione del Bk1B121H\_Load\_switch\_slow

Il *Bk1B121H\_Load\_switch\_slow* è il load switch posto sul lato del bus di potenza.

Esso presenta uno schema elettrico analogo al precedente load switch con l'unica differenza sui valori dei resistori utilizzati. Infatti la presenza di un condensatore di uscita del convertitore più grande, necessita tempi di accensione e spegnimento più lenti, al fine di evitare forti escursioni di corrente sui dispositivi utilizzati e sul *PDB*. Lo schematico è mostrato in Figura 5.39 :



*Figura 5.39*: Schema elettrico del *Bk1B121H\_Load\_switch\_slow* 

Il principio di funzionamento è lo stesso di quello illustrato per il load switch precedente. In particolare si nota che i valori di resistori oltre per un motivo strettamente legato ai tempi di accensione e spegnimento sono stati selezionati per rispettare il vincolo definito da specifica.

Ovvero il circuito di scarica  $Bk1B118\_Battery \_Discharger\_V2$  quando è disconnesso deve assorbire una corrente di leakage inferiore ai  $100\mu$ A.

Con il circuito cosi progettato e considerata una tensione massima sul *PDB* pari a 25V avremo, un assorbimento da parte del sistema pari ad 29.6  $\mu$ A (ampiamente al di sotto delle specifiche date).

Si riportano di seguito i valori dei resistori utilizzati e le caratteristiche salienti del dispositivo:

| $6_R31 = 1.5k\Omega$ | $6_R5 = 178k\Omega$ | $6_R6 = 665k\Omega$ |
|----------------------|---------------------|---------------------|
|----------------------|---------------------|---------------------|

| Parameter | Min    | Max   |
|-----------|--------|-------|
| EN        | 1.2V   | 12V   |
| IN        | 11V    | 20V   |
| tdelayon  | 4.15ms | 150ms |
| tdelayoff | 5ms    | 24ms  |

Quando il circuito è disabilitato il massimo ingresso ammesso è fino ai 60V.

# 5.3.3 Spice Netlist e lista dei componenti dei Bk1B121L\_Load\_switch\_slow e Bk1B121H\_Load\_switch\_slow

Si riporta di seguito la netlist del blocco Bk1B121L\_Load\_switch\_slow (Figura 5.40):

```
*Definition For Project Bk1B121L_Load_Switch_slow
.SUBCKT Bk1B121L_Load_Switch_slow EN DGND OUT IN
XM2 N1N126 EN DGND irlm12502
RR1 N1N264 N1N126 {MC( 324Kohms , 1000.000000M /100)} TC=100.000000U
RR2 N1N127 DGND {MC( 1.5Kohms , 1000.000000M /100)} TC=100.000000U
XM1 OUT N1N126 N1N127 irlm12502
RR4 IN N1N264 {MC( 220Kohms , 1000.000000M /100)} TC=100.000000U
XX82 OUT N1N264 IN atp304
* CROSS-REFERENCE 0
.ENDS
```

Figura 5.40: Netlist Spice del Bk1B121L\_Load\_switch\_slow

E' riportata anche la netlist del blocco Bk1B121H\_Load\_switch\_slow (Figura 5.41):

\*Definition For Project Bk1B121H\_Load\_Switch\_slow .SUBCKT Bk1B121H\_Load\_Switch\_slow OUT IN DGND EN XM4 N1N173 EN DGND ir1m12502 RR5 IN N1N11 {MC( 178Kohms , 1000.0000000M /100)} TC=100.000000U RR3 N1N132 DGND {MC( 1.5Kohms , 1000.000000M /100)} TC=100.000000U XM3 OUT N1N173 N1N132 ir1m12502 XX83 OUT N1N11 IN atp304 RR6 N1N11 N1N173 {MC( 665.000000K , 1000.000000M /100)} TC=100.000000U \* CROSS-REFERENCE 0 .ENDS

*Figura 5.41*: Netlist Spice del Bk1B121H\_Load\_switch\_slow

Si riportano inoltre le liste dei componenti dei relativi blocchi:

| #                     | QTY                           | Part Number                                                                                  | PartLabe]                                                                                                                         | PartName                                               | Ref Designator                     | Value                                 |
|-----------------------|-------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------|---------------------------------------|
| 1<br>2<br>3<br>4<br>5 | 1<br>  2<br>  1<br>  1<br>  1 | DK_ATP304-TL-HOSCT-ND<br>DK_IRLML2502CT-ND<br>RS_504-9634<br>RS_505-0331<br>DK_RHM324KHCT-ND | Q_ATP304_ATPAK_PMOS_100A_60V<br> Q_IRLML2502_SOT23-3_MOS_N_4A2_20<br> R_1K5_0603_100_1<br> R_220K_0603_100_1<br> R_324k_0603_63_1 | ATP304<br>  IRLML2502<br>  R1K5<br>  R220K<br>  R_324k | ×82<br> M1,M2<br> R2<br> R4<br> R1 | ,<br>1.5Kohms<br>220Kohms<br>324Kohms |

Figura 5.42 :Lista dei componenti per il Bk1B121L\_Load\_switch\_slow

| #      | QTY      | Part Number                                | PartLabe]                                                         | PartName             | Ref Designator | Value     |
|--------|----------|--------------------------------------------|-------------------------------------------------------------------|----------------------|----------------|-----------|
| 1<br>2 | 1<br>  2 | DK_ATP304-TL-HOSCT-ND<br>DK_IRLML2502CT-ND | Q_ATP304_ATPAK_PMO5_100A_60V<br> Q_IRLML2502_SOT23-3_MO5_N_4A2_20 | ATP304<br> IRLML2502 | ×83<br> M3,M4  |           |
| 3      | 1        | RS_504-9634                                | R_1K5_0603_100_1                                                  | R1K5                 | R3             | ĺ1.5Kohms |
| 4      | 1        | DK_RHM178KHCT-ND                           | R_178k_0603_100_1                                                 | R_178k               | R5             | 178Kohms  |
| 5      | 1        | DK_RHM665KHCT-ND                           | R_665k_0603_100_1                                                 | R_665k               | R6             | 665k      |

Figura 5.43: Lista dei componenti per il Bk1B121H\_Load\_switch\_slow

# 5.4 Sistema completo del Bk1B118\_Battery\_Discharger\_V2

Analizzati nel dettaglio i singoli elementi costituenti il *Bk1B118\_Battery\_Discharger\_V2*, si studia il comportamento complessivo del sistema e l'interazione tra i vari sottoblocchi, che quindi sono :

- Bk1B118\_V2\_BCCM\_Control
- Bk1B121L\_Load\_switch\_slow e Bk1B121H\_Load\_switch\_slow
- Bk1B118\_V2\_Feedback\_net
- Bk1B118\_V2\_Compensator
- *Bk1B118\_V2\_Triangular\_waveform*
- Bk1B118\_V2\_Boost\_Converter

La relazione tra tutti questi sottocircuiti è stata descritta in modo più chiaro attraverso l'utilizzo di un opportuno *Class Diagram* (Figura 5.44).



Figura 5.44: Class Diagram del Bk1B118\_Battery\_Discharger\_V2

L'intero sistema può essere visto come un *reusable block* avente i seguenti pin di I/O:



Figura 5.45: Reusable Block Bk1B118\_Battery\_Discharger\_V2 e tabella dei suoi pin



Si mostra di seguito lo schema circuitale complessivo:

Figura 5.46: Schema circuitale del Bk1B118\_Battery\_Discharger\_V2 in Mentor Graphics

Dal grafico sono più chiare le relazioni tra i vari circuiti che caratterizzano l'intero sistema, il cui funzionamento è illustrato nel dettaglio attraverso le seguenti simulazioni.

## 5.4.1 Simulazioni del sistema Bk1B118\_Battery\_Discharger\_V2

Per verificare la corretta funzione del sistema di scarica delle sorgenti secondarie sono state eseguite un numero elevato di simulazioni, attue a dare riscontri significativi e monitorare tutte quelle condizioni critiche che potessero portare a malfunzionamenti della circuiteria elettronica applicata.

Il primo test effettuato è il *TEST1\_Bk1B118\_Battery\_Discharger\_V2*, il cui è caratterizzato dalle seguenti condizioni di simulazione :

.tran 10u 2 0 1u VAGND AGND 0 DC 0 VDGND DGND 0 DC 0 \*\*VEN ENABLE 0 VEN ENABLE 0 PULSE (0 3.3 1u 1n ) \*\*VEN\_DEL ENABLE\_DELAYED 0 VEN\_DEL ENABLE\_DELAYED 0 PULSE (0 3.3 100M 1P ) VPDB PDB 0 13.5 VVBAT Xth\_VBAT 0 DC 7.4 Rth\_VBAT Xth\_UBAT V\_BAT 100M

Figura 5.47:Sorgenti utilizzate nel TEST1\_Bk1B118\_Battery\_Discharger\_V2

Da questo test si ottiene il seguente grafico(Figura 5.48):



Figura 5.48: Grafico relativo al TEST1\_Bk1B118\_Battery\_Discharger\_V2

Possiamo notare che dopo un transitorio iniziale, in presenza di una tensione sul *PDB* pari a 13.5V, si ottiene un valore di corrente  $I_{BUS}$  (o  $I_{PDB}$ ) pari a circa 45mA. In accordo alla rete di generazione di feedback progettata.

All'interno della stessa simulazione è stato osservato che a causa della presenza dei load switch, all'accensione insorgeva il fenomeno dell' *inrush current*. Causando un elevata corrente di scarica sulla batteria(Figura 5.49).



*Figura 5.49*: Corrente di scarica della batteria causata dal fenomeo di *inrush current* all'accensione del sistema

Questa corrente (negativa poiché presa con segno entrante alla batteria) risulta comunque inferiore alla I<sub>DISCHARGEmax</sub> della cella. Inoltre il tempo molto ridotto fa si che questo fenomeno non risulti dannoso alla batteria.

Il secondo test effetuttato *TEST2\_Bk1B118\_Battery\_Discharger\_V2* tende a valutare l'altra estremità della caratteristica. Infatti si avranno le seguenti sorgenti applicate al circuto:

```
.tran 10u 2 0 1u
VAGND AGND 0 DC 0
VDGND DGND 0 DC 0
**VEN ENABLE 0
VEN ENABLE 0 PULSE (0 3.3 1u 1n )
**VEN_DEL ENABLE_DELAYED 0
VEN_DEL ENABLE_DELAYED 0
VEN_DEL ENABLE_DELAYED 0 PULSE (0 3.3 100M 1P )
VPDB X_PDB 0 pulsre(12 14 100m 450m)
Rpdb PDB X_PDB 0.5
VVBAT Xth_VBAT 0 DC 7.4
Rth_VBAT Xth_VBAT V_BAT 100M
```

```
Figura 5.50: Sorgenti utilizzate nel TEST2_Bk1B118_Battery_Discharger_V2
```

Ottenendo i seguenti risultati(Figura 5.51) :



Figura 5.51: Grafico relativo al TEST2\_Bk1B118\_Battery\_Discharger\_V2

Come si può notare otteniamo valori di corrente alti (al di là di un ripple) il cui valor medio è circa 0.9A come si vede meglio nelle successive simulazioni.

Questo valore di corrente risulta inferiore rispetto a quanto aspettato dai dati relativi alla rete di generazione del feedback *Bk1B118\_V2\_Feedback\_Net*.

Questo tuttavia è dovuta ad un efficienza non al 100% del convertitore *Bk1B118\_V2\_Boost\_Converter* utilizzato.

Infatti come precedentemente calcolato l'efficienza del sistema è pari al 94.7% .

Essendo che la corrente di scarica della batteria, così come la sua tensione e la tensione posta sul *PDB* sono fissate, la quantità che risente di questa riduzione di efficienza è proprio la corrente  $I_{BUS}$  (o  $I_{PDB}$ ).

Infatti dovremmo avere una corrente effettiva  $I_{BUSreal}$  uguale ad  $I_{BUSideal}$  \* 0.947 che è proprio uguale ad 0.91A .

All'interno della stessa simulazione si sono analizzati altri aspetti relativi al circuito in esame, andando a vedere cosa accade in caso di disabilitazione del segnale di enable (Figura 5.52).

In particolare si è considerato il caso in cui si disabilitino contemporaneamente sia il segnale *ENABLE* sia *ENABLE\_delayed*.

Dal grafico è possibile vedere come la corrente fornita al *Power Distribution Bus*, una volta disattivato il circuito tende rapidamente a zero .



disattivazione del segnale di enable

Si è osservato inoltre l'andamento delle tensioni all'uscita dei due load switch : *Bk1B121H\_Load\_switch\_slow e Bk1B121L\_Load\_switch\_slow* conseguenti ad una transizione dei due segnali di enable alto-bassa (Figura 5.53).



*Figura 5.53*:Andamento delle tensioni interne al circuitoBk1B118\_Battery\_Discharger\_V2 a seguito della disattivazione del segnale di enable

Come è possibile vedere, le tensioni di uscita ai due load switch (*Vout\_dis* e *Vbattery\_dis*) tendono a zero dopo un transitorio di scarica(con tempi naturalmente diversi) dei condensatori d'ingresso e d'uscita del convertitore, attraverso i resistori posti in serie ad uno degli NMOS costituenti i blocchi di accensione e spegnimento. In questo modo si evita di forzare a zero le tensioni ai capi di questi due capacitori ed evitando quindi forti escursioni di correnti, come ampiamente spiegato nei precedenti paragrafi.

Successivamente al fine di ottenere la classica relazione che caratterizza l'attività del *Bk1B118\_Battery\_Discharger\_V2* sul *Power Distribution Bus*, più volte mostrata finora, si è eseguito il *TEST3\_Bk1B118\_Battery\_Discharger\_V2*. Esso prevede l'utilizzo di una tensione sul bus di potenza non più costante ma variabile nel tempo (tra 11.5V e 14V) e di una resistenza serie del bus pari a  $0.5\Omega$ , e una tensione di batteria invece sempre pari a 7.4V con resistenza serie  $R_S$  di 100m $\Omega$  come possiamo vedere dalla seguente figura:

```
.tran 500m

VAGND AGND 0 DC 0

VDGND DGND 0 DC 0

**VEN ENABLE 0

VEN ENABLE 0 PULSE (0 3.3 1U 1N )

**VEN_DELAYED ENABLE_DELAYED 0

VEN_DELAYED ENABLE_DELAYED 0 PULSE (0 3.3 100M 1N )

VUBATTERY Xth_UBATTERY 0 DC 7.4

Rth_UBATTERY Xth_UBATTERY 0 DC 7.4

Rth_UBATTERY Xth_UBATTERY U_BAT 100M

**VUBUS Xth_UBUS 0

VUBUS Xth_UBUS 0 PULSE (11.5 14 100M 450M )

Rth_UBUS Xth_UBUS PDB 0.5
```

Figura 5.54: Segnali utilizzati per il TEST3\_Bk1B118\_Battery\_Discharger\_V2



Figura 5.55: Grafico Ibus vs Vbus relativo al TEST2\_Bk1B118\_Battery\_Discharger\_V2

91

Come è possibile notare dal grafico, i risultati ottenuti sono perfettamente compatibili con le specifiche di progetto richieste.

Avendo ottenuto i risultati voluti, si è proceduto andando a studiare il comportamento dinamico del sistema.

Ovvero si è analizzato i suoi tempi di risposta a fronte di variazioni improvvise delle tensioni sul *PDB*. Per simulare questa condizione si è utilizzato un generatore di corrente in parallelo al bus di potenza che assorbe 50mA e poi si ha un gradino a 110ms che porta l'assorbimento di corrente ad un valore pari a 0.77A. Il *PDB* invece è simulato mediante un generatore di tensione di 12V e una resistenza serie di 1.5 $\Omega$ , come si può osservare in figura:

.tran 10u 2 0 1u VAGND AGND 0 DC 0 VDGND DGND 0 DC 0 \*\*VEN ENABLE 0 VEN ENABLE 0 PULSE (0 3.3 1u 1n ) \*\*VEN\_DEL ENABLE\_DELAYED 0 VEN\_DEL ENABLE\_DELAYED 0 VUSAT XTABLE\_DELAYED 0 PULSE (0 3.3 100M 1P ) VPDB X\_PDB 0 12.5 Rpdb PDB X\_PDB 1.5 VVBAT XTA\_VBAT 0 DC 7.4 Rth\_VBAT XTA\_VBAT 0 DC 7.4 Rth\_VBAT XTA\_VBAT V\_BAT 100M I1 PDB 0 pulse (50m 0.77 110m 10n)

*Figura 5.56:* Sorgenti utilizzate nel *TEST4\_Bk1B118\_Battery\_Discharger\_V2* 

I risultati del TEST4\_Bk1B118\_Battery\_Discharger\_V2 ottenuti sono visibili di seguito :



Figura 5.57:Grafico relativo al TEST4\_Bk1B118\_Battery\_Discharger\_V2

Il circuito entra in funzione dopo un transitorio iniziale, raggiunta la condizione di regime, si ha la presenza sul *PDB* di una tensione pari a 12.84V e una corrente "ceduta" dal *Bk1B118\_Battery\_Discharger\_V2* pari a circa 0.61A, come previsto dalla caratteristica tensione-corrente sul bus di distribuzione vista in precedenza (e in accordo con il progetto *AraMis*). All'istante 110ms la variazione a gradino della corrente porta ad una variazione di tensione sul bus pari a 12.2V, con conseguente corrente fornita dal circuito di scarica pari a 0.9A ancora in accordo con le specifiche.

Il tutto avviene con tempi di risposta dell'intero sistema dell'ordine dei millisecondi e quindi ininfluenti al corretto funzionamento dello stesso.

Tuttavia questa simulazione permette di validare il sistema solo all'interno del primo tratto della caratteristica. Per valutare anche la seconda parte (passaggio dalla zona lineare alla zona piatta caratterizzata da una tensione superiore ai 13.5V) si esegue il *TEST5\_Bk1B118\_Battery\_Discharger\_V2*.

In questo caso si assumono le sorgenti in figura :

.tran 10u 2 0 1u VAGND AGND 0 DC 0 VDGND DGND 0 DC 0 \*\*VEN ENABLE 0 VEN ENABLE 0 PULSE (0 3.3 1u 1n ) \*\*VEN\_DEL ENABLE\_DELAYED 0 VEN\_DEL ENABLE\_DELAYED 0 PULSE (0 3.3 100M 1P ) VPDB X\_PDB 0 14 Rpdb PDB X\_PDB 1.5 VUBAT Xth\_UBAT 0 DC 7.4 Rth\_UBAT Xth\_UBAT 0 DC 7.4 Rth\_UBAT Xth\_UBAT U\_BAT 100M I1 PDB 0 pulse (1 20m 110m 10n)

*Figura 5.58:* Sorgenti utilizzate nel *TEST5\_Bk1B118\_Battery\_Discharger\_V2* 





Dopo il solito transitorio iniziale il circuito entra in funzione raggiungendo i suoi valori di regime. Avremo difatti un valore di tensione sul *PDB* pari ad 13.1V con corrente di bus pari a 0.4A (sempre in accordo con le specifiche *AraMis*). Dopo la transizione alto-bassa del gradino di corrente, che permette il passaggio alla zona piatta della caratteristica I-V del bus, si ha un valore *Vbus* uguale a 14V e la corrente *Ibus* nulla, come da previsione. Anche in questo caso i tempi di risposta dell'intero sistema, a fronte di variazione della tensione sul bus di potenza, risultano essere decisamente brevi e quindi trascurabili.

Come detto in precedenza per la rete di generazione del feedback, a causa della presenza di componenti quali resistori, induttori, e capacitori soggetti a tolleranze di fabbricazione, è necessario al fine di ottenere dei risultati significativi alla validazione del funzionamento dell'intero sistema l'utilizzo di simulazioni *montecarlo*. A tal fine si è effettuato il *TEST7\_Bk1B118\_Battery\_Discharger\_V2\_MONTECARLO*. In cui per motivi di limitazione delle risorse ha disposizione si sono prese solo le prime 5 curve. Si mostrano di seguito le sorgenti di simulazione:

```
.step param 1 5 1

.tran 500m

UAGND AGND 0 DC 0

UDGND DGND 0 DC 0

**UEN ENABLE 0

VEN ENABLE 0 PULSE (0 3.3 1U 1N )

**UEN_DELAYED ENABLE_DELAYED 0

UEN_DELAYED ENABLE_DELAYED 0 PULSE (0 3.3 100M 1N )

UUBATTERY Xth_UBATTERY 0 DC 7.4

Rth_UBATTERY Xth_UBATTERY 0 DC 7.4

Rth_UBATTERY Xth_UBATTERY U_BAT 100M

**UUBUS Xth_UBUS 0

UUBUS Xth_UBUS 0 PULSE (11.5 14 100M 450M )

Rth_UBUS Xth_UBUS PDB 0.5
```

Figura 5.61: Segnali utilizzati per TEST7\_Bk1B118\_Battery\_Discharger\_V2\_Montecarlo

I risultati ottenuti sono riportati di seguito:



Figura 5.62: Grafico relativo al TEST7\_Bk1B118\_Battery\_Discharger\_V2\_Montecarlo

I valori presentati dalla simulazione eseguita permettono di affermare che le specifiche del progetto *AraMis*, sono ampiamente rispettate. Infatti si hanno valori di tensione nell'intorno dei 12.5V con un incertezza massima pari ad 100mV, lo stesso accade nell'intorno dei 13.5V. Queste incertezze sono ampiamente inferiori a quelle previsti per i valori di tensione sul bus di potenza della caratteristica di uscita, definite a priori:

 $V = \begin{cases} 13.5 \pm 250 \text{mV} \\ 12.5 \pm 250 \text{mV} \end{cases}$ 

Infine al solo scopo illustrativo si è osservato l'andamento della caratteristica I-V sul bus di potenza nel caso di utilizzo di due blocchi *Bk1B118\_Battery\_Discharger\_V2* connessi in parallelo tra il banco batterie e il *Power Distribution Bus* (Figura 5.63), e pilotati contemporaneamente dagli stessi segnali di di abilitazione del circuito.



Figura 5.63: Schema elettrico di due Bk1B118\_Battery\_Discharger\_V2 in parallelo

Per effettuare il test si sono utilizzate gli stessi segnali d'ingresso utilizzati per il *TEST3\_Bk1B118\_Battery\_Discharger\_V2* con l'unica differenza che la resistenza serie del bus assume un valore di  $0.25\Omega$ .

.tran 500m UAGND AGND 0 DC 0 UDGND DGND 0 DC 0 \*\*UEN ENABLE 0 UEN ENABLE 0 PULSE (0 3.3 1U 1N ) \*\*UEN\_DELAYED ENABLE\_DELAYED 0 UEN\_DELAYED ENABLE\_DELAYED 0 PULSE (0 3.3 100M 1N ) UUBATTERY Xth\_UBATTERY 0 DC 7.4 Rth\_UBATTERY Xth\_UBATTERY 0 DC 7.4 Rth\_UBATTERY Xth\_UBATTERY U\_BAT 100M \*\*UUBUS Xth\_UBUS 0 UUBUS Xth\_UBUS 0 UUBUS Xth\_UBUS 0 UUBUS Xth\_UBUS 0 PULSE (11.5 14 100M 450M ) Rth\_UBUS Xth\_UBUS PDB 0.25 iccuma 5 64 : Segnali utilizzati per il TEST6\_Ph1P118\_Pattery\_Dischangen\_V Ottenendo la seguente caratteristica :



TEST6\_Bk1B118\_Battery\_Discharger\_V2

Come era facilmente intuibile l'andamento della caratteristica risulta essere analogo a quella ottenuta con l'utilizzo di un solo blocco di scarica. L'unica variante sta nei valori di corrente forniti al bus che sono raddoppiati rispetto al caso precedente. Come si può notare si ha adesso un valore massimo di Ibus pari a 1.8A. Pertanto tale configurazione può essere utilizzata qualora si necessiti di un maggiore quantitativo di corrente disponibile sul *Power Distribution Bus*.

#### 5.4.2 Spice Netlist del sistema Bk1B118\_Battery\_Discharger\_V2

CC1 N5V DGND {MC( 4.7000000 10.000000 /100)} TC=10.000000U XBk1B121G\_Load\_Switch\_Shunt ENABLE DGND Vbat\_char V\_BAT +Bk1B121G\_Load\_Switch\_Shunt XBk1B113\_V3\_Feedback\_Net N2V5 FEEDBACK V\_BAT N5V AGND IN\_converter Vbus\_char XBk1B113\_U3\_Compensator N2U5 AGND N5U FEEDBACK V CONTROL +Bk1B113 V3 Compensator XBk1B113\_V3\_Buck\_Converter\_charger Vbus\_char V\_PWM Vbat\_char DGND +IN\_converter Bk1B113\_V3\_Buck\_Converter\_charger XU1\_Vbat\_char\_N3V3\_DGND\_LM1117 XX1 V\_CONTROL TRI N3V3 AGND V\_PWM LTC6752 10.000000 /100)} TC=30.000000U CC3 N1N990 AGND {MC( 100.000000N , RR1 Ubat\_char N1N990 {MC( 1Kohms , 1000.000000M /100)} TC=100.000000U CC4 N3V3 DGND {MC( 1uF , 10.0000000 /100)} TC=10.000000U CC5 Vbat\_char DGND {MC( 1uF , 10.0000000 /100)} TC=10.000000U CC4 N3V3 DGND {MC( 1uF , 10.000000 /100)} TC=10.000000U CC5 Vbat\_char DGND {MC( 1uF , 10.000000 /100)} TC=10.000000U CC2 Vbat\_char DGND {MC( 100.0000000 , 10.000000 /100)} TC=30.000000U XU4 N1N990 AGND N2U5 LT1790-25 XBk1B121I\_Load\_Switch\_Delayed ENABLE DGND Vbus\_char PDB +Bk1B121I Load Switch Delayed XX17 Vbat\_char\_DGND Vbat\_char N5V TPS76150

Figura 5.66: Netlist Spice del Bk1B118\_Battery\_Discharger\_V2

# Capitolo 6 Bk1B113\_Battery\_Charger\_V3

All'interno del sistema *Bk1B114\_Battery\_System\_V2* che prevede: l'immagazzinamento, la gestione(monitoraggio dei parametri e gestione delle funzioni automatiche/di protezione), e la distribuzione dell'energia proveniente dalle sorgenti definite secondarie, sono presenti ulteriori due blocchi oltre al *Bk1B118\_Battery\_Discharger\_V2* descritto precedentemente. Il cui compito di tale sottosistema era quello di prelevare energia dalle batterie e renderla disponibile e soprattutto compatibile con le esigenze del resto della struttura satellitare.

In questo capitolo ci si occupa della definizione e descrizione dettagliata del blocco complementare a quello appena descritto. Ovvero di un sottosistema che permetta di caricare le celle, qualora sia necessario, usufruendo dell'energia prodotta in eccesso dal satellite (ed in particolare dai pannelli solari, nel periodo di maggiore esposizione alle radiazioni solari) e rendendola compatibile con le caratteristiche elettriche caratterizzanti il banco batterie (due celle *Li-Po* poste in serie).

Questo sistema di interfaccia è chiamato *Bk1B113\_Battery\_Charger\_V3* ed è costituito a sua volta da sottoblocchi più piccoli, che attraverso la loro interazione permettono di svolgere la funzione desiderata. Anche in questo caso si fa utilizzo di un convetitore DC-DC, per rendere compatibile i livelli di tensione forniti dalla sorgente secondaria con quelli disponibili sul *PDB*. In particolare in questo caso si usa un convertitore DC-DC di tipo Buck (chiamato *Bk1B113\_V3\_Buck\_Converter\_charger*). Esso permette di ridurre le tensioni disponibili sul sistema di distribuzione della potenza (*Power Distributuion Bus*) rendendole confrontabili con quelle presentate dalla fonte di energia secondaria, e di fornire in uscita una corrente che permette la carica delle celle.

Il sistema descritto deve garantire, oltre ad una corrente di carica che non superi i livelli massimi sopportati dalla batteria, ulteriori specifiche tipiche dei circuiti caricabatterie. In particolare si deve definire il metodo di carica più idoneo e i livelli (massimi e minimi) di tensione per ogni ciclo al fine di:

- evitare danneggiamenti alle celle
- ottenere la massima efficienza e longevità possibile dalle batterie
- ottenere tempi delle operazioni compatibili all'esigenze del sistema

Come visto nei precedenti capitoli le batterie utilizzate *Mikroe1120* richiedono un metodo definito dal costruttore che è il CC-CV. Ovvero una modalità di carica che prevede un primo tratto a corrente costante, in cui la tensione del banco batterie cresce in modo più o meno lineare fino al raggiungimento del suo valore massimo. E un secondo tratto in cui la tensione rimane costante (al suo massimo), e la corrente tende a decrescere fino a giungere ad un valore minimo definito di *cutoff*.

L' implementazione di tale metodo avviene mediante il solo utilizzo di circuiteria analogica, in cui il blocco di generazione del feedback *Bk1B113\_V3\_Feedback\_Net*, gioca un ruolo fondamentale.

#### 6.1 Bk1B113\_V3\_Feedback\_Net

Il *Bk1B113\_V3\_Feedback\_Net* costituisce il blocco di generazione del feedback. Esso permette oltre che di ottenere sul bus d'uscita la caratteristica desiderata e illustrata nei capitoli precedente , di implementare il metodo di carica *CC-CV* appena mostrato. A differenza della rete analizzata per il *Bk1B118\_Battery\_Discharger\_V2*, il numero delle variabili in gioco non saranno più due ma bensì tre.

Infatti la rete *Bk1B113\_V3\_Feedback\_Net* deve gestire due distinte fasi.

La prima in cui la batteria avendo una tensione inferiore a quella massima, viene caricata da una corrente il cui valore dipende dalla caratteristica I-V sul bus che caratterizza il circuito *Battery Charger* all'interno del progetto *AraMis*, e quindi dalla tensione presente sul *Power Distribution Bus*. Si ricorda che tale caratteristica richiede una resistenza differenziale di uscita dV/dI pari a 1 $\Omega$ .

Quando la tensione di batteria raggiunge il valore massimo impostato, la rete deve gestire la seconda fase, ovvero mantenere la tensione di batteria costante e diminuire progressivamente il valore della corrente di carica.

Pertanto la rete realizzata implementa una caratteristica del seguente tipo:



*Figura 6.1*: Caratteristica I-V d'uscita al *Bk1B113\_Battery\_Charger\_V3* al raggiungimento della massima tensione di carica di batteria.

Dove è facile notare l'abbassamento progressivo della caratteristica conseguente al raggiungimento del valore massimo di tensione di carica della cella.

## 6.1.1 Progettazione del Bk1B113\_V3\_Feedback\_Net

Anche questa rete è realizzata in maniera del tutto analogica (Figura 6.2), con il compito di generare in uscita una tensione di *feedback* paragonabile alla tensione di riferimento del compensatore *Bk1B113\_V3\_Compensator*, scelta pari a 2.5V.



*Figura 6.2*: : Schema elettrico del *Bk1B113\_V3\_Feedback\_Net* realizzato su *Mentor Graphics*
Il grafico precedentemente illustrato in Figura 6.1, si riferisce ad un valore di corrente normalizzata, ma in realtà la rete è stata progettata per un determinato valore di corrente massima, così determinato :

$$I_{\text{PDBmax}} = \frac{V_{\text{BATmin}} * I_{\text{CHARGEmax}}}{V_{\text{PDBmax}}} \quad (6.1)$$

La corrente massima è calcolata considerando il caso peggiore. Esso si ha quando la tensione sul PDB è quella massima (ed si ha la massima corrente in uscita), e la tensione di batteria è al minimo (con tensione massima di scarica della batteria, posta da progetto a 6V considerando la serie delle due celle). Un dimensionamento diverso potrebbe portare ad una richiesta di potenza al bus maggiore alla sua disponibilità. Pertanto si ha V<sub>BATmin</sub>\*I<sub>charge</sub> =  $V_{PDBmax}$ \*I<sub>PDBmax</sub>.

Il valore massimo di corrente sul *Power Distribution Bus* è di 0.774 A. Ovvero la corrente che preleveremo dal bus al fine di avere una massima corrente di carica della batteria pari a 2A.

In questo caso il funzionamento della rete sarà caratterizzato dalla presenza di tre caratteristiche(o regioni di lavoro): una compresa tra i 14.5V e i 15.5V lineare, una al di sopra dei 15.5V parallela all'asse delle ascisse, considerate entrambe con tensione di batteria inferiore al suo massimo valore di carica. E la terza che si ha a batteria completamente carica, che causa l'abbassamento della caratteristica I-V in uscita al sistema. La selezione di una delle prime due curve, avviene mediante l'uso del diodo 5\_D1 (dal suo stato di conduzione o interdizione, sceglie la curva più bassa) collegato in uscita all'operazionale 5\_X7. La tensione più bassa viene successivamente confrontata con la terza curva mediante il diodo  $5_D2$  all'uscita dell'operazionale  $5_X6$ , che determina il valore della tensione di feedback. La rete realizzata è stata resa parametrica, andando a definire alcuni elementi chiave per sua la progettazione. Questo approccio permette che eventuali cambiamenti, come ad esempio un diverso tipo di batterie utilizzate, possano essere implementati modificando il valore di solo alcuni dei resistori, attraverso l'utilizzo di opportune relazioni: Non dovendo quindi ridefinire totalmente la rete(che prevede parametri fissati a priori) e rendendo perfettamente funzionale l'intero sistema. Il processo decisione che ha portato alla scelta dei valori dei resistori utilizzati, è il seguente: si è scelta la configurazione della rete illustrata in precedenza e i valori dei resistori in modo tale che, nel primo tratto (quello lineare) l'uscita dell'operazionale 5\_X7 (che chiameremo V1, vedi 6.2) risultasse inferiore all'uscita 5\_X5 (che chiameremo V2, vedi 6.3), ovviamente con l'uscita all'op-amp 5\_X4 anch'essa maggiore (che chiameremo V3,vedi 6.4) finché la batteria non è completamente carica.

$$V_{1} = \left(\frac{-I_{PDB} * K_{i} * (5\_R24 + 5\_R23)}{5\_R5 + 5\_R25 + 5\_R24 + 5\_R23} + V_{PDB}\right) * \frac{5\_R21 + 5\_R15}{5\_R19} \quad (6.2)$$
$$V_{2} = \left[\left(V_{ref} * \frac{5\_R17}{5\_R17 + 5\_R11} * \left(1 + \frac{5\_R10 + 5\_R18}{5\_R8}\right)\right) - \frac{I_{PDB} * K_{i} * (5\_R24 + 5\_R23)}{5\_R5 + 5\_R25 + 5\_R24 + 5\_R23}\right] * \frac{5\_R8}{5\_R10 + 5\_R18} \quad (6.3)$$

$$V_{3} = V_{ref} * \left(1 + \frac{5_{R13}}{5_{R12}}\right) - V_{BAT} * \left(\frac{5_{R7}}{5_{R26} + 5_{R6}}\right) * \frac{5_{R13}}{5_{R12}}$$
(6.4)

Quando si è nel tratto piano (superiore ai 15.5 V) la tensione V2 assumerà valore inferiori rispetto alla tensione V1 e sarà scelta sia dal diodo  $5_D1$ sia dal  $5_D2$ . Questo considerando ancora la batteria non completamente carica, e quindi la tensione V3 maggiore alla V2. Una volta caricata completamente la cella, V3 assume un valore inferiore a V2 o a V1 (dipende dal tratto della caratteristica I-V di bus in cui ci si trova) e pertanto il diodo  $5_D2$  si interdice selezionandola. Ovviamente si vuole che nel tratto in cui vengono selezionate le tre tensioni V1,V2 e V3 tendano ad assumere valori prossimi alla tensione di riferimento scelta. Attraverso l'utilizzo di queste equazioni e di alcuni parametri fissati a priori dalle specifiche di progetto:

 $I_{BUSmax} = 0.774A, V_{BATchargemax} = 8.4V, V_{BUSmin} = 14.5V, V_{BUSmax} = 15.5V, K_i = 4, R_L = 200K\Omega, R42 = 100m\Omega$ 

Dove R42 è la resistenza serie utilizzata dal dispositivo *INA138* per misurare la corrente in ingresso al sistema di carica, questo valore viene poi convertito in tensione con un fattore (transconduttanza)  $6_R31*K_i*R_L$ . In cui Ki dipende da parametri interni al dispositivo ed è pari ad  $200\mu$ A/V<sup>2</sup>, e R<sub>L</sub> è la resistenza in uscita al dispositivo (in questo caso dato dalla somma di 5\_R25+5\_R5+5\_R24+5\_R23) posta a 200K $\Omega$  per ottenere un guadagno K<sub>i</sub> pari a 4.

Si ottengono i seguenti valori per i resistori :

$$\begin{cases} 5_R 19 = 5_R 20 = 1 \ M\Omega \\ 5_R 15 + 5_R 21 = 5_R 22 + 5_R 16 = 172.5 \ K\Omega \\ 5_R 8 = 143 \ K\Omega \\ 5_R 10 + 5_R 18 = 155.6 \ K\Omega \\ 5_R 17 = 165 \ K\Omega \\ 5_R 11 = 75 \ K\Omega \\ 5_R 3 = 5_R 2 = 1 \ K\Omega \\ 5_R 13 = 5_R 12 = 100 \ K\Omega \end{cases}$$

Questi sono caratterizzati da avere valori fissati, a prescindere dai segnali applicati. Invece gli elementi variabili all'interno della rete sono :

$$\begin{pmatrix}
5_R26 + 5_R6 = X * 5_R7 & (6.5) \\
5_R7 = 5_R13 * \left(\frac{1+X}{X}\right) & (6.6) \\
5_R5 + 5_R25 = (5_{R24} + 5_{R23}) * Y & (6.7) \\
5_R24 + 5_R23 = \frac{R_L}{1+Y} & (6.8)
\end{cases}$$

Con:

$$X = \frac{\frac{1 - \frac{V_{ref}}{V_{BATchargemax}}}{\frac{V_{ref}}{V_{BATchargemax}}} \quad (6.9)$$

$$Y = -\frac{\frac{1+\frac{R_{19}}{R_{15}+R_{21}}*V_{ref}-V_{PDBmax}}{K_{i}*I_{PDBmax}}}{\frac{R_{19}}{\frac{R_{15}+R_{21}}*V_{ref}-V_{PDBmax}}{K_{i}*I_{PDBmax}}}$$
(6.10)

I cui valori ottenuti sono riportati di seguito :

 $\begin{cases} 5\_R26 + 5\_R6 = 336 \text{ K}\Omega \\ 5\_R7 = 143 \text{ K}\Omega \\ 5\_R5 + 5\_R25 = 135.4 \text{ K}\Omega \\ 5\_R24 + 5\_R23 = 64.6 \text{ K}\Omega \end{cases}$ 

## 6.1.2 Simulazioni del Bk1B118\_V2\_Feedback\_Net

Si riportano le simulazioni effettuate per validare il funzionamento della rete realizzata. Il *TEST1\_Bk1B113\_V3\_Feedback\_net* (Figura 6.3) prevede come segnali in ingresso :



Figura 6.3: Grafico relativo al TEST1\_Bk1B113\_V3\_Feedback\_net

V(fb) /(pdb) V(v\_bat) l(libus) 15.0V 1.4mA 14.5V 14.0\ 1.2mA 13.5V 13.01 1.0m# 12.5 12.0V 0.8m/ 11.5 11.0V 0.6mA 10.5¥ 10.0\ 0.4m/ 9.5V 9.0V 0.2m# 8.5\ 8.0\ 0.0mA 7.5V 7.0\ -0.2mA 6.5V 6.0\ 0.4m/ 5.5V 5.0V -0.6mA 4.5V 4.0¥ -0.8m/ 3.5\ 3.0\ 1.0mA 2.5V 2.0V 0µs -1.2mA 1μs 2us 3µs 4LIS 5µs 6μs 7<u>u</u>s 8µs 9ús

Il TEST2\_Bk1B113\_V3\_Feedback\_net (Figura 6.4) prevede come segnali in ingresso :

 $I_{BUS}( o I_{PDB})=0A$ 

 $V_{BAT}=7.2V$ 

 $V_{BUS}$  (o  $V_{PDB}$ )=14.5V

Figura 6.4: Grafico relativo al TEST2\_Bk1B113\_V3\_Feedback\_net

Si può notare che per entrambe le combinazioni delle sorgenti di ingresso si ha un valore della tensione di feedback pari a 2.5V, in accordo alle specifiche desiderate precedentemente viste.

Anche in questo caso a causa della criticità dell'accuratezza della rete in esame per il funzionamento dell'intero sistema, e considerato che essa è realizzata da un certo numero di resistori (ognuno con proprie tolleranze di fabbricazione), si è reso necessario l'utilizzo di simulazioni di tipo Montecarlo al fine di poter considerare significativi i risultati ottenuti.

Pertanto si rieseguono i due test appena illustrati andando a considerare gli errori di fabbricazione dei componenti utilizzati.

Nel primo test chiamato *TEST1\_1\_Bk1B113\_V3\_Feedback\_Net\_MONTECARLO*, in cui si utilizzano gli stessi segnali di ingresso del primo test visto in precedenza, si ottengono i seguenti risultati :



Figura 6.5: Grafico relativo al TEST1\_1\_Bk1B113\_V3\_Feedback\_Net\_MONTECARLO

Effettuando uno zoom sulla V(fb) (Figura 6.6) :



*Figura 6.6*: Zoom *V*(*fb*) - *TEST1\_1\_Bk1B113\_V3\_Feedback\_Net\_MONTECARLO* 

Si osservano valori molto vicini ai 2.5V idealmente desiderati. Ottenendo delle incertezze di circa lo 0.8 % considerate trascurabili.

Lo stesso si è fatto per il secondo test visto in precedenza (medesimi segnali d'ingresso alla rete):





In cui facendo sempre uno zoom sulla tensione di feedback generata dalla rete (Figura 6.8), si osservano valori molto prossimi ai 2.5V di riferimento utilizzati nel *Bk1B113\_V3\_Compensator*.

Ed in particolare si ottengono incertezze sulla tensione V(fb) anche in questo caso di circa 0.8% e quindi anche questa volta considerabili trascurabili.



Figura 6.8: Zoom V(fb) - TEST2\_1\_Bk1B113\_V3\_Feedback\_Net\_MONTECARLO

Infine si è analizzato anche il caso in cui la tensione di batteria raggiunge il suo valore massimo pari a 8.4V.

Ed in particolare si è simulata la condizione per cui la caratteristica di uscita I-V sul bus relativa al Bk1B113\_Battery\_Charger\_V3 tenda progressivamente ad abbassarsi , fino ad congiungersi con l'asse delle ascisse (ovvero corrente  $I_{PDB}$  pari a zero).

Per ottenere questa situazione si è considerato di avere come tensione sul *Power Distribution Bus* la massima possibile pari ad 15.5V.

E attraverso uno sweep di corrente che parte dal valore massimo di 0.774A e tende a zero si cerca di "toccare" tutte le possibili curve del diagramma ( $V_{PDB}$ ,  $I_{PDB}$ ,  $V_{BAT}$ ).

Il test effettuato prende il nome di *TEST3\_Bk1B113\_V3\_Feedbak\_Net*, il cui risultato mostrato dal relativo grafico (Figura 6.9), permette di vedere che la tensione di feedback *V(fb)* generata dalla rete *Bk1B113\_V3\_Feedback\_Net* rimane al valore della tensione di riferimento 2.5V, per qualsiasi valore assunto dalla corrente di bus.



Per i motivi precedentemente detti , anche in questo caso è stata eseguita un analisi *Montercarlo*, utilizzando le stesse sorgenti del test appena illustrato. Si ottengono i seguenti risultati:



Figura 6.10: Grafico relativo al TEST3\_Bk1B113\_V3\_Feedback\_Net\_MONTECARLO

In particolare facendo un ingrandimento sulla tensione V(fb) è possibile notare che anche in presenza di tolleranze dei componenti utilizzati, il suo valore rimane nell'intorno dei 2.5V considerati come riferimento. Infatti si ottiene una tolleranza pari a circa 0.8%.



Figura 6.11: : Zoom V(fb) - TEST3\_Bk1B113\_V3\_Feedback\_Net\_MONTECARLO

#### 6.1.3 Spice Netlist e lista componenti del Bk1B113\_V3\_Feedback\_Net

Si riporta di seguito la netlist del blocco *Bk1B113\_V3\_Feedback\_Net* (Figura 6.12): \*Definition For Project Bk1B113\_U3\_Feedback\_Net .SUBCKT Bk1B113\_U3\_Feedback\_Net M2U5 FB U\_BAT N5U AGND IN\_conv PDB I\_PDB XU3 M1N24 N1N23 N5U AGND I\_PDB IN4138 RR5 N1N544 N1N47 (NC( 2.430000K, 1000.000000M /100)) TC-100.000000U XK6 MIN1144 FB N5U AGND N1N250 TLU2211 RR8 M1N95 N1N04 (NC( 1.4300nms, 1000.000000M /100)) TC-100.000000U XK8 MIN47 N1N64 (NC( 1.4300nms, 100.000000M /100)) TC-100.000000U XX8 M1N47 N1N64 (NC( 1.4300nms, 100.000000M /100)) TC-100.000000U XX8 N1N47 N1N64 (NC( 1.4300nms, 100.000000M /100)) TC-100.000000U RR10 N1N23 N2U5 (MCC( 5.6Kohms, 1000.000000M /100)) TC-100.000000U RR11 N1N23 N2U5 (MCC( 1.4300nms, 100.000000M /100)) TC-100.000000U RR7 N1N44 AGND (MCC( 1.4300nms, 100.000000M /100)) TC-100.000000U RR7 N1N44 AGND (MCC( 1.4300nms, 100.000000M /100)) TC-100.000000U RR17 N1N44 AGND (MCC( 1.4300nms, 100.000000M /100)) TC-100.000000U RR17 N1N44 AGND (MCC( 1.4300nms, 100.000000M /100)) TC-100.000000U RR17 N1N42 (MCC( 1.500nms, 1000.000000M /100)) TC-100.000000U RR17 N1N42 (MCC( 1.500nms, 1000.000000M /100)) TC-100.000000U RR18 N1N97 N1N95 (MCC( 1.500nms, 1000.000000M /100)) TC-100.000000U RR3 H11144 N1N99 (MCC( 1.400nms, 100.000000M /100)) TC-100.000000U RR3 H11144 N1N99 (MCC( 7.500nms, 100.000000M /100)) TC-100.000000U RR3 H11144 N1N95 (MCC ( 7.500nms, 100.000000M /100)) TC-100.000000U RR3 H11144 N1N95 (MCC ( 7.500nms, 100.000000M /100)) TC-100.000000U RR21 N1N264 AGND (MCC ( 7.500nms, 100.000000M /100)) TC-100.000000U RR22 N1N366 (MCC ( 1.200nms, 100.000000M /100)) TC-100.000000U RR24 N1N27 N1N95 M5U AGND N1N358 TLU2211 XX5 N1N237 N1N95 M5U AGND N1N39 TLU2211 XX5 N1N367 AGND (MCC ( 1.200nms, 1000.000000M /100)) TC-100.000000U RR24 N1N47 N1N567 (MCC ( 1.200nms, 1000.0000000M /100)) TC-100.000000U RR24 N1N47 N1N567 (MCC ( 13800nms, 1000.0000000M /100)) TC-100.00

```
Figura 6.12: Spice Netlist del blocco Bk1B113_V3_Feedback_Net
```

| #                               | QTY                             | Part Number                                                                                                                    | PartLabe]                                                                                                                                                                        | PartName                                                                     | Ref Designator                                                        | Value                                                                                              |
|---------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 2<br>1<br>5<br>1<br>2<br>1<br>2 | DK_MBRM140T3GOSCT-ND<br>DK_IN4138N4/250G4-ND<br>DK_296-10501-1-ND<br>RS_566-333_K<br>FR_923-9235<br>RS_504-9202<br>RS_666-2279 | D_MBRM140T3_SH_D0216AA_40V_1A<br>OA_INA138NA_SOT23-5_1_36V_2.7V<br>OA_TLV22111DBVR_SOT23_2V7_10V<br>R_0R1_1206_250_1<br>R_1K_0402_63_1<br>R_1K2_0603_100_1<br>R_1MEG_0603_63_0%1 | MBRM140T3<br> OA_INA138NA<br> OA_TLV2211<br> ROR1<br> R1K<br> R1K2<br> R1MEG | D1, D2<br>  U3<br>  X4-X8<br>  R42<br>  R2, R3<br>  R23<br>  R19, R20 | ,<br>100Mohms<br>1Kohms,1Kohms<br>1.2Kohms,<br>1MEGohms,<br>1MEGohms,                              |
| 8<br>9<br>10<br>11              | 1<br>1<br>1<br>2                | DK_RHM2.43KFCT-ND<br>RS_504-7802<br>RS_504-8013<br>DK_TNP7.50KAACT-ND                                                          | R_2K43_1206<br>R_5K6_0603_100_1<br>R_6K04_0603_100_1<br>R_7K5_0603_100_0%1                                                                                                       | R2K43<br>R5K6<br>R6K04<br>R7K5                                               | R5<br>R10<br>R6<br>R21,R22                                            | 2.43K<br>2.43K<br>5.6Kohms<br>6.04Kohms<br>7.5Kohms,                                               |
| 12                              | 2                               | DK_MCT0603-100K-MBCT-ND                                                                                                        | R_100K_0603_125_0%1                                                                                                                                                              | R100K                                                                        | R12,R13                                                               | 100Kohms,                                                                                          |
| 13<br>14                        | 1<br>2                          | RS_678-9759<br>RS_614-5799                                                                                                     | R_133K_0603_100_1<br>R_143K_0805_100_0%1                                                                                                                                         | R133K<br>R143K                                                               | R25<br>R7,R8                                                          | 133Kohms<br>133Kohms<br>143Kohms,                                                                  |
| 15<br>16<br>17<br>18<br>19      | 1<br>  1<br>  1<br>  3<br>      | RS_504-9656<br>RS_504-6528<br>DK_311-63.4KHCT-ND<br>DK_P75KZCT-ND<br>DK_RHM165KHCT-ND                                          | R_150K_0603_100_1<br>R_330K_0603_100_1<br>R_63k4_0603_100_1<br>R_75K_0805_100_0%1<br>R_165K_0603_100_1                                                                           | R150K<br>R330K<br>R_63k4<br>R_75K<br>R_165K                                  | R18<br>R26<br>R24<br>R11<br>R15-R17                                   | 14360hms<br>1350Kohms<br>1330Kohms<br>1334Kohms<br>175Kohms<br>165Kohms,<br>165Kohms,<br>165Kohms, |

#### E la lista dei componenti utilizzati:

*Figura 6.13*:Lista dei componenti utilizzati per la realizzazione del blocco *Bk1B113\_V3\_Feedback\_Net* 

## 6.2 Elementi principali del sistema Bk1B113\_Battery\_Charger\_V3

Il blocco visto in precedenza (*Bk1B113\_V3\_Feedback\_Net*) permette insieme all'utilizzo di ulteriori tre blocchi di fornire una corrente al banco batterie , in modo compatibile al metodo di carica CC-CV selezionato, prendendo la potenza disponibile dal bus di distribuzione (in eccesso).

In particolare la corrente di carica viene determinata dalla tensione di feedback che come abbiamo già visto dipende da tensione e corrente del *Power Distribuition Bus* e dalla tensione di batteria.

Volendo avere una tensione di controllo che vari linearmente, la tensione di feedback viene posta all'ingresso di un circuito di compensazione (chiamato *Bk1B113\_V3\_Compensator*), il cui segnale di uscita viene comparatore con un segnale ad onda triangolare generato dal *Bk1B113\_V3\_Triwave\_Gen*.

L'esito di tale comparazione generare un segnale *PWM* che pilota il convertitore all'interno del blocco *Bk1B113\_V3\_Buck\_Converter\_charger*, permettendo di fornire così il valore di corrente di carica desiderato.

Si mostra di seguito un grafico in cui vengono evidenziate solo l'interazione dei blocchi suddetti:



Figura 6.14: Interazione tra gli elementi principali del Bk1B113\_Battery\_Charger\_V3

Nei successivi sottoparagrafi vengono descritti nel dettaglio i seguenti singoli blocchi illustrandone il funzionamento mediante l'utilizzo di opportune simulazioni.

### 6.2.1 Bk1B113\_V3\_Buck\_Converter\_charger

Per ottenere una compatibilità elettrica tra le caratteristiche presenti sul *Power Distribution Bus* e il banco batterie, si utilizza un circuito di *step-down* (abbassatore di tensione). In particolare viene utilizzato un convertitore DC-DC di tipo Buck che lavora in modalità *CCM* (*Continuous Conduction Mode*).

#### 6.2.1.1Progettazione del Bk1B113\_V3\_Buck\_Converter\_charger

Per ottenere tale tipo di funzionamento, è necessario dimensionare opportunamente il valore dell'induttore posto all'interno del circuito di potenza, di modo che:

$$L < L_{crit}$$
 (6.11)  
con  $L_{crit} = \frac{(1-D) R}{2f_{sw}}$  (6.12)

Si dimensiona inoltre il condensatore di uscita  $C_{out}$  in funzione del ripple desiderato sulla tensione di uscita:

$$C_{out} = \frac{\Delta I_L}{8 \, f_{sw} V_{ripple}} \quad (6.13)$$

Ottenendo quindi :

$$C_{out}=10\mu F$$



Il circuito reallizzato viene mostrato in Figura 6.15 :

*Figura 6.15*:Schema elettrico del blocco *Bk1b113\_V3\_Buck\_Converter\_charger realizzato in Mentor Graphics* 

Come si nota dal grafico all'interno del blocco si utilizza come interruttore un PMOS in configurazione high-side. Questo permette di evitare l'utilizzo di NMOS che in tale configurazione prevedono l'utilizzo di circuiti di pilotaggio più complicati (di tipo *bootstrap*).

Tuttavia l'utilizzo di transitori di tipo P sebbene abbiano circuiti di pilotaggio molto più semplice, presentano diversi problemi tra cui: una velocità di commutazione inferiore e una resistenza  $R_{on}$  più grande.

Si è resa necessaria quindi un'accurata ricerca sul mercato al fine di trovare un dispositivo di tale categoria che potesse influenzare in maniera trascurabile le prestazioni del circuito, soddisfacendo le specifiche richieste.

Nello schema elettrico è anche incluso il driver che permette di fornire segnali adeguati al pilotaggio del MOS, in funzione del segnale proveniente dal comparatore *LTC6752HS*, che compara il segnale triangolare in uscita dal blocco Bk1B113\_V3\_Triwave\_Gen (che vedremo nel dettaglio nel prossimo paragrafo) e il segnale d'errore in uscita dal blocco Bk\_1B113\_V3\_Comparator.

Il condensatore in ingresso è stato dimensionato tenendo conto dei fenomeni di inrush current che si presentano all' accensione del dispositivo tramite opportuni *Load Switch* (descritti in seguito).

Si è cercato di utilizzare valori che riducessero il più possibile lo stress sulla batteria ed evitando correnti di scarica della stessa tali da poterla danneggiare.

Oltre che per il PMOS anche per la scelta diodo sono state fatte considerazioni riguardanti l'efficienza del convertitore da realizzare. Scegliendo in fine le soluzioni che riducessero al minimo la potenza dissipata.

Questo è stato fatto, attraverso la valutazione del caso di corrente massima di carica e quindi anche di massima corrente in ingresso dal convertitore (tensione sul *PDB* pari a 15.5V)

Per il MOS si valutano le perdite di conduzione, le perdite sul gate e quelle di commutazione :

• Perdite di conduzione

$$P_{cond} = I_{RMS}^2 * R_{dson} \quad (6.14)$$

Con: 
$$I_{RMS} = \frac{I_{Lmax} + I_{Lmin}}{2} \sqrt{\frac{T_{on}}{T}}$$
 (6.15)

Dal datasheet[15] si osserva una  $R_{dson} = 0.018\Omega$  e attraverso simulazioni si ottengono i valori di  $I_{Lmax}$  e  $I_{Lmin}$ . Ottenendo così una  $P_{cond} = 11.19$  mW

• Perdita sul gate

$$P_{gate} = Q_{gs} * V_{gs} * f = 31.84 mW$$
 (6.16)

Con il massimo valore di  $Q_{gsmax} = 11nC$  (da datasheet).

• Perdite di commutazione

$$P_{sw} = K * (T_{rise} + T_{fall}) * V_{ds} * I_{ds} * f = 588.6 \text{ mW}$$
 (6.17)

Per il diodo si ha invece :

$$P_d = V_f * I_{ave} = 367.5 mW$$
 (6.18)

Con  $V_f = 0.35 V[12]$ .

Si sono inoltre considerate le perdite sulla resistenza serie parassita sull'induttore :

$$P_{\rm L} = I_{\rm RMS}^2 * R_{\rm ser} = 354 {\rm mW} ~(6.19)$$

Mentre l'utilizzo di condensatori ceramici ha reso trascurabili le perdite sui loro elementi parassiti , poiché presentano resistenze molto basse.

Pertanto si ha una  $P_{diss totale} = P_{con} + P_{gate} + P_{sw} + P_L + P_d = 1.35W.$  (6.20)

Considerato che questi valori sono stati ottenuti attraverso la condizione di tensione sul bus di potenza pari a 15.5V, il che significa avere una corrente massima in uscita idealmente pari a 0.774A (come illustrato meglio dopo), possiamo calcolare l'efficienza del nostro convertitore essendo :

$$P_o = V_o * I_o$$
 (6.21)  
ed  $\eta = \frac{P_o}{P_o + P_{diss}} = 0.9$  (6.22)

Quindi l'efficienza del convertitore è pari al 90%. Essa è inferiore rispetto a quella ottenuta per il convertitore utilizzato nel blocco *Bk1B118\_Battery\_Discharger\_V2*.

Tuttavia questo valore ridotto, probabilmente dovuta all'utilizzo di un interruttore di tipo PMOS, permette comunque di ottenere un' elevata efficienza e non è quindi considerabile un problema.

# 6.2.1.2 Spice Netlist del Bk1B113\_V3\_Buck\_Converter\_charger e lista dei component utilizzati

Si riporta di seguito il listato Spice del blocco Bk1B113\_V3\_Boost\_Converter\_charger :

```
*Definition For Project Bk1B113_U3_Buck_Converter_charger
.SUBCKT Bk1B113_U3_Buck_Converter_charger VAL GATE OUT DGND IN
XX13 N1N9 N1N71 IN IRF7324
XX14 GATE EN DGND N1N71 N1N71 VAL UCC27531
LL1 OUT N1N9 {MC( 68.0000000 , 20/100)} RSER=105.000000M
CC10 IN DGND {MC( 10.0000000 , 10.000000 /100)} TC=10.000000U
XX12 DGND N1N9 SL43
CC11 OUT DGND {MC( 10.0000000 , 10.000000 /100)} TC=10.000000U
CC12 VAL DGND {MC( 1000.000000N , 10.0000000 /100)} TC=10.000000U
* CROSS-REFERENCE 0
.ENDS
```

*Figura 6.16*:Netlist Spice del blocco *Bk1B113\_V3\_Boost\_Converter\_charger* 

Lista dei componenti utilizzati per la sua implementazione :

| #                          | QTY                                  | Part Number                                                                                                                  | PartLabe]                                                                                                                                                                 | PartName                                                            | Ref Designator                                 | Value                |
|----------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|----------------------|
| 1<br>2<br>3<br>4<br>5<br>6 | 1<br>  2<br>  1<br>  1<br>  1<br>  1 | DK_587-2400-1-ND<br>DK_399-8224-1-ND<br>DK_296-35581-1-ND<br>DK_IRF7324PBFCT-ND<br>DK_513-1053-1-ND<br>DK_SL43-E3/57TGICT-ND | C_1U_0603_X55_50_10<br> C_10u_1210_X7R_25V_5<br> DRV_UCC27531_SOT23_6_1<br> Q_IRF7324_S08_P_9A_20V_double<br> L_68u_12.5X12.5X8_2A44_105m_20<br> D_SL43_SH_D0-214_AB_4_30 | C1u<br> C_10u<br> DRV_UCC27531<br> IRF7324<br> L68u<br> SL43-E3/57T | C12<br> C10,C11<br> X14<br> X13<br> L1<br> X12 | 1u<br>100,100<br>68u |

Figura 6.17:Lista dei componenti nel blocco Bk1B113\_V3\_Boost\_Converter\_charger

## 6.2.2 Bk1B113\_V3\_Compensator

Il blocco *Bk1B113\_V3\_Compensator*, permette mediante il confronto del segnale prodotto dalla rete *Bk1B113\_V3\_Feedback\_Net* ed un segnale di riferimento all'interno del blocco stesso, di generare un segnale di errore in uscita. Il contenuto informativo di tale segnale consente di andare a pilotare correttamente, attraverso successive operazioni il convertitore switching utilizzato, ottenendo così le specifiche elettriche definite da progetto.

## 6.2.2.1Progettazione del Bk1B113\_V3\_Compensator

Il convertitore utilizzato è un convertitore Buck in modalità *CCM*, la cui funzione di trasferimento è la seguente[10] :

$$\frac{\widehat{V_{o}}}{\widehat{d}} = \frac{V_{i}}{V_{tri}} * \frac{1 + s \text{ ESR} * C_{out}}{s^{2} \text{LC}_{out} + s \frac{\text{L}}{\text{Rout}} + 1} \quad (6.23)$$
$$\omega_{p} = \frac{1}{\sqrt{\text{LC}_{out}}} \qquad \omega_{\text{ESR-Z}} = \frac{1}{\text{ESR} * C_{out}} \quad (6.24)$$

Con:

Dalla funzione di trasferimento si osserva la presenza di due poli complessi e coniugati e di uno zero a parte reale positiva, la cui presenza è dovuta alla resistenza parassita del condensatore di uscita, come possiamo vedere meglio dal seguente grafico :



Figura 6.18: Andamento in frequenza del sistema e compensazione desiderata

Inoltre la tensione  $V_{tri}$ , rappresenta l'ampiezza massima dell'onda triangolare generata dal *Bk1B113\_V3\_Triwave\_Gen*, mentre V<sub>i</sub> è la tensione in ingresso al convertitore. Volendo realizzare il controllo del sistema ad anello chiuso, si cerca di ottenere una funzione di trasferimento del sistema retrazionato simile a quella di un integratore (curva in vedere) essenzialmente per i due motivi (già definiti per il *Bk1B118\_V2\_Compensator*):

- elevato guadagno alle basse frequenze, che permette di ridurre l'errore in DC.
- Margine di fase del sistema di circa 90°, questo non sarebbe molto buono poiché un margine di tale tipo significherebbe una risposta dinamica abbastanza lenta.

Tuttavia considerando la non idealità dei componenti si otterrà un margine di fase di circa  $50^{\circ}$  (che rappresenta un ottimo margine)

Per ottenere un guadagno di anello di questo tipo, dobbiamo progettare un opportuno circuito compensatore con caratteristica simile a quella rappresentata in blu.

Per far ciò si utilizza un compensatore di tipo 3 (PID), il cui dovrebbe fornire un polo nell'origine, cosi da avere la pendenza a -20dB/dec, e poi avere due zeri in corrispondenza della frequenza di poli c.c. del convertitore. Tuttavia se andassimo a introdurre zeri complessi e coniugati, essendo il guadagno della f.d.t del buck dipendente da  $V_{in}$ , una variazione di quest'ultima (riduzione) porterebbe ad un'intersezione del guadagno stesso con l'asse delle ascisse prima dei poli, facendo diventare instabile il sistema. Per evitare ciò si utilizzano due zeri reali, uno messo prima del polo e il secondo messo in prossimità di quest'ultimo. Questo perché la fase di uno zero è pari si a 90°, ma la sua variazione inizia la decade prima della frequenza in cui si trova la singolarità. In questo modo si evita una variazione troppo ripida della fase (-180°) causata dai due poli c.c. (che dipende dal *damping factor*), poiché il primo zero può compensare la maggior parte della fase prima che essa vari e il secondo zero aiuterà il primo successivamente (avendo quindi meno lavoro ed evitando una possibile situazione di marginale stabilità).



Figura 6.19: Compensatore di tipo 3 (controllore PID)

Essendo che usiamo condensatori ceramici, non abbiamo l' *ESR*, tuttavia per migliorare la stabilità del circuito e ridurre il rumore introdotto a frequenze superiori a  $f_{sw}/2$  si usa un compensatore con un doppio polo di chiusura. Ponendone uno ad una frequenza pari a  $f_{sw}/2$  e un altro alla frequenza di 10 KHz. Inoltre al fine di soddisfare il criterio di Nyquist consideriamo una frequenza di crossover  $f_c$  inferiore ad almeno la metà di  $f_{sw}$  ed in particolare prendiamo  $fc = f_{sw}/8 = 25$ KHz. Poniamo inoltre la  $fz_1$  del primo zero del compensatore pari alla metà della frequenza dei poli complessi e coniugati del convertitore Boost (il cui valore è determinato da un dimensionamento precedente del buck che sarà illustrato nel successivo paragrafo) e uguagliamo a quest'ultima la frequenza  $f_{z2}$  del secondo zero. Avendo le seguenti equazioni (oltre a quelle già descritte) :

$$A_0 = \frac{V_{in}}{V_{tri}}, A_1 = \frac{f_c}{f_p * A_0}, A_2 = \frac{A_1 * f_z}{f_p}$$
 (6.25)

Le relazioni di progettazione del compensatore sono :

$$f_{z1} = \frac{1}{2\pi R_2 C_2} (6.26)$$

$$f_{z2} = \frac{1}{2\pi R_1 C_3} (6.27)$$

$$f_{p1} = \frac{1}{2\pi R_3 C_3} (6.28)$$

$$f_{p2} = \frac{1}{2\pi R_2 C_1} (6.29)$$

$$A_1 = \frac{R_2}{R_1} (6.30)$$

$$A_2 = \frac{R_2}{R_1/R_3} (6.31)$$

Come possiamo notare abbiamo un sistema di cinque equazioni e sei incognite. Fissiamo il valore di  $C_1$  pari ad 100 pF, e di conseguenza calcoliamo il resto delle variabili ottenendo:

 $R_2\approx 16 \text{K}\Omega \quad R_1\approx 27 \text{K}\Omega \quad C_2\approx 3.3 \text{nF} \quad R_3\approx 16.9 \text{K}\Omega \quad C_3\approx 1 \text{nF}$ 

Si ottiene quindi il blocco *Bk1B113\_V3\_Compensator* in Figura 6.20:



Figura 6.20: Schema elettrico del blocco Bk1B113\_V3\_Compensator

## 6.2.2.2Spice Netlist e componenti del Bk1B113\_V3\_Compensator

Si riporta di seguito la netlist del blocco *Bk1B113\_V3\_Compensator* (Figura 6.21):

```
*Definition For Project Bk1B113 V3 Compensator
.SUBCKT Bk1B113_V3_Compensator N2V5 AGND N5V FB V_CONTROL
RR29 FB N1N10 {MC( 27Kohms , 1000.000000M /100)} TC=100.000000U
XX9 N2U5 N1N10 N5U AGND N1N12 TLU2211
CC7 N1N10 N1N12 {MC( 100pF , 5.000000 /100)} TC=10.000000U
                              1000.000000M /100)} TC=100.000000U
RR36 N1N16 AGND {MC( 10Kohms
RR37 N1N10 N1N11 {MC( 16.000000K , 1000.000000M /100)} TC=100.000000U
RR38 FB N1N9 {MC( 16.9Kohms , 1000.000000M /100)} TC=100.000000U
CC8 N1N9 N1N10 {MC( 1000.000000P , 10.000000 /100)} TC=10.000000U
RR27 N1N12 V_CONTROL {MC( 330Kohms , 1000.000000M /100)} TC=100.000000U
RR39 V_CONTROL N1N16 {MC( 249Kohms , 1000.000000M /100)} TC=100.000000U
CC9 N1N11 N1N12 {MC( 3.300000N , 10.000000 /100)} TC=10.000000U
* CROSS-REFERENCE 2
 5V=N5V
* 205=N205
.ENDS
```

Figura 6.21: Spice Netlist del blocco Bk1B113\_Compensator

#### E la lista dei componenti utilizzati nella sua realizzazione :

| #  | Q1 | Y | Part Number        | PartLabel                     | PartName   | Ref Designator | Value     |
|----|----|---|--------------------|-------------------------------|------------|----------------|-----------|
| 1  |    | 1 | R5_534-5702        | C_1n_0603_X7R_50V_10          | C1n        | C8             | 1n        |
| 2  |    | 1 | DK_311-1024-1-ND   | C_100p_0402                   | C100p      | C7             | 100pF     |
| 3  |    | 1 | XX                 | C_3n3_1206                    | C_3n3      | C9             | 3.3N      |
| 4  |    | 1 | DK_296-10501-1-ND  | OA_TLV2211IDBVR_SOT23_2V7_10V | OA_TLV2211 | X9             | 1         |
| 5  |    | 1 | RS_213-2418        | R_10K_0603_100_1              | R10k       | R36            | 10Kohms   |
| 6  |    | 1 | RS_505-0858        | R_27K_0603_100_1              | R27K       | R29            | 27Kohms   |
| 7  |    | 1 | RS_679-0033        | R_249K_0603_100_1             | R249K      | R39            | 249Kohms  |
| 8  |    | 1 | RS_504-6528        | R_330K_0603_100_1             | R330K      | R27            | 330Kohms  |
| 9  |    | 1 | DK_311-16.OKHCT-ND | R_16k_0603_100_1              | R_16k      | R37            | 16k       |
| 10 | L  | 1 | DK_RHM16.9KHCT-ND  | R_16k9_0603_100_1             | R_16K9     | R38            | 16.9Kohms |

Figura 6.22: Lista dei componenti utilizzati per il Bk1B113\_Compensator

### 6.2.3 Bk1B113\_V3\_Triwave\_Gen

Il blocco *Bk1B113\_V3\_Triwave\_Gen* è un generatore di forma d'onda triangolare, il cui segnale di uscita viene confrontato dal comparatore *LTC6752HS*, con il segnale di errore (o di controllo) proveniente dal blocco *Bk1B113\_V3\_Compensator*.

Se il segnale triangolare risulta essere maggiore del segnale di errore, l'uscita del comparatore assumerà un livello di tensione basso. Tale uscita collegata all'ingresso del driver di pilotaggio del transistore MOS di tipo P all'interno del convertitore Buck, fa si che il PMOS abbia al gate (attraverso il driver) una tensione bassa e pertanto viene portato alla conduzione.

Nel caso in cui invece il segnale triangolare sia inferiore a quello di controllo l'uscita al comparatore risulta essere a livello alto portando il driver a interdire il transistore.

## 6.2.3.1 Progettazione del Bk1B113\_V3\_Triwave\_Gen

Per realizzare il generatore di forma d'onda triangolare si è utilizzato un multivibratore astabile (o oscillatore a rilassamento)[16], così fatto:



Figura 6.23:Schema elettrico dell'oscillatore a rilassamento

Questo circuito permette di ottenere in uscita un forma d'onda senza che vi sia alcun segnale in ingresso. Infatti è sufficiente applicare una tensione di alimentazione all'operazionale, affinché il circuito inizi ad oscillare (tra due stati).

In realtà questo circuito (che forma un Trigger di Schmitt invertente) viene spesso utilizzato per generare forme d'onda quadre. Tuttavia come possiamo vedere dalle curve in Figura 6.24, oltre all'uscita all'operazionale che è un onda quadra si ha una tensione ai capi del condensatori che assume un andamento simile a quello di un onda triangolare.

Ed è proprio tale segnale che costituirà l'uscita del blocco *Bk1B113\_V3\_Triwave\_Gen* realizzato.



Figura 6.24: Andamento delle forme d'onda di un multivibratore astabile

Non avendo a disposizione un'alimentazione duale si è reso necessario l'utilizzo di un certa tensione di riferimento in modo da avere come livello basso un valore prossimo ai 0V( e non negativo).

All'accensione il condensatore risulterà inizialmente scarico e V<sub>o</sub>è forzata a livello alto ( a causa della reazione positiva), provocando la carica del condensatore stesso verso la tensione di alimentazione per mezzo del resistore R, con una costante di tempo  $\tau$ =RC. Quando la tensione V<sub>c</sub> raggiunge la tensione di soglia alta V<sub>+H</sub>, l'uscita dell'operazione andrà a zero con conseguente scarica del condensatore attraverso il ground.

Cosi facendo l'oscillazione diventa periodica con un duty cycle  $D = T_H / (T_H + T_L)$  e una frequenza  $f_0 = 1/(T_H + T_L)$ .

Attraverso alcuni calcoli possiamo ottenere l'equazione esplicitata delle frequenza  $f_0$ :

$$f_0 = \frac{1}{\text{RC}\ln\left(\frac{V_{+H}}{V_{+L}} * \frac{V_{cc} - V_{+L}}{V_{cc} - V_{+H}}\right)} \quad (6.32)$$

Dove le tensioni di soglia  $V_{+H}$  (superiore) e  $V_{+L}$ (inferiore) sono calcolate tramite le seguenti equazioni :

$$V_{+L} = V_{ref} * \frac{R_2 / / R_3}{(R_2 / / R_3) + R_1} (6.33)$$
$$V_{+H} = V_{ref} * \frac{R_2 / / R_3}{(R_2 / / R_3) + R_1} + V_{OH} * \frac{R_2}{R_2 + R_3} (6.34)$$

In cui scelto il valore della tensione di riferimento a 3.3V e posto  $V_{+H}=2.2V$  e  $V_{+L}=0.18V$  si ottengono per i vari resistori i seguenti valori :

$$\begin{cases} R_1 = 220 \text{K}\Omega \\ R_2 = 30.9 \text{K}\Omega \\ R_3 = 18 \text{K}\Omega \end{cases}$$

Inoltre per ottenere i valori dei componenti R e C si utilizza la (6.32), in cui sostituendo otteniamo un valore di  $\tau$ =RC = 1.45µs.

Fissato il valore di uno dei due componenti si ottiene l'altro, abbiamo quindi :

$$C = 1nF$$
  $R = 1.5K\Omega$ 

Riepiloghiamo i parametri principali relativi al blocco descritto utilizzando una alimentazione pari a 3.3V :

$$Out_{MIN} = 0.18V$$
  $Out_{MAX} = 2.2V$   $f_0 = 200 kHz$ 

Lo schema circuitale implementato su Mentor Graphics viene mostrato di seguito:



Figura 6.25: Schema circuitale del Bk1B113\_V3\_Triwave\_Gen

Si è eseguito un test (*TEST\_ Bk1B113\_V3\_Triwave\_Gen*) sul seguente blocco per osservare il segnale di uscita prodotto, il cui esito è mostrato di seguito:



Figura 6.26: Andamento del segnale in uscita al blocco Bk1B113\_V3\_Triwave\_Gen

Come si osserva dal grafico il valore massimo e minimo del segnale a forma d'onda triangolare vengono rispettati, così come la frequenza impostata.

# 6.2.3.2 SpiceNetlist del Bk1B113\_V3\_Triwave\_Gen e componenti utilizzati

Si riporta di seguito la netlist relativa al blocco *Bk1B113\_V3\_Triwave\_Gen*:

```
*Definition For Project Bk1B113_U3_Triwave_Gen
.SUBCKT Bk1B113_U3_Triwave_Gen N3U3 OUT AGND
CC6 OUT AGND {MC( 1000.000000P , 10.0000000 /100)} TC=30.0000000U
RR28 POS N1N52 {MC( 27Kohms , 1000.000000M /100)} TC=100.000000U
RR30 POS N3U3 {MC( 220Kohms , 1000.000000M /100)} TC=100.000000U
RR31 POS UD {MC( 18Kohms , 1000.000000M /100)} TC=100.000000U
RR32 N1N52 AGND {MC( 3.9Kohms , 1000.000000M /100)} TC=100.000000U
XX2 POS OUT N3U3 AGND VD LTC6752
RR33 OUT VD {MC( 1.5Kohms , 1000.000000M /100)} TC=100.000000U
* CROSS-REFERENCE 1
* 3U3=N3U3
.ENDS
```

Figura 6.27:Netlist Spice del blocco Bk1B113\_V3\_Triwave\_Gen

E la lista dei componenti utilizzati:

| #                          | QTY | Part Number                                                                                                                  | PartLabe]                                                                                                                               | PartName                                                  | Ref Designator                            | Value                                            |
|----------------------------|-----|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|--------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6 |     | DK_490-1303-1-ND<br>DK_LTC6752HSC6-1#TRMPBFCT-ND<br>RS_504-9634<br>RS_504-6916<br>RS_504-69159<br>RS_504-9959<br>RS_505-0858 | c_1n_0402_X7R_50_10<br> 0A_LTC6752H55_TSOT23_1_3_6v<br> R_1K5_0603_100_1<br> R_3K9_0603_100_1<br> R_18K_0603_100_1<br> R_27K_0603_100_1 | C1n<br> OA_LTC6752H55<br> R1K5<br> R3K9<br> R18K<br> R27K | C6<br> X2<br> R33<br> R32<br> R31<br> R28 | 1n<br>1.5Kohms<br>3.9Kohms<br>18Kohms<br>27Kohms |
| 7                          | 1   | RS_505-0331                                                                                                                  | R_220K_0603_100_1                                                                                                                       | R220K                                                     | R30                                       | 220Kohms                                         |

Figura 6.28:Lista dei componenti utilizzati per il Bk1B113\_V3\_Triwave\_Gen

## 6.3 Bk1B121I\_Load\_Switch\_Delayed/Bk1B121G\_Load\_Switch\_Shunt

Gli ultimi due blocchi che fanno parte del sistema *Bk1B113\_Battery\_Charger\_V3* totale, sono: il *Bk1B121G\_Load\_Switch\_Shunt* e il *Bk1B121I\_Load\_Switch\_Delayed*.

Infatti anche il seguente sistema così come il  $Bk1B118\_Battery\_Discharger\_V2$  è caratterizzato dalla presenza di due load switch: uno collegato in ingresso al sistema (in questo caso lato *PDB*) e l' altro all'uscita (lato batteria).

Questi dispositivi permettono, qualora si renda necessario, di isolare il sistema considerato sia dalla batteria sia dal bus di potenza tramite opportuni comandi di enable inviati dal microprocessore.

In questo modo anche se sul *Power Distribution Bus* è presente un livello di tensione superiore ai 14.5V ( e quindi a bordo del satellite è si ha energia in eccesso) si può evitare di caricare ulteriormente la batteria, quando essa risulti già carica carica, evitando di danneggiarla. Ed inoltre permette di ridurre l'assorbimento sul bus di potenza.

## 6.3.1 Progettazione del Bk1B121I\_Load\_Switch\_Delayed

Esso è il load swtich posto sul lato del *PDB*. Lo schema elettrico di questo circuito è il seguente :



Figura 6.29:Schema elettrico del blocco Bk1B1211\_Load\_Switch\_Delayed

Per quanto riguarda la descrizione di tale blocco si fa riferimento a quanto detto per i precedenti load switch utilizzati nel *Bk1B118\_Battery\_Discharger\_V2*, in cui l'unica differenza sta nella scelta dei resistori utilizzati, poiché sia i livelli di tensione sul bus di potenza sia il valore della capacità del condensatore in ingresso al convertitore sono differenti.Pure in questo caso la scelta dei valori dei resistori è stata condizionata oltre che per un motivo strettamente legato ai tempi di accensione e spegnimento, anche per rispettare il vincolo definito da specifica. Ovvero che il circuito di carica *Bk1B113\_Battery\_Charger\_V3* deve assorbire, quando è disconnesso dal bus, una corrente di leakage inferiore ai 100 $\mu$ A. Con il circuito così progettato e considerata una tensione massima sul *PDB* pari a 25V, avremo un assorbimento da parte del sistema che soddisfa tale richiesta. Si riportano di seguito i valori dei resistori utilizzati e le caratteristiche salienti del dispositivo:

| Parameter | Min    | Max     |
|-----------|--------|---------|
| EN        | 1.2V   | 12V     |
| IN        | 7V     | 20V     |
| tdelayon  | 1.5ms  | 3.35ms  |
| tdelayoff | 1.75ms | 11.35ms |

 $5_R9 = 143k\Omega$   $5_R14 = 100k\Omega$   $5_R34 = 1.5k\Omega$ 

Quando il circuito è disabilitato può essere sottoposto a tensioni di ingresso fino ai 60V.

# 6.3.2 Progettazione del Bk1B121G\_Load\_Switch\_Shunt

Il *Bk1B121G\_Load\_Switch\_Shunt* è invece il load switch posto sul lato delle celle costituenti la fonte di energia secondaria.

Il suo schema elettrico è mostrato di seguito:



*Figura 6.30*:Schema elettrico del blocco *Bk1B121G\_Load\_Switch\_Shunt* 

Come è possibile notare dal grafico questo blocco presenta valori di resistori relativamente bassi, rispetto a quelli utilizzati per la realizzazione degli altri load switch. Infatti questo circuito ha solo il compito di scollegare il sistema dal banco batterie, senza ritardarne di molto i tempi di accensione e spegnimento.

Il motivo della scelta è dovuto a valori di tensione di batteria e di capacità del condensatore di uscita del convertitore tali da non apportare uno stress significativo alle celle utilizzate. Per quanto riguarda il principio di funzionamento del circuito, esso rimane lo stesso visto per i precedenti load switch.

Inoltre se consideriamo il sistema sempre scollegato (scarica della batteria dovuta alla corrente di leakage), la scelta di valori bassi per i resistori, considerando comunque la presenza della resistenza  $R_{off}$  del transistore sufficientemente alta, fa si che la durata della batteria rimanga comunque molto superiore a quella di vita del satellite.

Si riportano di seguito i valori dei resistori utilizzati e le caratteristiche salienti del dispositivo:

 $5_R35 = 1.5k\Omega$   $5_R40 = 2.7k\Omega$   $5_R41 = 2.7k\Omega$ 

| Parameter | Min    | Max   |
|-----------|--------|-------|
| EN        | 1.2V   | 12V   |
| IN        | 5V     | 20V   |
| tdelayon  | 12.5us | 400us |
| tdelayoff | 45us   | 175us |

Quando il circuito è disabilitato può essere sottoposto a tensioni di ingresso fino ai 60V.

## 6.3.3 Spice Netlist del Bk1B121I\_Load\_Switch\_Delayed e del Bk1B121G\_Load\_Switch\_Shunt e i relative component utilizzati

Si mostrano di seguito le relative netlist per i blocchi: *Bk1B1211\_Load\_Switch\_Delayed* (Figura 6.31) e *Bk1B121G\_Load\_Switch\_Shunt* (Figura 6.32):

\*Definition For Project Bk1B121I\_Load\_Switch\_Delayed .SUBCKT Bk1B121I\_Load\_Switch\_Delayed ENABLE DGND OUT IN XM2 OUT N1N16 N1N11 irlm12502 XM1 N1N16 ENABLE DGND irlm12502 RR34 N1N11 DGND {MC( 1.5Kohms , 1000.000000M /100)} TC=100.000000U XX15 OUT N1N14 IN atp304 RR9 N1N14 N1N16 {MC( 143Kohms , 100.000000M /100)} TC=50.000000U RR14 IN N1N14 {MC( 100Kohms , 100.000000M /100)} TC=100.000000U \* CROSS-REFERENCE 0 .ENDS

*Figura 6.31*:Netlist Spice del blocco *Bk1B1211\_Load\_Switch\_Delayed* 

\*Definition For Project Bk1B121G\_Load\_Switch\_Shunt .SUBCKT Bk1B121G\_Load\_Switch\_Shunt ENABLE DGND OUT IN RR40 N1N158 N1N8 {MC( 2.7Kohms , 1000.000000M /100)} TC=100.000000U XM3 OUT N1N8 N1N9 irlm12502 XM4 N1N8 Enable DGND irlm12502 RR35 N1N9 DGND {MC( 1.5Kohms , 1000.000000M /100)} TC=100.000000U XX16 OUT N1N158 IN atp304 RR41 IN N1N158 {MC( 2.7Kohms , 1000.000000M /100)} TC=100.000000U \* CROSS-REFERENCE 0 .ENDS

Figura 6.32: :Netlist Spice del blocco Bk1B121G\_Load\_Switch\_Shunt

E la lista dei componenti:

| # | 10 | TY | Part Number             | PartLabel                       | PartName  | Ref Designator | Value    |
|---|----|----|-------------------------|---------------------------------|-----------|----------------|----------|
| 1 | I  | 1  | DK_ATP304-TL-HOSCT-ND   | Q ATP304 ATPAK PMOS 100A 60V    | ATP304    | X15            |          |
| 2 |    | 2  | DK_IRLML2502CT-ND       | QIRLML2502_SOT23-3_MOS_N_4A2_20 | IRLML2502 | M1, M2         | 1,       |
| 3 |    | 1  | RS_504-9634             | R_1K5_0603_100_1                | R1K5      | R34            | 1.5Kohms |
| 4 |    | 1  | DK_MCT0603-100K-MBCT-ND | R_100K_0603_125_0%1             | R100K     | R14            | 100Kohms |
| 5 |    | 1  | RS_614-5799             | R_143K_0805_100_0%1             | R143K     | R9             | 143Kohms |

*Figura 6.33*:Lista dei component per il *Bk1B1211\_Load\_Switch\_Delayed* 

| # | 10 | TY | Part Number           | PartLabel                        | PartName  | Ref Designator | Value     |
|---|----|----|-----------------------|----------------------------------|-----------|----------------|-----------|
| 1 |    | 1  | DK_ATP304-TL-HOSCT-ND | Q_ATP304_ATPAK_PMOS_100A_60V     | ATP304    | X16            |           |
| 2 |    | 2  | DK_IRLML2502CT-ND     | Q_IRLML2502_SOT23-3_NOS_N_4A2_20 | IRLML2502 | M3 , M4        | ,         |
| 3 |    | 1  | RS_504-9634           | R_1K5_0603_100_1                 | R1K5      | R35            | 1.5Kohms  |
| 4 |    | 2  | RS_505-0842           | R_2K7_0603_100_1                 | R2K7      | R40,R41        | 2.7Kohms, |
|   |    |    |                       |                                  |           | 1              | 2.7Kohms  |

*Figura 6.34:* Lista dei component per il *Bk1B121G\_Load\_Switch\_Shunt* 

## 6.4 Sistema completo del Bk1B113\_Battery\_Charger\_V3

Analizzati nel dettaglio i singoli blocchi costituenti il *Bk1B113\_Battery\_Charger\_V3*, si studia il comportamento complessivo del sistema e l'interazione tra i vari sottoblocchi, che quindi sono :

- *Bk1B113\_V3\_Buck\_Converter*
- *Bk1B121G\_Load\_Switch\_Shunt e Bk1B121I\_Load\_Switch\_Delayed*
- Bk1B113\_V3\_Feedback\_net
- *Bk1B113\_V3\_Compensator*
- *Bk1B118\_V2\_Triangular\_waveform*

La relazione tra tutti questi sottocircuiti è stata descritta in modo più chiaro attraverso l'utilizzo di un opportuno *Class Diagram* (Figura 6.35). All'interno dello stesso diagramma è inoltre possibile notare la presenza di altri dispositivi chiave all'interno del circuito, che invece non sono stati inglobati all'interno di altri blocchi. Essi sono :

- LTC6752HS5\_Comparator, questo circuito compara il segnale di controllo proveniente dal blocco Bk1B113\_V3\_Compensator e il segnale triangolare in uscita dal Bk1B113\_V2\_Triwave\_Gen, andando a generare un segnale pwm in ingresso al Bk1B113\_V3\_Buck\_Converter\_charger
- *LT1790-2V5\_Reference*, genera la tensione di riferimento a 2.5V utilizzato dal compensatore *Bk1b118\_V2\_Compensator* per valutare la tensione di feedback.
- *LM1117\_Voltage\_Regulator*, permette di regolare i livelli di tensione provenienti dalla batteria ad un valore di 3.3V compatibile con le dinamiche di molti dei dispositivi utilizzati
- *TPS76150\_5V\_Regulator*, permette di regolare i livelli di tensione provenienti dalla batteria ad un valore di 5V, compatibile con le dinamiche di molti dei dispositivi utilizzati



Figura 6.35: Class Diagram del Bk1B113\_Battery\_Charger\_V3



Si riporta di seguito lo schema circuitale del *Bk1B113\_Battery\_Charger\_V3*:

*Figura 6.36*:Schema elettrico del sistema *Bk1B113\_Battery\_Charger\_V3* 



Esso può essere visto come un *reusable block* avente i seguenti pin di I/O:

*Figura 6.37: Reusable Block Bk1B113\_Battery\_Charger\_V3* e tabella dei pin

Dal grafico sono più chiare le relazioni tra i vari circuiti che caratterizzano l'intero sistema, il cui funzionamento è illustrato nel dettaglio attraverso le seguenti simulazioni.

## 6.4.1 Simulazioni del sistema Bk1B113\_Battery\_Charger\_V3

Per verificare la corretta funzionalità del sistema di carica delle celle a polimeri di lito *Li*-*Po*, sono state eseguite un numero elevato di simulazioni, attue a dare riscontri significativi e monitorare tutte quelle condizioni critiche che potessero portare a malfunzionamenti della circuiteria elettronica applicata.

Il primo test effettuato è il TEST1\_Bk1B113\_Battery\_Charger\_V3, il cui obbiettivo è caratteristica I-V che quello di ottenere una caratterizza l'attività del Bk1B113\_Battery\_Charger\_V3 sul Power Distribution Bus, analoga a quella mostrata più volte nei precedenti capitoli. Il seguente test prevede di simulare il bus di potenza con un generatore di tensione che vari nel tempo tra i 14.5V e 15.5V e una sua resistenza serie pari ad 5 $\Omega$ , mentre le celle di batterie in serie sono stati implementate attraverso un generatore di tensione pari a 7.4V con resistenza serie R<sub>s</sub> pari a 100mΩ come possiamo vedere dalla seguente figura :

```
.tran 10u 175m 0 10u
VAGND AGND 0 DC 0
VDGND DGND 0 DC 0
**VEN ENABLE 0
VEN ENABLE 0 PULSE (0 3.3 200u 10n)
**VVBUS Xth_VBUS 0
VVBUS Xth_VBUS 0
Rth_VBUS Xth_VBUS PDB 5
Cbattery V_BAT 0 100 IC=6 Rser=100m
```

Figura 6.38: Segnali utilizzati per il TEST1\_Bk1B113\_Battery\_Charger\_V3

Il risultato ottenuto è mostrato di seguito:



*Figura 6.39*:Grafico della caratteristica I-V sul bus relativa al *TEST1\_Bk1B113\_Battery\_Charger\_V3* 

Come è possibile notare dal grafico, i risultati ottenuti sono perfettamente compatibili con le specifiche richieste dal progetto *AraMis*, ovvero per tensioni inferiori ai 14.5V si hanno correnti nulle mentre per tensioni superiori ai 15.5V si hanno valori di corrente massimi e pari a circa 0.78A.

Avendo ottenuto i risultati della caratteristica statica desiderati, si è proceduto andando a studiare il comportamento dinamico del sistema.

Ovvero si è analizzato i suoi tempi di risposta a fronte di variazioni di tensioni improvvise sul *PDB*.

Per simulare questa condizione si è utilizzato un generatore di corrente in parallelo al bus di potenza che assorbe inizialmente 600mA e in corrispondenza dell'istante di tempo pari ad 2.5ms si ha un gradino che porta l'assorbimento di corrente ad un valore pari a zero. Il *PDB* invece è simulato mediante un generatore di tensione di 20V e una resistenza serie di  $5\Omega$ , come si può osservare in figura:

```
.tran 10u 160m 0 1u
C100 V_BAT 0 1 IC=6 Rser=100m
VAGND AGND 0 DC 0
VDGND DGND 0 DC 0
**VPDB Xth_PDB 0 DC 15.5
VPDB Xth_PDB 0 DC 20
Rth_PDB Xth_PDB 9DB 5
I1 PDB Xth_PDB PDB 5
I1 PDB 0 pulse (0.6 0 2.5m 10n)
**VVEN ENABLE 0 DC 3.3
VVEN ENABLE 0 DC 3.3 PULSE (0 3.3 200u 10n 10n 1k 2000k )
```

Figura 6.40: Segnali utilizzati per il TEST2\_Bk1B113\_Battery\_Charger\_V3

Il risultato di questa simulazione è il seguente (dove I(I1) è la corrente che simula il carico collegato al bus di potenza, Ix la corrente entrante al *battery charger* e I(Vbus) è la corrente di bus) :



TEST2\_Bk1B113\_Battery\_Charger\_V3

Come si può notare dal grafico, dopo un transitorio iniziale in cui il circuito entra in funzione, si presenta sul bus di potenza una tensione pari a 15V e una conseguente corrente assorbita dal 1B113 Battery Charger V3 pari a circa 0.4A (in accordo con le specifiche AraMis date). Successivamente il gradino di corrente va a zero, così facendo la tensione sul bus di distribuzione sale fino ai 16V e la corrente assorbita dal dispositivo dopo solo una decina di microsecondi si stabilizza ad un valore pari circa a 0.8A (come da specifica). Si può quindi attestare come i tempi di risposta del sistema siano talmente veloci da non influenzare il comportamento dello stesso. Tuttavia la situazione appena illustrata permette di validare il comportamento del sistema di carica sono nel tratto superiore della caratteristica. Andiamo a valutare adesso come si comporta il blocco circuitale in corrispondenza di un passaggio dalla zona lineare della caratteristica a quella piatta che si presenta per tensioni al di sotto dei 14.5V. far ciò Per si esegue il TEST3\_Bk1B113\_Battery\_Charger\_V3:

> .tran 10u 160m 0 1u C100 V\_BAT 0 1 IC=6 Rser=100m VAGND AGND 0 DC 0 VDGND DGND 0 DC 0 \*\*VPDB Xth\_PDB 0 DC 15.5 VPDB Xth\_PDB 0 DC 20 Rth\_PDB Xth\_PDB PDB 5 I1 PDB 0 pulse (0.4 1.2 2.5m 10n) \*\*VUEN ENABLE 0 DC 3.3 VVEN ENABLE 0 DC 3.3

Figura 6.42: Segnali utilizzati per il TEST3\_Bk1B113\_Battery\_Charger\_V3

In cui la variazione del carico collegato sul *PDB* è stata implementata questa volta, mediante un generatore di corrente pari a 400mA che subisce una variazione a gradino in corrispondenza dell'istante 2.5ms fino a raggiungere il valore di 1.2A. I risultati ottenuti sono :



Si può notare che dopo il classico transitorio iniziale si presenta sul bus una tensione del valore di 15.25V, con conseguente assorbimento di corrente da parte del circuito di carica di circa 0.56A. All'istante 2.5ms il generatore di corrente I(I1) subisce un ripido aumento che lo porta ad assorbire una corrente di 1.2A e ne consegue una variazione della tensione di bus che giunge a 13.75V. Anche in questo caso la corrente assorbita dal blocco di carica delle batterie si assesta al valore voluto in tempi brevissimi, rendendo trascurabili i tempi di risposta del sistema.

Una volta verificato che il sistema si comporti bene sia da un punto di vista statico sia dinamico, andando a soddisfare le specifiche *AraMis* richieste, si è osservato se il metodo di carica scelto è correttamente implementato dalla rete di generazione di feedback progettata(terza curva con tensione di carica di batteria massima). Infatti a differenza delle precedenti analisi non si considererà più la batteria come un generatore di tensione ma bensì come un condensatore, la cui capacità per problemi simulativi (legati sia ai tempi di simulazione sia alle risorse richieste in termini di memoria) assumerà valore non comparabili con quelli realmente presentati dalle celle *Li-Po* selezionate.

Un primo test (*TEST4\_Bk1B113\_Battery\_Charger\_V3*) è stato eseguito considerando un condensatore di capacità 0.3F, già carico ad una tensione pari a 6V (minima ammessa per le due celle in serie) e una tensione sul bus di potenza pari a 15.5V. In questo modo il condensatore si caricherà con una corrente di batteria massima teoricamente a 2A.

```
.tran 10u 2 0 1u
C_battery vbattery 0 0.3 IC=6 Rser=100m
VAGND AGND 0 DC 0
VDGND DGND 0 DC 0
VPDB PDB 0 DC 15
**VVEN ENABLE 0 DC 3.3
VVEN ENABLE 0 DC 3.3 PULSE (0 3.3 200u 10n)
```

Figura 6.44: Segnali utilizzati per il TEST4\_Bk1B113\_Battery\_Charger\_V3

Si osserva il seguente andamento :



Durante la carica della batteria ("simulata con un condensatore") si hanno due fasi distinte. La prima a corrente costante in cui la tensione di batteria cresce fino al suo valore massimo posto dalla rete a 8.4V. E la seconda fase a tensione di batteria costante, in cui la corrente di carica tende progressivamente al valore di *cutoff* posto a 0.1A (ma modificabile via software) raggiunto il quale il circuito viene disabilitato.

In realtà nella prima fase non si ha l'andamento della corrente di carica esattamente voluto. Infatti possiamo notare che il suo valore tende a diminuire leggermente, questo perché man mano che la batteria si carica il suo valore di tensione aumenta. Se la corrente di batteria rimanesse costante si avrebbe una potenza di uscita che sarebbe maggiore rispetto a quella d'ingresso, situazione ovviamente impossibile. Visto che non si ha la necessità di avere una corrente esattamente costante (ma di una corrente che non vari molto durante la carica)possiamo comunque considerare tale problema trascurabile. Inoltre si osserva che il valore di corrente di carica massima non è pari a quello aspettato di 2A. La ragione è attribuibile all'efficienza del convertitore utilizzato, difatti essendo quest'ultima pari al 90% porta ad una riduzione della corrente (dato che la tensione ai capi del condensatore è fissata a priori) del suo 10% che è pari a 0.2A. Infatti si ha una corrente effettiva di soli 1.8A.

All'interno della medesima simulazione si è analizzato anche lo stress subito dalla batteria in fase di accensione del sistema di carica, osservando la corrente prelevata dalle celle per la carica del condensatore di uscita del convertitore (Figura 6.46).



Figura 6.46: Stress sulla batteria durante l'accensione del Bk1B113\_Battery\_Charger\_V3

Dal grafico si evince che la corrente prelevata dalla batteria in accensione è al di sotto del massimo valore di corrente di scarica imposto da datasheet, e quindi considerato accettabile.

E' stato eseguito successivamente un test *TEST6\_Bk1B113\_Battery\_Charger\_V3*, con le medesime modalità in cui si è variato solo il valore della tensione presente sul *PDB* con un valore di 15V e il valore della capacità (solo per ridurre il tempo di simulazione). Il cui esito è mostrato in figura:



Come previsto il valore della corrente di carica risulta essere la metà di quello precedente, in accordo alla caratteristica I-V del *battery charger* sul *PDB*. Tuttavia avendo utilizzato un valore di capacità relativamente bassa si hanno risultati meno accurati e si ha una tensione leggermente più alta di quella prevista(dovuto al fatto che il condensatore con tale capacità si carica più velocemente e con correnti più basse). Nel caso in cui si

utilizzassero capacità elevate come quelle delle batterie utilizzate ciò non accadrebbe, ottenendo risultati ampiamente dentro le specifiche di progetto.

Infine come si è fatto per alcuni dei blocchi precedenti, la presenza di componenti presenza di componenti quali resistori, induttori, e capacitori soggetti a tolleranze di fabbricazione, ha reso necessario al fine di ottenere dei risultati significativi alla validazione del funzionamento dell'intero sistema l'utilizzo di simulazioni *montecarlo*. A tal fine si è effettuato il *TEST7\_Bk1B113\_Battery\_Charger\_V3\_Montecarlo*. In cui per motivi di limitazione delle risorse ha disposizione si sono prese solo le prime 5 curve. Si mostrano di seguito le sorgenti di simulazione:

.step param 1 3 1 .tran 10u 175m 0 10u VAGND AGND 0 DC 0 VDGND DGND 0 DC 0 \*\*VEN ENABLE 0 VEN ENABLE 0 PULSE (0 3.3 200u 10n) \*\*VVBUS Xth\_VBUS 0 VVBUS Xth\_VBUS 0 VVBUS Xth\_VBUS 0 PULSE (13.5 21 10m 150m) Rth\_VBUS Xth\_VBUS PDB 5 Cbattery V\_BAT 0 100 IC=6 Rser=100m

Figura 6.48: Segnali utilizzati per il TEST7\_Bk1B113\_Battery\_Charger\_V3\_Montecarlo



I risultati ottenuti sono:

Figura 6.49: Grafico relativo al TEST7\_Bk1B113\_Battery\_Charger\_V3\_Montecarlo

I valori presentati dalla simulazione eseguita permettono di affermare che le specifiche del progetto *AraMis*, sono ampiamente rispettate. Infatti si hanno valori di tensione nell'intorno dei 15.5V con un incertezza massima pari ad 50mV, lo stesso accade nell'intorno dei 14.5V.

Queste incertezze sono ampiamente inferiori a quelle previsti per i valori di tensione sul bus di potenza della caratteristica di uscita, definite a priori:

 $V = \begin{cases} 15.5 \pm 250 mV \\ 14.5 \pm 250 mV \end{cases}$ 

L'ultimo test effettuato *TEST5\_Bk1B113\_Battery\_Charger\_V3* su tale blocco è stato fatto, al solo scopo di illustrare l'andamento della caratteristica I-V sul bus di potenza, nel caso in cui due blocchi *Bk1B113\_Battery\_Charger\_V3* siano connessi in parallelo tra il banco batterie e il *Power Distribution Bus*(Figura 6.50).

Ciascuno dei due blocchi sarà pilotato contemporaneamente dagli stessi segnali di abilitazione del circuito.



Figura 6.50: Schema elettrico di due Bk1B113\_Battery\_Charger\_V3 in parallelo

Per effettuare il test si sono utilizzate gli stessi segnali d'ingresso utilizzati per il  $TEST1\_Bk1B113\_Battery\_Charger\_V3$  con l'unica differenza che la resistenza serie del bus assume un valore di 2.5 $\Omega$ .
```
.tran 10u 175m 0 10u
VAGND AGND 0 DC 0
VDGND DGND 0 DC 0
**VEN ENABLE 0
VEN ENABLE 0 PULSE (0 3.3 200u 10n)
**VUBUS Xth_VBUS 0
VUBUS Xth_VBUS 0
VUBUS Xth_VBUS 0 PULSE (13.5 21 10m 150m)
Rth_VBUS 0 PULSE (13.5 21 10m 150m)
```

*Figura* 6.51 : Segnali utilizzati per il *TEST5\_Bk1B113\_Battery\_Charger\_V3* 

Ottenendo la seguente caratteristica :



Figura 6.52: :Grafico Ibus vs Vbus relativo al TEST5\_Bk1B113\_Battery\_Charger\_V3

Come era facilmente intuibile l'andamento della caratteristica risulta essere analogo a quella ottenuta con l'utilizzo di un solo blocco di carica.

L'unica variante sta nei valori di corrente assorbiti dal bus che sono raddoppiati rispetto al caso precedente. Come si può notare si ha adesso un valore massimo di Ibus pari a 1.6A. Pertanto tale configurazione può essere utilizzata qualora si necessiti di una corrente di carica della batteria maggiore, oppure cambiando leggermente la configurazione dello schematico quando si ha la necessità di caricare più banchi batterie contemporaneamente.

### 6.4.2 SpiceNetlist del sistema Bk1B113\_Battery\_Charger\_V3

Si riporta diseguito la netlist spice del sistema Bk1B113\_Battery\_Charger\_V3 :

CC1 N5U DGND {MC( 4.7000000U , 10.000000 /100)} TC=10.000000U XBk1B121G\_Load\_Switch\_Shunt ENABLE DGND Vbat\_char V\_BAT +Bk1B121G\_Load\_Switch\_Shunt XBk1B113\_U3\_Feedback\_Net N5U AGND IN\_converter Vbus\_char +I\_PDB Bk1B113\_U3\_Feedback\_Net XBk1B113\_U3\_Triwave\_Gen N3U3 TRI AGND Bk1B113\_U3\_Triwave\_Gen XBk1B113\_U3\_Compensator N2U5 AGND N5U FEEDBACK V\_CONTROL +Bk1B113\_U3\_Compensator XBk1B113\_U3\_Compensator XBk1B113\_U3\_Buck\_Converter\_charger Vbus\_char V\_PWM Vbat\_char DGND +IN\_converter Bk1B113\_U3\_Buck\_Converter\_charger XU1 Vbat\_char N3U3 DGND LM1117 XX1 V\_CONTROL TRI N3U3 AGND V\_PWM LTC6752 CC3 N1N990 AGND {MC( 100.000000N , 10.0000000M /100)} TC=30.000000U RR1 Vbat\_char N1M990 {MC( 1Kohms , 1000.000000M /100)} TC=10.000000U CC4 N3U3 DGND {MC( 1uF , 10.000000 /100)} TC=10.000000U CC2 Vbat\_char DGND {MC( 1uF , 10.000000 /100)} TC=30.000000U CC2 Vbat\_char DGND {MC( 1uF , 10.000000 /100)} TC=30.000000U CC2 Vbat\_char DGND {MC( 1uF , 10.000000 /100)} TC=30.000000U CC2 Vbat\_char DGND {MC( 1uF , 10.000000 /100)} TC=30.000000U CC2 Vbat\_char DGND {MC( 1uF , 10.000000 /100)} TC=30.000000U CC2 Vbat\_char DGND {MC( 1uF , 10.000000 /100)} TC=30.000000U CC2 Vbat\_char DGND {MC( 1uF , 10.000000 /100)} TC=30.000000U CC2 Vbat\_char DGND {MC( 1uF , 10.000000 /100)} TC=30.000000U CC2 Vbat\_char DGND {MC( 1uF , 10.000000 /100)} TC=30.000000U CC2 Vbat\_char DGND {MC( 1uF , 10.000000 /100)} TC=30.000000U CC2 Vbat\_char DGND {MC( 1uF , 10.000000 /100)} TC=30.000000U CC3 Vbat\_char DGND {MC( 1uF , 10.000000 /100)} TC=30.000000U CC4 V303 DGND {MC( 1uF , 10.000000 /100)} TC=30.000000U CC4 V303 DGND {MC( 1uF , 10.000000 /100)} TC=30.000000U CC5 Vbat\_char DGND {MC( 100.0000000 /100)} TC=30.000000U CC4 V303 DGND {MC( 100.0000000 /100)} TC=30.000000U CC4 V303 DGND {MC( 100.0000000 /100)} TC=30.000000U CC5 Vbat\_char DGND {MC( 100.0000000 /100)} TC=30.000000U CC4 V303 DGND {MC( 100 /10000000 /100)} TC=30.000000U CC4 V303 DGND {MC( 100 /1000000 /100)} TC=30.000000U CC5 Vbat\_char DGND /1000000 /100)} TC=30.000000U CC5 Vbat\_char DGND /1000000 /100]} TC=30.0000000

*Figura 6.53*:Netlist Spice del *Bk1B113\_Battery\_Charger\_V3* 

# Capitolo 7 Bk1B114\_Battery\_Monitor

L'ultimo macroblocco progettato, che caratterizza il funzionamento dell'intero sistema di gestione dell'energia delle fonti secondarie (batterie) *Bk1B114\_Battery\_System\_V2*, è il *Bk1B114\_Battery\_Monitor*.

Questo blocco permette di monitorare in tempo reale lo stato della batteria andando a misurare alcuni dei parametri critici, quali : la corrente di carica e scarica, il livello di tensione, e la temperatura. Fornendo i valori misurati espressi come un livello di tensione, all'ingresso del convertitore A/D del microprocessore posto all'interno della scheda realizzata.

Quest'ultimo elabora tali segnali (per mezzo di apposito software) e genera opportuni comandi di controllo al fine di gestire al meglio lo stato e l'efficienza del banco batterie.

Esso all'interno del progetto *AraMis*, come già detto più volte, è costituito da due celle a polimeri di litio posti in serie in modo da raddoppiare la tensione di batteria.

Questo porta a varie problematiche durante la carica delle celle stesse, come ad esempio la presenza di fenomeni di sbilanciamento (ossia una cella più carica rispetto all'altra) che possono portare alla carica di una delle due oltre i limiti consentiti.

Pertanto per il processo di carica delle batterie, non risulta sufficiente il solo utilizzo del sistema *Bk1B113\_Battery\_Charger\_V3*.

A tal proposito è realizzato un particolare blocco elettronico denominato  $Bk1B1142\_Equalizer\_V1$ , il cui compito è quello di andare a bilanciare la tensione delle batterie utilizzate, qualora si verificasse il suddetto fenomeno.

# 7.1 Bk1B1142\_Equalizer\_V1

L'elemento fondamentale del sistema di monitoraggio è senza dubbio il blocco di bilanciamento delle batterie *Bk1B1142\_Equalizer\_V1*, senza il quale ogni processo di carica metterebbe a serio rischio lo stato delle batterie compromettendo il funzionamento dell'intero sistema. Ovvero considerato di avere due celle di batterie, aventi tensione massima di carica nominale pari a 4.2V. Se ad esempio capita durante la fase di immagazzinamento di avere una cella più carica rispetto all'altra, quando la cella a tensione più alta raggiunge i 4.2V, la tensione totale del banco batterie non ha raggiunto ancora il suo massimo richiedendo quindi un ulteriore carica che va a distruggere la cella già al limite dell'immagazzinamento.

### 7.1.1 Progettazione del Bk1B1142\_Equalizer\_V1

I problemi dovuti allo sbilancimento delle celle in fase di carica hanno portato alla definizione e progettazione di un blocco, che svolegesse compiti di equalizzazione .

A tal fine è stato realizzato un circuito ad-hoc chiamato *Bk1B1142\_Equalizer\_V1*.

Tale tipologia di circuito è stato sviluppato nel corso di un altro elaborato[18] e messo a disposizione di altri utenti sotto forma di *Reusable Block*.

La stretta correlazione con il sistema di carica/scarica progettato e la volontà di realizzare un sistema completo che gestisse la totalità delle funzioni riguardanti le batterie all'interno di un unico circuito stampato, ha reso necessario lo studio, la rielaborazione, l'adattamento e in fine l'utilizzo di tale circuito. Il dispositivo è stato progettato facendo le seguenti ipotesi:

- Tensione nominale di ogni singola cella pari a 3.7V
- Sbilanciamento tra due celle all'interno di tale intervallo [-100mV; 100mV]
- Tempi di bilanciamento delle celle di circa 24ore

Si mostra di seguito lo schema elettrico del *Bk1B1142\_Equalizer\_V1* realizzato:



*Figura 7.1*: Schema elettrico del blocco *Bk1B1142\_Equalizer\_V1* 

Il blocco circuitale illustrato è abilitato per mezzo di un segnale di *ENABLE* (attivo alto), e ha una duplice funzione :

• Segnalare eventuali sbilanciamenti al microprocessore attraverso il segnale *V\_UNBAL*  • Bilanciamento delle celle, qualora fosse necessario, a seguito dell'abilitazione del blocco mediante opportuno segnale di enable

Il segnale di sbilanciamento inviato al microprocessore è ottenuto mediante l'utilizzo di un ulteriore sottoblocco, presente all'interno del *battery\_equalizer*, ovvero il *Bk1B137E\_Diff\_V\_Sensor\_V1* illustrato in seguito.

Pertanto qualora si presenti una necessità di equilibrare i voltaggi presenti sulle celle costituenti il banco batterie, il circuito equalizzatore viene opportunamente abilitato.

A seguito di tale abilitazione i transistori  $23\_M1$  e  $23\_M2$  passano in uno stato di conduzione, ed in particolare il transistore  $23\_M1$  collega il gate del mosfet  $23\_M4$  al potenziale *NEGBAT* che viene supposto pari ad *DGND*. Così facendo anche il  $23\_M4$  entra in conduzione, collegando cosi i morsetti di alimentazione dell'operazionale  $23\_U1$  tra *POSBAT* e *NEGBAT*, e quindi accendendolo.

L'amplificatore operazione in accensione, confronta la tensione sul pin *CENBAT* e la tensione pari ad *POSBAT*/2 (ottenuta usando un partitore resistivo composto da un *Precision Resistor Array (PRA)*).

Dal risultato di questa comparazione, si regola il passaggio di corrente di bilanciamento  $I_{CENBAT}$ . In particolare si hanno tre possibili situazioni:

- *CENBAT* > *POSBAT/2*, ovvero la cella inferiore presenta una tensione  $V_{BATI}=V_{POSBAT}$   $V_{CENBAT}$  maggiore, a quella posta superiormente  $V_{BAT2} = V_{CENBAT}$   $V_{NEGBAT}$  divisa per due. Quindi la cella inferiore ha una carica in eccesso da smaltire
- CENBAT < POSBAT/2, la tensione  $V_{BAT2}$  risulta maggiore della tensione presente sulla cella inferiore, e quindi è la cella superiore ad avere una carica in eccesso da smaltire
- $CENBAT \approx POSBAT/2$ , le celle hanno più o meno la stessa tensione, e quindi nessuna delle due ha carica in eccesso da smaltire

Il valore della corrente  $I_{CENBAT}$  è caratterizzata dalla seguente relazione :

$$I_{\text{CENBAT}} = \frac{V_{\text{CENBAT}} - V_{\text{Ds}_{23}_{\text{M}3}} - V_{\text{AMP}}}{23_{\text{R}1} + 23_{\text{R}6} + R_{\text{Ds}_{23}_{\text{M}3}}} + I_{\text{AMPBIAS}} \quad (7.1)$$

Dove  $I_{AMPBIAS}$  è la corrente di polarizzazione dell'amplificatore, e  $V_{AMP}$  la tensione di uscita dell'operazionale, che è pari ad :

$$V_{AMP} = -V_{CENBAT} \frac{23_R1}{23_R6 + R_{DS23_M3}} + V_{POSBAT} \left(\frac{23_R1}{23_R6 + R_{DS23_M3}} + 1\right)$$
(7.2)

Considerando trascurabili sia la resistenza del transistore 23\_M9 sia la corrente di polarizzazione dell'amplificatore operazionale, la corrente  $I_{CENBAT}$  dipende solamente dal

valore dei resistori 23\_R1 e 23\_R6. Ed il suo valore massimo è inoltre limitato dall'operazionale(si vuole che esso lavori in condizioni di linearità su tutta la sua dinamica di uscita).

I suoi valori massimi e minimi quindi vengono impostati di modo che vengano raggiunti in corrispondenza del valore massimo e minimo all'uscita dell'operazionale :

$$\begin{cases} I_{max} = \frac{V_{CENBAT} - V_{AMPL}}{23_{R}6 + 23_{R}1} \\ I_{min} = \frac{V_{CENBAT} - V_{AMPH}}{23_{R}6 + 23_{R}1} \end{cases} (7.3)$$

In particolare come operazionale si è scelto il *LM6142* poiché caratterizzato da una uscita rail-to-rail, pertanto possiamo assumere  $V_{AMPL}=NEGBAT=0V \text{ e } V_{AMPH}=POSBAT$ . Inoltre si vuole che la relazione che leghi  $I_{CENBAT}$  con la tensione  $V_{off}$  sia completamente lineare, con  $I_{CENBAT}$  pari a zero in corrispondenza di uno sbilanciamento nullo ( $V_{off}=0V$ ). Quindi le equazioni 6.1 e 6.2 possono essere riscritte come :

$$\begin{cases} I_{\text{CENBAT}} = \frac{V_{\text{CENBAT}} + V_{\text{off}} - V_{\text{AMP}}}{23_{\text{R}1} + 23_{\text{R}6}} \\ V_{\text{AMP}} = (-V_{\text{CENBAT}} + V_{\text{off}}) \frac{23_{\text{R}1}}{23_{\text{R}6}} + V_{\text{POSBAT}} \left(\frac{23_{\text{R}1}}{23_{\text{R}6}} + 1\right) \end{cases}$$
(7.4)

Con  $V_{off} = V_{BAT1} - V_{BAT2}$  compreso tra [-100mV;100mV].

Effettuando le sostituzioni anche nell'equazione 7.3, otteniamo :

$$\begin{cases} I_{max} = \frac{V_{CENBAT} + V_{off,max} - V_{AMPL}}{23_R6 + 23_R1} \\ I_{min} = \frac{V_{CENBAT} + V_{off,min} - V_{AMPH}}{23_R6 + 23_R1} \end{cases}$$
(7.5)

Considerato di voler correggere l'eventuale sbilanciamento nell'arco di una giornata allora valori limite accettabili per la corrente  $I_{CENBAT}$  (che determina la velocità con cui le celle vengono equalizzate) possono essere in valore assoluto pari a 3.7mA.

Attraverso l'utilizzo di questo valore, dei parametri precedentemente impostati :

 $I_{CENBAT} = \pm 3.7 \text{mA}, POSBAT = 7.4 \text{V}, CENBAT = 3.7 \text{V}, NEGBAT = 0 \text{V}, V_{off} = \pm 100 \text{mV}$ 

e di relazioni inverse, è possibile determinare i resistori da utilizzare al fine di soddisfare le specifiche desiderate. I valori ottenuti sono:

$$23_R6 = 27K\Omega$$
$$23_R1 = 1K\Omega$$

Quando invece il circuito viene disabilitato, ovvero *ENABLE* basso, il transistore 23\_M3 rimane comunque acceso, permettendo il monitoraggio dello stato di bilanciamento delle celle real-time indipendentemente dallo stato di abilitazione del blocco. Mentre al contrario in questa condizione, l'amplificatore  $23_U1$  risulterà spento (alimentazione positiva flottante) con una corrente  $I_{CENBAT}$  nulla o comunque la più bassa possibile (al fine di evitare l'inutile scarica delle celle).

#### 7.1.2 Bk1B137E\_Diff\_V\_Sensor\_V1

Prima di andare ad analizzare le simulazioni del blocco di equalizzazione progettato, si studia il circuito che permette di individuare la presenza dello sbilanciamento delle celle e di determinarne l'entità.

In generale abbiamo che la tensione di sbilanciamento è pari ad :

$$V_{\text{UNBAL}} = V_{\text{OFFSET}} + G\left(V_{\text{CENBAT}} - \left(\frac{V_{\text{POSBAT}} - V_{\text{NEGBAT}}}{2}\right)\right) \quad (7.6)$$

Dove  $V_{OFFSET}$  è l'offset e G è il guadagno differenziale necessario a soddisfare la dinamica desiderata.

Il circuito realizzato viene mostrato in figura:



Figura 7.2:Schema elettrico del blocco Bk1B137E\_Diff\_V\_Sensor\_V1

Il  $Bk1B137E\_Diff\_V\_Sensor\_V1$  è costituito essenzialmente da un amplificatore per strumentazione AD8237[20] e da un certo numero di resistori, il cui valore è scelto per settare il guadagno G (programmabile) a 10 e una tensione  $V_{OFFSET}$  pari ad 1.25V. Dalle seguenti equazioni pertanto :

$$\begin{cases} V_{OFFSET} = V_{REF} \frac{26_R2}{26_R1 + 26_R2} \\ G = 1 + \frac{26_R3 + (26_R1/26_R2)}{26_R4} \\ V_{OUT} = G(V_{INPOS} - V_{INNEG}) + V_{OFFSET} \end{cases}$$
(7.7)

si ottengono i seguenti valori di resistori:

26\_R1=200KΩ 26\_R2=143KΩ 26\_R3=78.7KΩ 26\_R4=18KΩ

In realtà dati questi resistori si avrà un guadagno G=10.004 e una  $V_{OFFSET}=1.251$ V. Inoltre attraverso un'analisi dell'errore introdotto dalle tolleranze di fabbricazione dei resistori, si ottiene:

$$G=G_{nom}\pm\delta G=10.004\pm0.155$$

e

$$V_{OUT} = V_{OUTnom} \pm \delta V_{OUT} = \begin{cases} 0.25 \pm 7.5 \text{mV con } V_{off} = -100 \text{mV} \\ 1.251 \pm 8 \text{mV con } V_{off} = 0 \text{mV} \\ 2.251 \pm 23.6 \text{mV con } V_{off} = +100 \text{mV} \end{cases}$$

Come si può notare i valori di incertezza calcolati risultano molto più bassi di quelli nominali, e quindi tali errori possono essere considerati trascurabili.

In seguito si illustrano le simulazioni effettuate sull'intero blocco, per testarne il corretto funzionamento del sistema progettato e per verificare che le stime degli errori calcolati sia compatibili con i risultati ottenuti.

#### 7.1.3 Simulazioni relative al blocco Bk1B1142\_Equalizer\_V1

Il primo test effettuato è il *TEST1\_TRAN\_OFFSET\_VARIATION*. Esso aveva l'obbiettivo di analizzare l'andamento della tensione di uscita al *Bk1B137E\_Diff\_V\_Sensor\_V1*, *V\_UNBAL*, a fronte di una variazione del segnale  $V_{off}$  che simula lo sbilanciamento tra le due celle tra -100mV e 100mV (come previsto da specifica). I risultati ottenuti sono i seguenti:

TEST1\_TRAN\_OFFSET\_VARIATION\_MONTECARLO



Figura 7.3: Grafico relativo al TEST1\_TRAN\_OFFSET\_VARIATION

Si riportano anche le sorgenti utilizzate:

.tran 10u 310m 0 1u VAGND AGND 0 DC 0 VCENBAT CENBAT OFF 3.7 Voff OFF 0 PULSE (-0.1 0.1 10m 100m) \*\*VENABLE ENABLE 0 VENABLE ENABLE 0 3.3 UNEGBAT NEGBAT 0 DC 0 UPOSBAT POSBAT 0 7.4 UU5U U5U 0 DC 5 UUREF UREF 0 DC 3 Figura 7.4: Segnali utilizzati per il TESTI\_TRAN\_OFFSET\_VARIATION

Come si può vedere dal grafico si ottengono i valori aspettati, compresi tra 0.25V e 2.25V (compatibili con la dinamico dell'A/D del microprocessore utilizzato).

Inoltre si noti come un valore di tensione di uscita pari a quella di riferimento (*Vref*), viene interpretato come un'assenza di sbilanciamento.

Attraverso l'utilizzo degli stessi parametri di simulazione è stata anche eseguito uno studio in *Montercarlo*, al fine di valutare l'errore introdotto dalle tolleranze di fabbricazione di sono soggetti i resistori utilizzati.

Al fine di ottenere i seguenti risultati si è aggiunta la direttiva .*param* all'interno del *TEST1\_TRAN\_OFFSET\_VARIATION*, ottenendo il seguente andamento :



TEST2\_TRAN\_OFFSET\_VARIATION\_MONTECARLO

Figura 7.5: Grafico relativo al TEST2\_TRAN\_OFFSET\_VARIATION\_MONTECARLO

Si noti che i risultati ottenuti sono compatibili a quelli ottenuti teoricamente nel precedente paragrafo.

Nel terzo test effettuato *TEST3\_TRAN\_OFFSET\_VARIATION\_ICENBAT*, si è invece analizzato il comportamento della  $I_{CENBAT}$  al variare della tensione di sbilanciamento  $V_{off}$ , andando ad utilizzare le stesse sorgenti del primo test:

```
.tran 10u 310m 0 1u
VAGND AGND 0 DC 0
VCENBAT CENBAT OFF 3.7
Voff OFF 0 PULSE (-0.1 0.1 10m 100m)
**VENABLE ENABLE 0
VENABLE ENABLE 0 3.3
VNEGBAT NEGBAT 0 DC 0
VPOSBAT POSBAT 0 7.4
VUSU USU 0 DC 5
VVREF VREF 0 DC 3
```

Figura 7.6: Segnali utilizzati per il TEST3\_TRAN\_OFFSET\_VARIATION

I risultati ottenuti sono mostrati di seguito:



TEST3\_TRAN\_OFFSET\_VARIATION\_ICENBAT

Figura 7.7: Grafico relativo al TEST3\_TRAN\_OFFSET\_VARIATION\_ICENBAT

In presenza di uno sbilanciamento di -100mV (causato da una tensione della cella inferiore più bassa di quella superiore) si ha una corrente  $I_{CENBAT}$  (considerata entrante al pin) pari a 3.55 mA, quindi positiva e pertanto tende a caricare la cella inferiore come desiderato.

Si nota inoltre, che il valore di corrente differisce leggermente dal quello teorico calcolato, questo è imputabile alla caduta di tensione sulla resistenza Rdsn del transistor  $23_M3$  e ad una piccola caduta di tensione presente all'uscita dell'operazione anche se esso è di tipo rail-to-rail.

Quando si ha uno sbilanciamento pari a 100mV, si presenta la condizione opposta. Si ha la cella inferiore maggiormente caricata rispetto a quella superiore, e quindi la si deve scaricare per equalizzare le due celle. Pertanto la corrente  $I_{CENBAT}$  come si può vedere risulterà negativa.

Interessante infine notare la presenza di una corrente non nulla  $I_{CENBAT}$  in assenza di sbilanciamento, pari a 31µA.

Tale valore risulta essere molto piccolo , e tale da portare una scarica delle celle del tutto trascurabile. Per questo motivo è stato considerato decisamente accettabile.

Anche in questo caso è stata fatta l'analisi *Montercarlo* aggiungendo la direttiva .*param* al precedente file di simulazione, ottenendo valori consoni alle specifiche date.



TEST4\_TRAN\_OFFSET\_VARIATION\_ICENBAT\_MONTECARLO



Successivamente sono state fatte analisi in temperatura dell'intero blocco valutando in particolare la variazione di  $I_{CENBAT}$  e di  $V_UNBAL$  in funzione della tensione  $V_{off}$ .

TEST5\_TRAN\_OFFSET\_VARIATION\_VUNBAL\_ICEN\_TEMP



Figura 7.9: Grafico del TEST5\_TRAN\_OFFSET\_VARIATION\_VUNBAL\_ICEN\_TEMP



Figura 7.10: Segnali utilizzati per il TEST5\_TRAN\_OFFSET\_VARIATION

Attraverso queste simulazioni si è notano che il circuito funziona correttamente fino a temperature intorno ai  $60^{\circ}$ C , superati i quali inizia ad avere problemi. Quest'ultimi probabilmente riconducibili ad imprecisioni dei modelli di simulazione forniti dai produttori. Fino a questo momento si è valutato il circuito in esame nel caso in cui fosse abilitato *ENABLE*= *ON*. Negli ultimi due test si è analizzato il suo comportamento quando esso è disabilitato, osservando anche l'influenza degli errori sul suo funzionamento.

Nel *TEST6\_TRAN\_OFFSET\_VARIATION\_EN\_OFF* si osserva che il circuito anche se è disabilitato, permette di monitorare lo sbilanciamento delle celle. Ma al tempo stesso anche se fosse necessario non permette lo svolgimento di alcun processo di equalizzazione.

```
.tran 10u 310m 0 1u
VAGND AGND 0 DC 0
VCENBAT CENBAT OFF 3.7
Voff OFF 0 PULSE (-0.1 0.1 10m 100m)
**VENABLE ENABLE 0
VENABLE ENABLE 0 0
VNEGBAT NEGBAT 0 DC 0
VPOSBAT POSBAT 0 7.4
VUSU V5U 0 DC 5
VUREF VREF 0 DC 3
```

Figura 7.11: Segnali utilizzati per il TEST6\_TRAN\_OFFSET\_VARIATION



Figura 7.12: Grafico relativo al TEST6\_TRAN\_OFFSET\_VARIATION\_EN\_OFF

E' possibile notare che la corrente  $I_{CENBAT}$  risulta essere degli ordini dei 40µA, anche se il dispositivo risulta disabilitato.

Tuttavia questo non comporta un grosso problema poiché affinché le celle si scaricano è necessario un periodo superiore ai 6 anni, e quindi superiore al tempo medio di vita del satellite in orbita.

Si mostrano infine i risultati Montecarlo ottenuti attraverso il test:

TEST7\_TRAN\_OFFSET\_VARIATION\_EN\_OFF\_MONTECARLO



Figura 7.13: Grafico TEST7\_TRAN\_OFFSET\_VARIATION\_EN\_OFF\_MONTECARLO

# 7.1.4 Spice Netlist del Bk1B1142\_Equalizer\_V1 ,del Bk1B137E\_Diff\_V\_Sensor\_V1 e componenti utilizzati

Si riporta in seguito la netlist spice del blocco *Bk1B1142\_Equalizer\_V1* in cui al suo interno è presente anche il *Bk1B137E\_Diff\_V\_Sensor\_V1*:

RR1 XSIG010060 XSIG010055 {MC( 1Kohms , 1000.000000M /100)} TC=100.000000U XM1 XSIG010035 XSIG010034 NEGBAT IRLML2803 XM2 XSIG010091 XSIG010034 NEGBAT IRLML2803 RR3 XSIG010026 XSIG010035 {MC( 15ohms , 1000.000000M /100)} TC=100.000000U XR4 POSBAT XSIG010096 XSIG010096 NEGBAT PRA10012 RR6 VINPOS XSIG010060 {MC( 27ohms , 1000.000000M /100)} TC=100.000000U XM3 CENBAT POSBAT VINPOS IRLML2803 XR5 POSBAT VINNEG VINNEG NEGBAT PRA10012 X1I587 VINPOS VINNEG V UNBAL VREF AGND V5V Bk1B137E Diff V Sensor V1 RR2 ENABLE XSIG010034 {MC( 15ohms , 1000.000000M /100)} TC=100.000000U RR7 XSIG010060 XSIG010065 {MC( 49.900000K , 1000.000000M /100)} +TC=100.00000U XU1 XSIG010096 XSIG010065 XSIG010007 XSIG010091 XSIG010055 LM6142 RR8 POSBAT XSIG010026 {MC( 100Kohms , 1000.000000M /100)} TC=100.000000U XM4 XSIG010007 XSIG010026 POSBAT IRLML6402 \* Dictionary 0 \*Warning : No ground node (Label a net GND) \*Definition For Project Bk1B137E Diff V Sensor V1 .SUBCKT Bk1B137E Diff V Sensor VI VINFOS VINNEG VOUT VREF AGND VAL XU1 AGND VINPOS VINNEG AGND VAL REF FB VOUT AD8237 RR1 VREF REF {MC( 200Kohms , 1000.000000M /100)} TC=100.000000U RR2 REF AGND {MC( 143Kohms , 100.000000M /100)} TC=50.000000U RR3 FB VOUT {MC( 78.7Kohms , 100.000000M /100)} TC=10.000000U RR4 REF FB {MC( 18Kohms , 1000.000000M /100)} TC=100.000000U \* CROSS-REFERENCE 0 .ENDS

```
Figura 7.14:Netlist del blocco Bk1B1142_Equalizer_V1
```

Lista dei componenti utilizzati:

| #  | QTY | Part Number           | PartLabel                        | PartName  | Ref Designator | Value         |
|----|-----|-----------------------|----------------------------------|-----------|----------------|---------------|
| 1  | 3   | RS_302-022            | Q_IRLML2803_SOT23-3_MOS_N_1A2_30 | IRLML2803 | M1-M3          |               |
| 2  | 1   | R5_301-322            | QIRLML6402_SOT23-3_MOS_P_3A7_20  | IRLML6402 | N4             |               |
| 3  | 1   | DK_AD8237ARMZ-R7CT-ND | OA_AD8237_MSOP8                  | OA_AD8237 | U1             |               |
| 4  | 1   | DK_LM6142BIM-ND       | OA_LM6142_SOIC8_24V_1V8          | OA_LM6142 | U1             |               |
| 5  | 1   | RS_504-8928           | R_1K_0603_100_1                  | R1K       | R1             | 1Kohms        |
| 6  | 2   | RS_504-9684           | R_15R_0603_100_1                 | R15R      | R2,R3          | 15ohms,15ohms |
| 7  | 1   | RS_504-9959           | R_18K_0603_100_1                 | R18K      | R4             | 18Kohms       |
| 8  | 1   | RS_505-0909           | R_27R_0603_100_1                 | R27R      | R6             | 27ohms        |
| 9  | 1   | DK_311-49.9KHRCT-ND   | R_49K9_0603_100_1                | R49K9     | R7             | 49900         |
| 10 | 1   | R5_472-840            | R_78K7_0603_63_0%1               | R78K7     | R3             | 78.7Kohms     |
| 11 | 1   | RS_504-8940           | R_100K_0603_100_1                | R100K     | R8             | 100Kohms      |
| 12 | 2   | RS_684-2443           | R_100K_2.2x1.8mm_100_0%05_2x     | R100K     | R4,R5          | 100Kohms,     |
|    | 1   |                       |                                  |           |                | 100Kohms      |
| 13 | 1   | RS_614-5799           | R_143K_0805_100_0%1              | R143K     | R2             | 143Kohms      |
| 14 | 1   | RS_505-0151           | R_200K_0603_100_1                | R200K     | R1             | 200Kohms      |

Figura 7.15:Lista dei componenti utilizzati per il Bk1B1142\_Equalizer\_V1

#### 7.2 Bk1B123H\_BID\_Current\_Sensor

Il blocco *Bk1B123H\_BID\_Current\_Sensor* sarà anch'esso posto all'interno del *Bk1B114\_Battery\_Monitor*, e ha il compito di misurare la corrente sia di carica sia di scarica della batteria, pertanto si rende necessario l'utilizzo di un sensore di corrente bidirezionale.

#### 7.2.1 Progettazione del Bk1B123H\_BID\_Current\_Sensor

Il sensore di corrente realizzato è mostrato di seguito:



Figura 7.16:Schema elettrico del Bk1B123H\_BID\_Current\_Sensor

La corrente viene misurata tramite la resistenza posta in serie tra l'ingresso e l'uscita, in cui la differenza di tensione ai suoi capi viene mandata in ingresso dell' INA213[21]. E' proprio questo dispositivo che permette di misurare una corrente bidirezionale, convertendola in una tensione, il cui valore viene successivamente inviato al convertitore analogico/digitale del microprocessore presente sulla scheda. Per tale motivo questo valore di tensione deve essere entro un certo range compatibile con la dinamica del convertitore A/D utilizzato. In particolare l'INA213 presenta una tensione di riferimento il cui valore è fissato mediante il dispositivo *LT1790*, opportunamente alimentato dal regolatore di tensione di 3.3V presente sulla scheda . Anche tale valore di riferimento sarà fornito al microprocessore che comparando il valore  $I_{BAT}$  (espresso in volt) con  $V_{REF}$  riesce a risalire sia al verso (segno) della corrente sia alla sua entità. Risulta ovvio quindi che in caso di corrente di batteria nulla si ha una  $V(I_{BAT}) = V_{REF}$ . Si è scelto un valore di riferimento pari a 1.25V in modo tale da ottenere una dinamica del segnale  $I_{BAT}$  pari a 2.5V compatibile con le caratteristiche del ADC utilizzato. Per valori compresi tra 1.25 e 2.5V si avrà una

corrente di carica della batteria, invece per valori sotto l' 1.25V si avrà una corrente di scarica della batteria. Infine la scelta del dispositivo *INA213* è dettata dal fatto di voler utilizzare una resistenza serie molto bassa in modo che in presenza di elevate correnti la caduta di potenziale ai suoi capi sia comunque limitata (si ricorda che l'uscita a tale blocco va al resto dei sottoblocchi del sistema *Bk1B113\_Battery\_System*) ma comunque sfruttare a pieno la dinamica dell'ADC.

Pertanto si è selezionato tale dispositivo poiché esso presenta un guadagno elevato pari a 50. Cosi facendo avremo :

OUTPUTRANGE =  $R_s * I_{BATrange} * G$  (7.8)

Desiderato un output range pari a 2.5V e conoscendo  $I_{BATrange}$  pari a 5A e G=50, si è ottenuto il valore di resistenza di utilizzare pari a 10m $\Omega$ .

#### 7.2.2 Simulazioni del blocco Bk1B123H\_BID\_Current\_Sensor

Si riportano di seguito le simulazioni effettuate al fine di validare il circuito progettato.



TEST\_DC\_Bk1B132H



.dc IIN -2.5 2.5 0.1 Vagnd Agnd 0 DC 0 IIN IN 0 DC 2 Vout Out 0 DC 0 Vu3V3 N3V3 0 DC 3.3

Figura 7.18: Segnali utilizzati per il TEST\_DC\_Bk1B132H

Il primo test *TEST\_DC\_Bk1B132H* prevede di analizzare la tensione  $V(I_{BAT})$  in funzione della corrente che fluisce sulla resistenza serie R1.

Come si vede dal grafico il dispositivo è in grado di misurare una corrente massima(presa uscente dal pin *IN*) di 2.5A (in entrambe le direzioni), quando essa è negativa la tensione  $V(I_{BAT})$  è nulla mentre quando è positiva si ottiene un'uscita pari a 2.5V come desiderato. Inoltre si può notare come in presenza di una corrente di batteria nulla, la tensione  $I_{BAT}$  è esattamente uguale alla tensione di riferimento utilizzata.

Successivamente sono state simulate le stesse condizioni operative andando a fare un analisi di Montecarlo ( aggiungendo *.param*) e una in temperatura (aggiungendo *.step*) ottenendo risultati nell'intervallo delle specifiche di progetto e pertanto ritenuti soddisfacenti. Si mostrano di seguito i risultati delle rispettive simulazioni :



TEST\_DC\_Bk1B132H\_MONTECARLO

Figura 7.19: Grafico relativo al TEST\_DC\_Bk1B132H\_MONTECARLO



TEST\_DC\_Bk1B132H\_TEMPERATURA

Figura 7.20: Grafico relativo al TEST\_DC\_Bk1B132H\_TEMPERATURA

Anche in questo caso il circuito inizia a presentare problemi dopo un certo valore di temperatura, in particolare a 40°C. La ragione è ancora ricondotta a problemi relativi ai modelli di simulazione utilizzati.

## 7.2.3 Spice Netlist del Bk1B123H\_BID\_Current\_Sensor e componenti utilizzati

X1I11 N1N68 N1N46 N3V3 AGND IBAT VREF INA213
X1I89 N1N99 AGND VREF LT1790\_1V25
C1I24 N1N99 AGND {MC( 100.0000000 , 10.000000 /100)} TC=100.0000000
R1I101 N3V3 N1N99 {MC( 1Kohms , 1000.000000M /100)} TC=100.000000U
X1I116 IN OUT N1N68 N1N46 RES\_4WIRE R={MC(10.000000M,1000.000000M/100)}
+TC=100.000000U

Figura 7.21: Netlist spice del blocco Bk1B123H\_BID\_Current\_Sensor

| # | QTY | Part Number            | PartLabe]                     | PartName        | Ref Designator | Value  |
|---|-----|------------------------|-------------------------------|-----------------|----------------|--------|
| 1 | 1   | R5_264-4630            | C_100n_0603_X7R_16_10         | C100n           |                | 100n   |
| 2 | 1   | DK_296-23421-1-ND      | OA_INA213_5C70-6_1_26V_2.6V   | OA_INA213       |                |        |
| 3 | 1   | RS_504-8928            | R_1K_0603_100_1               | R1K             |                | 1Kohms |
| 4 | 1   | DK_LVK12R010FERCT-ND_K | R_10m_0603_100_1              | R01             |                | 10M    |
| 5 | 1   | DK_LT1790BCS6-1.25     | REF_LT1790_V_SOT23-6_1V25_0%1 | REF_LT1790_1V25 |                | ĺ      |

Figura 7.22: Lista dei componenti del Bk1B123H\_BID\_Current\_Sensor

### 7.3 1B133A\_Temperature\_Sensor\_V1

Il blocco *1B133A\_Temperature\_Sensor\_V1* permette di monitorare costantemente la temperatura sulla scheda, inviando tali misure sottoforma di tensione al convertitore analogico-digitale del microprocessore utilizzato. Pertanto risulta necessario che la dinamica segnale sia compatibile a quella dell'ADC.

#### 7.3.1 Progettazione del 1B133A\_Temperature\_Sensor\_V1

Lo schema circuitale del sensore realizzato è mostrato di seguito:



*Figura 7.23:* Schema elettrico relativo al blocco *1B133A\_Temperature\_Sensor\_V1* 

Questo sensore permette di misurare temperature nell'intervallo compreso tra i -30°C e i 70 °C mediante la variazione della tensione di uscita *TEMP*. Tale variazione è ottenuta attraverso l'utilizzo di un riferimento di 3V (reso disponibile mediante opportuno regolatore collegato al PDB dal sistema AraMis) e di una serie di resistori tra cui in particolare un *NTC* (*Negative Temperature Coefficient*), che a causa della variazione di temperatura subisce un cambiamento del suo valore resistivo(un aumento di T porta ad una riduzione di R), generando una variazione in uscita, con la relazione seguente

TEMP = 
$$3V * \frac{22_R1//R(T)}{22_R1//R(T)+22_R2}$$
 dove  $R(T) = R_{25}e^{\beta_{25}(\frac{1}{T}-\frac{1}{T_{25}})}$  (7.9)

Con T<sub>25</sub>=298.15K, R<sub>25</sub>=100k $\Omega$  (resistenza del termistore a 25°C),  $\beta$ = 4100K. In seguito vengono riportati alcuni risultati ottenuti dalla simulazione di tale blocco, in cui si osserva le variazioni di potenza e della tensione di uscita *TEMP* in funzione della temperatura. Come si può osservare si avrà per temperatura basse una tensione elevata pari a 2.5V (all'interno della dinamica del convertitore A/D) e all'aumentare della

temperatura tale valore tende man mano a diminuire, piu o meno linearmente.



*Figura 7.24:* Variazione della tensione di uscita e della potenza in funzione della temperatura per il blocco *1B133A\_Temperature\_Sensor\_V1* 

## 7.3.2 Spice Netlist del blocco 1B133A\_Temperature\_Sensor\_V1 e componenti

Si riporta di seguito la netlist del sensore di temperatura realizzato:

RR1 TEMP AGND {MC( 1Mohms , 1000.000000M /100)} TC=100.000000U
RR2 REF\_3V TEMP {MC( 220Kohms , 1000.000000M /100)} TC=100.000000U
XR3 TEMP AGND NTC100K

Figura 7.25: Netlist spice del blocco 1B133A\_Temperature\_Sensor\_V1

E la lista dei componenti utilizzati:

| # | QTY | Part Number | PartLabe]         | PartName | Ref Designator | Value    |
|---|-----|-------------|-------------------|----------|----------------|----------|
| 1 | 1   | RS_684-1273 | NTC_100K_0603_1   | NTC_100K | R3             |          |
| 2 | 1   | RS_504-8956 | R_1MEG_0603_100_1 | R1MEG    | R1             | 1Mohms   |
| 3 | 1   | RS_505-0331 | R_220K_0603_100_1 | R220K    | R2             | 220Kohms |

*Figura* 7.26:Componenti utilizzati per il blocco *1B133A\_Temperature\_Sensor\_V1* 

### 7.4 Bk1B131B\_Voltage\_Sensor\_V1

L'ultimo dei sensori realizzati è il *Bk1B131B\_Voltage\_Sensor\_V1*. Questo sensore ha il compito di monitorare continuamente il livello di tensione del banco batterie (due celle *Li-Po* poste in serie) e fornire i valori misurati al microprocessore. Esso risulta fondamentale sia nella fase di carica sia nella fase di scarica delle batterie. Nel primo caso, fornendo un valore di tensione pari al massimo ammesso per le celle utilizzate, fa si che il microprocessore (tramite opportuno software) eviti la sovraccarica delle celle anche se sul *PDB* è presente una tensione superiore ai 14.5V. Mentre nel secondo caso inviando al sistema di controllo una tensione pari a 6V (imposta da progetto come minima tensione di batteria), garantisce che non vi sia l'ulteriore scarica delle batterie che le renderebbe non più utilizzabili.

### 7.4.1 Progettazione del Bk1B131B\_Voltage\_Sensor\_V1

Lo schema circuitale realizzato è mostrato in figura:



Figura 7.27: Schema circuitale del Bk1B131B\_Voltage\_Sensor\_V1

Il circuito di misura della tensione è costituito semplicemente da un partitore resistivo, il cui compito è di adattare il range di tensioni di batteria alla dinamica dell' ADC utilizzato. Il *Bk1B131B\_Voltage\_Sensor\_V1* permette di misurare tensioni di batteria fino ai 10V.

## 7.4.2 Spice Netlist del blocco Bk1B131B\_Voltage\_Sensor\_V1 e componenti

Si riporta in seguito la netlist del sensore di tensione realizzato:

CC1 Vout AGND {MC( 0.01uF , 10.000000 /100)} TC=10.000000U RR1 Vin Vout {MC( 390Kohms , 1000.000000M /100)} TC=100.000000U RR2 Vout AGND {MC( 133Kohms , 1000.000000M /100)} TC=100.000000U

Figura 7.28: Netlist spice del blocco Bk1B131B\_Voltage\_Sensor\_V1

| E la lista dei c | componenti | utilizzati: |
|------------------|------------|-------------|
|------------------|------------|-------------|

| # | QTY  Part Number | PartLabe]             | PartName | Ref Designator | Value    |
|---|------------------|-----------------------|----------|----------------|----------|
| 1 | 1  RS_534-5730   | C_10n_0603_X7R_50V_10 | C10n     | C1             | 10n      |
| 2 | 1  RS_678-9759   | R_133K_0603_100_1     | R133K    | R2             | 133Kohms |
| 3 | 1  RS_504-6938   | R_390K_0603_100_1     | R390K    | R1             | 390Kohms |

Figura 7.29:Lista dei componenti utilizzati per il Bk1B131B\_Voltage\_Sensor\_V1

#### 7.5 Sistema completo del Bk1B114\_Battery\_Monitor

L'insieme dei blocchi illustrati nei precedenti paragrafi:

- Bk1B1142\_Equalizer\_V1
- Bk1B132H\_BID\_Current\_Sensor
- Bk1B131B\_Voltage\_Sensor\_V1
- 1B133A\_Temperature\_Sensor\_V1

costituisce il macroblocco chiamato *Bk1B114\_Battery\_Monitor*. Quest'ultimo può essere visto come un *Reusable Block* avente i seguenti pin di I/O :

| Bk1B114 Battery | Monitor | Pin Name | Pin Type        |
|-----------------|---------|----------|-----------------|
|                 |         | POSBAT   | POWER IN        |
| 3V 3V3          | 50      | CENBAT   | POWER IN        |
| POSBAT          | VBAT    | NEGBAT   | POWER IN        |
|                 |         | 5V       | ANALOG IN       |
|                 | IBAT_M  | 3V       | ANALOG IN       |
| CENBAT          |         | 3.3V     | ANALOG IN       |
|                 | VREF    | AGND     | POWER<br>GROUND |
| NECBAT          | VBAT_M  | EN_EQU   | DIGITAL IN      |
|                 |         | V_UNBAL  | ANALOG OUT      |
|                 | V_UNBAL | VBAT     | POWER OUT       |
| EN_EQU          |         | IBAT_M   | ANALOG OUT      |
|                 | TEMP    | VREF     | ANALOG OUT      |
| AGND            |         | VBAT_M   | ANALOG OUT      |
|                 |         | TEMP     | ANALOG OUT      |
|                 |         |          |                 |

Figura 7.30: Rappresentazione del blocco Bk1B114\_Battery\_Monitor e tabella dei pin

L'intero sistema è stato descritto in *UML* attraverso un diagramma delle classi che permette di dare una visione più chiara dell'intero blocco:





Lo schema circuitale complessivo realizzato è il seguente:

Figura 7.32:Schema circuitale del Bk1B114\_Battery\_Monitor

Come era immaginabile tale blocco presenta un elevato numero di pin soprattutto di uscita, che forniscono i parametri monitorati al sistema di controllo.

Inoltre a differenza degli altri blocchi precedentemente illustrati, i quali venivano alimentati direttamente dalla batteria (uscita *VBAT* di tale blocco), esso sfrutta le tensioni derivanti dai regolatori a 5V e 3.3V e dal generatore di tensione a 3V.

Il motivo principale è legato al fatto che tale dispositivo deve sempre essere in funzione a prescindere dallo stato della batteria.

Per il blocco completo *Bk1B114\_Battery\_Monitor* non è stata eseguita nessuna simulazione significativa, poiché sebbene esso è costituito da un insieme di sensori di monitoraggio, quest'ultimi lavorano in maniera indipendente l'uno dall'altro.

## 7.5.1 Spice Netlist del blocco Bk1B114\_Battery\_Monitor e componenti utilizzati

Si riporta di seguito la netlist relativa al sistema di monitoraggio della batteria :

XBk1B133A\_Temperature\_Sensor\_V1 AGND TEMP N3V Bk1B133A\_Temperature\_Sensor\_V1 XBk1B1142\_Battery\_Equalizer\_V1 AGND N3V N5V V\_UNBAL\_EN\_EQU NEGBAT CENBAT +POSBAT\_Bk1B1142\_Battery\_Equalizer\_V1 XBk1B1331B\_Voltage\_Sensor\_V1 VBAT\_M POSBAT\_AGND\_Bk1B131B\_Voltage\_Sensor\_V1 XBk1B132H\_BID\_Current\_Sensor\_V1 VREF\_IBAT\_M\_VBAT\_AGND\_N3V3\_POSBAT +Bk1B132H\_BID\_Current\_Sensor\_V1

*Figura 7.33*:Spice netlist del blocco *Bk1B114\_Battery\_Monitor* 

# Capitolo 8 Bk1B114\_Battery\_System\_V2

L'insieme dei macroblocchi illustrati nel dettaglio nei precedenti capitoli consente mediante la loro interazione, di implementare le principali funzioni di: immagazzinamento, gestione e distribuzione dell'energia delle sorgenti secondarie a bordo del satellite. Il sistema complessivo che ha il compito di amministrare tutte le attività che includono l'utilizzo delle batterie, prende il nome di *Bk1B114\_Battery\_System\_V2*.

Esso oltre ad essere costituito dai sottosistemi finora studiati (ciascuno dei quali inteso come *Reuseble block*) include ulteriore sottoblocchi che permettono:

- sviluppo di funzioni avanzate mediante il supporto di un appropriato software
- comunicazione con il *1B1\_Power\_Management\_Subsystem*, di cui ne è sottosistema, e con le altre *tile* montate sul satellite
- programmazione e debugging
- collegamento diretto al *Power Distribution Bus*
- collegamento diretto ai pannelli solari (non ancora utilizzato)

In definitiva il sistema finale è perciò costituito dai seguenti elementi:

- *Bk1B118\_Battery\_Discharger\_V2*
- Bk1B113\_Battery\_Charger\_V3
- *Bk1B114\_Battery\_Monitor*
- *Bk1B14221W\_Tile\_Processor\_4M\_V1*
- 1B126A\_Inter\_Tile\_Distribution
- Bk1B4851\_I2C\_Interface
- Bk1B4854\_JTAG\_Interface
- 2 Batterie Li-Po Mikroe 1120
- Due regolatori di tensione di 5V e 3.3V e un generatore di riferimento a 3V

La relazione tra tutti questi sottocircuiti è descritta in modo più chiaro attraverso l'utilizzo di un opportuno *Class Diagram* (Figura 8.1), e le funzioni dei blocchi non ancora descritti mostrate nei paragrafi successivi.



Figura 8.1: Class diagram del 1B114\_Battery\_System\_V2

## 8.1 Bk1B14221W\_Tile\_Processor\_4M\_V1

Il *Bk1B14221W\_Tile\_Processor\_4M\_V1* ha il compito di processare i dati provenienti dagli altri sottosistemi ed effettuare varie operazioni di controllo.

Esso è costituito principalmente da un microprocessore ultra low-power *MSP430F5437*[22] della Texas Instruments, che attraverso l'utilizzo di 5 moduli è connesso ai restanti blocchi del sistema.

I moduli utilizzati (appartenenti al *Bk1B48W\_Single\_Module\_Interface*) sono:

- MODULE\_A
- MODULE\_B
- MODULE\_C
- MODULE\_D
- MODULE\_JTAG

Lo schema circuitale è rappresentato in figura:



Figura 8.2:Schema circuitale del blocco Bk1B14221W\_Tile\_Processor\_4M\_V1

Le relazioni tra i vari elementi sono meglio illustrate mediante l'uso di un diagramma delle classi :



Figura 8.3: Class Diagram del blocco Bk1B14221W\_Tile\_Processor\_4M\_V1

Ognuno dei primi 4 moduli presenta diversi canali di collegamento(analogici, digitali, di potenza) :

| 'A_PDB         |
|----------------|
| A_5V           |
| .A_3V3         |
| .A_REF         |
| .A_DO_RX_SOMI  |
| 'A_D1_TX_SIMO  |
| 'A_D2_SCL_SOMI |
| 'A_D3_SDA_SIMO |
| 'A_D4_CLK      |
| 'A_DS_PWM      |
| .A_D6_A0       |
| .A_D7_A1       |
| 'A_D8_ID       |
| A_D9_EN_PWM2   |
| 'A_EXT1        |
| A_EXT2         |

Figura 8.4: Canali di collegamento del Bk1B48W\_Single\_Module\_Interface

Mentre il *Module\_JTAG* sarà direttamente collegato al blocco di interfaccia *JTAG*.

## 8.2 Bk1B4854\_JTAG\_Interface

Questo blocco è costituito da un connettore a 8 pin e ha il compito di fornire un 'interfaccia all'utente per la programmazione o l'individuazione di porzioni di software affette da errore



(*debugging*) del microprocessore montato sulla scheda. Ad esso inoltre viene collegato il piedino di alimentazione dell' unità di controllo come si nota dal seguente schematico:

Figura 8.5:Schematico del blocco Bk1B4854\_JTAG\_Interface

## 8.3 Bk1B4851\_I2C\_Interface

Un altro connettore nel sistema progettato è relativo al blocco *Bk1B4851\_I2C\_Interface*.



*Figura 8.6*:Schema elettrico del *Bk1B4851\_I2C\_Interface* 

Esso è costituito da un connettore a 5 posizioni e permette la comunicazione seriale bifilare tra la scheda realizzate e le altre *tile* presenti a bordo del satellite.

## 8.4 1B1262A\_Inter\_Tile\_Distribution

L'ultimo dei connettori presenti sulla scheda *Bk1B114\_Battery\_System\_V2* è un connettore a 4 ingressi. Esso è utilizzato per la connessione del sistema sia al *Power Distribution Bus*, che grazie ai suoi livelli di tensione determina quali degli elementi all'interno del sistema stesso entrano in funzione. Sia ai pannelli solari, in cui nel corso di questo elaborato non è stata utilizzata questa possibilità ma non se ne esclude un possibile utilizzo futuro.



Figura 8.7: Schema elettrico del 1B1262A\_Inter\_Tile\_Distribution

### 8.5 Sistema finale Bk1B114\_Battery\_System\_V2

L'insieme di tutti i blocchi illustrati nel corso di questo elaborato permettono di definire il sistema complessivo di gestione dell'energia delle sorgenti secondarie a bordo del satellite. Il seguente sistema sfrutta a pieno come abbiamo visto, le potenzialità messe a disposizione dallo strumento *Menthor Graphics* utilizzando fortemente il concetto di *Reusable Blocks* e di struttura gerarchica nella sua composizione. Lo schema circuitale complessivo viene mostrato nella figura seguente :



*Figura 8.8*:Schema circuitale del *Bk1B114\_Battery\_System\_V2* 

Dal grafico si può notare la presenza di ulteriori tre dispositivi non inglobati nei blocchi finora illustrati. Essi sono: due regolatori di tensione uno a 5V e uno a 3.3V e un generatore di riferimento a 3V.

Tutti e tre sono sempre attivi ed in particolare il regolatore di tensione a 5V è direttamente collegato al *PDB* mentre gli altri due dispositivi sono collegati all'uscita del regolatore a 5V. Quest'ultimo permette di alimentare i dispositivi all'interno del blocco di monitoraggio *Bk1B114\_Battery\_Monitor*, che devono essere sempre attivi al fine di monitorare costantemente e in tempo reale lo stato del banco batterie.

Mentre il regolatore a 3.3V viene utilizzato per alimentare il microprocessore posizionato sulla scheda, che anch'esso deve essere tenuto sempre in funzione.

Nel sistema è utilizzato anche un processo di calibrazione effettuato mediante il *reusable block Bk1B130W\_Calibration\_Memory*.

All'interno dello schematico è presente anche un blocco che costituisce i 4 fori presenti sulla scheda realizzata (meglio illustrati nel prossimo capitolo) e che quindi non ha alcun significato dal punto di vista elettrico.

Infine abbiamo detto che il microprocessore è collegato al resto dei sottosistemi attraverso l'utilizzo di 4 moduli, si mostra di seguito la tabella con i relativi collegamenti, dove a sinsitra sono presenti i canali del bus e a destra i pin dei relativi blocchi :

| MODULE_A     |        |  |
|--------------|--------|--|
| A_5V         | 5V     |  |
| A_3V3        | 3V3    |  |
| A_REF        | 3V     |  |
| A_D0_RX_SOMI | EN_EQU |  |
| A_D7_A1      | VREF   |  |
| A_D6_A0      | IBAT_M |  |

MODULE\_C

IPDB\_CHAR

TEMP

ENABLE DIS

C D7 A1

C\_D6\_A0

C D0 RX SOMI

| MODULE_B     |         |  |
|--------------|---------|--|
| B_D6_A0      | VBAT_M  |  |
| B_D7_A1      | V_UNBAL |  |
| B_D0_RX_SOMI | ENABLE  |  |

|  | MODULE_D |                |  |
|--|----------|----------------|--|
|  | DD7_A1   | ENABLE_DELAYED |  |
|  | DD6_A0   | IPDB_DIS       |  |
|  | D_PDB    | PDB            |  |

*Figura 8.9:*Interconessioni tra i sottositemi e il microprocessore all'interno del sistema *Bk1B114\_Battery\_System\_V2* 

### 8.5.1 Simulazione del sistema finale Bk1B114\_Battery\_System\_V2

Al fine di validare il sistema finale si è effettuata una simulazione complessiva andando ad osservare la caratteristica corrente-tensione sul *Power Distribution Bus*.

In particolare si è osservata, attraverso una variazione di tensione sul bus di potenza compresa tra i 12V e 16V, l'attività svolta sia dal circuito di scarica *Bk1B118\_Battery\_Discharger\_V2* sia dal quello di carica *Bk1B113\_Battery\_Charger\_V3*. Entrambi i blocchi sono stati abilitati contemporaneamente all'inizio della simulazione.

Pertanto la determinazione di quale blocco dovesse entrare in funzione è stata effettuata in modo del tutto analogico, attraverso la tensione presente sul bus.

I risultati ottenuti sono mostrati in figura 8.10. Si può notare dal grafico successivo, come le caratteristiche sul *PDB* sono pienamente rispettate. Ovvero nell'intervallo tra i 12V e i 13.5V lavora solamente il blocco *Bk1B118\_Battery\_Discharger\_V2*. Nell'intervallo tra i 13.5V e i 14.5V non lavora nessuno dei due sottosistemi, evitando che essi possano lavorare contemporaneamente, come richiesto da specifica. E infine nell'intervallo di tensioni comprese tra i 14.5 e i 16V entra in azione il *Bk1B113\_Battery\_Charger\_V3*. I valori di corrente risultano essere in modulo pari a quelli ottenuti precedentemente, tuttavia per quanto riguarda il circuito di carica il segno risulta essere negativo, poiché la corrente scorre in verso opposto.



Inoltre si può notare che non vi è più un andamento ondulatorio del *Bk1B113\_Battery\_Charger\_V3* presente nelle precedenti simulazioni, confermando che esso era dovuto a fenomeni transitori inziali causati dall'abilitazione del blocco.

#### 8.5.2 Spice Netlist del sistema Bk1B114\_Battery\_System\_V2

Si riporta di seguito la netlist del Sistema complessivo Bk1B114\_Battery\_System\_V2:

```
X1I207 POSBAT CENBAT LIPO_BATTERY V=3.700000 Q=2.0000000 R=80.0000000M
X1I217 CENBAT DGND LIPO_BATTERY V=3.700000 Q=2.0000000 R=80.0000000M
XDistribution_Interface_D_PDBPDB_SOLAR_PANEL_DGND
XJTAG_Interface N3V3A_3V3 DGND TDI Bk1B4854_JTAG_Interface
XI2C_Interface A_PDB DGND N3V3A_3V3 KS_Bk1B4851_I2C_Interface
XBk1B113_Battery_Charger_V3 C_D7_A11PD8_char AGND B_D0_RX_SOMIENABLE_char
+DGND D_PDBPDB VBAT Bk1B113_Battery_Charger_V3
XBK1B118_Battery_Discharger_V2 D_D7_A1ENABLE_dis_delay AGND VBAT DGND
+D_D6_A0IPDB_dis D_PDBPDB C_D0_RX_SOMIENABLE_dis
+Bk1B118 Battery Discharger
                                 02
XPROCESSOR TDI C_PDB D_PDBPDB A_PDB B_PDB DGND AGND N3V3A_3V3
•Bk1B4221W_Tile_Processor_4M_V1
XBk1B114_Battery_Monitor B_D6_A0VBAT_M C_D6_A0TEMP B_D7_A1V_UNBAL A_D7_A1VREF
  A_D6_A0IBAT_M UBAT AGND A_D0_RX_SOMIEN_EQU DGND CENBAT N3UA_REF N5UA_SU
+POSBAT N3V3A_3V3 Bk1B114_Battery_Monitor
N1I355 NO Connector_1PIN
  Pin
        is not connected
N1I360 N1 Connector 1PIN
  Pin
        is not connected
N1I365 N2 Connector_1PIN
        is not connected
  Pin
N1I370 N3 Connector 1PIN
  Pin
        is not connected
R1I385 AGND DGND {MC( 200Mohms , 1000.000000M /100)} TC=200.000000U
N1I448 N5VA_5V N3VA_REF CELL NAME
       Figura 8.11Netlist spice del sistema Bk1B114_Battery_System_V2
```

# Capitolo 9 Progettazione della scheda Bk1B114\_Battery\_System\_V2 e analisi meccanica a bordo del satellite

Per implementare il sistema *Bk1B114\_Battery\_System\_V2* su una scheda che verrà successivamente montata a bordo del satellite, si effettua la progettazione di un circuito stampato (*PCB*) multistrato basato su 4 layer e la sua valutazione da un punto di vista meccanico.

## 9.1 PCB

Le dimensioni di tale scheda secondo lo standard *AraMis* sono : 95.9mm x 90.2mm (Figura 9.1).



Figura 9.1: Dimesioni di un PCB all'interno de satellite AraMis

La forma della scheda non è del tutto regolare, sono presenti infatti delle riduzioni:

-)Sul bordo in alto a sinistra e in basso a destra di 1.8mm, il motivo è legato alla presenza dei *keyswitch* appartenenti alla struttura satellitare e necessari per il rilascio del satellite da parte del *P-POD*.

-)Su tutti e 4 i lati del *PCB*, dovuti alla presenza di bobine utilizzate su altre schede e necessari all'assemblaggio della sottosistema realizzato con gli altri sistemi.
Dal grafico si nota inoltre, la presenza di 4 fori all'interno della scheda, fondamentali per il fissaggio di quest'ultima a bordo del satellite mediante l'utilizzo di opportune viti.

Questo tuttavia comporta un ulteriore riduzione dello spazio a disposizione (già molto ridotto) per il posizionamento dei componenti, diventando uno dei principali aspetti critici per la integrazione di un sistema complesso come il *Bk1B114\_Battery\_System\_V2*.

Infatti la numerosità dei componenti e dei collegamenti in gioco sicuramente non trascurabili, e la necessità di ridurre il più possibile lo spazio occupato, ha reso necessario uno studio a priori del posizionamento dei componenti all'interno della scheda (analizzando primariamente gli elementi più ingombranti).

Inoltre durante questa analisi è stata considerata anche l'altezza dei vari dispositivi, al fine di ridurre il più possibile lo spazio occupato dalla scheda all'interno del satellite. Esso è stato fatto per cercare di garantire una maggiore area, disponibile per l'inserimento del desiderato payload caratterizzante la missione.

A tal fine si è proceduto posizionando prima di tutto le due batterie sul top layer del circuito stampato, e con esse anche i connettori presenti. Successivamente si è proceduto con il posizionamento dei dispositivi di potenza(risultanti più ingombranti) e infine il resto dei componenti. Effettuato il posizionamento di tutti i componenti del sistem, a con i criteri definiti in precedenza, si è proceduto al routing dei vari collegamenti mediante l'utilizzo di due tipi di classi.

Una classe definita di default per le linee di segnale, e una definita di potenza (chiamata *POWER\_2A*) molto più spessa che consente il passaggio di correnti molto più elevate e superiori ai 2A previsti sul circuito, senza danneggiarsi (o adddirittura fondersi). Si riportano le caratteristiche delle due *type Net* utilizzate:

| NET CLASS     | Minimum(mm) | Typical(mm) | Expansion(mm) |  |
|---------------|-------------|-------------|---------------|--|
| POWER_2A      |             |             |               |  |
| Layer esterni | 0.254       | 1.27        | 2.54          |  |
| Layer interni | 0.254       | 3.048       | 5.08          |  |
| DEFAULT       |             |             |               |  |
| Layer esterni | 0.152       | 0.254       | 0.254         |  |
| Layer interni | 0.152       | 0.254       | 0.254         |  |

| Figura 9.2: Tabel | la delle <i>Nei</i> | Class |
|-------------------|---------------------|-------|
|-------------------|---------------------|-------|

Oltre a due diversi tipi di piste sono stati definiti due tipi di VIA uno per le linee di segnale DEFAULT e uno per le linee di potenza POWER\_2A.

### 9.2 Risultati

Si riportano di seguito i risultati ottenuti dalla progettazione del circuito stampato definito in precedenza, andando a mostrare la visuale sui 4 layer che costituiscono il PCB.

In particolare è stato deciso di suddividere quest'ultimo (su tutti i layer) in 3 sezioni distinte: una di potenza posta sulla area superiore della scheda, una sezione digitale posta in mezzo e una analogica posta nella parte inferiore della scheda. Infine si è deciso di utilizzare due piani di massa distinti uno per AGND (riferimento analogico) e uno per DGND(riferimento digitale). I due piani di massa sono stati collegati tra loro per mezzo di un resistore.

#### **TOP LAYER**

Sul top layer è possibile notare la presenza delle batterie (sotto il quale è stato deciso di non mettere alcun componente evitando cosi di utilizzare una struttura sospensoria), i connettori in fondo e alcuni componenti di potenza(posti in alto).



Figura 9.3:TOP LAYER, vista a volo d'uccello e rame

### **BOTTOM LAYER**

Nel bottom layer sono presenti la maggior parte dei componenti costituenti il sistema.



Figura 9.4:BOTTOM LAYER, vista a volo d'uccello e rame

Come è possibile notare dalla vista del rame su entrambi i layer la maggior parte delle piste di potenza *POWER\_2A* sono situate sulla parte superiore della scheda, mentre le piste più sottili *DEFAULT* sono usate per il collegamento dei componenti nel resto del circuito stampato. Si evidenziano in particolare nella successiva figura le varie sezioni precedentemente elencate attraverso la viste dei due layer esterni :



Figura 9.5: Suddivisione in sezioni del circuito stampato

### LAYER 2

Nel secondo layer sono presenti i due piani di massa utilizzati e non viene effettuato alcun routing delle piste.



Figura 9.6:Layer 2 e suddivisione dei piani di massa

#### LAYER 3

Il layer3 è caratterizzato da avere piste di sezione più ampia a causa della minore dissipazione di calore all'interno dei circuito stampato.



Figura 9.7:Layer 3 e piste in rame

Anche in questo caso si può osservare come le piste di potenza (più spesse) siano poste sulla parte superiore della scheda e infine la presenza di due diversi tipi di VIA, uno più ampio per le linee ad elevata corrente e l'altro più piccolo per le linee di segnale.

## 9.3 Analisi meccanica del PCB realizzato

Effettuata la progettazione del circuito stampato *Bk1B114\_Battery\_System\_V2*, si è studiato il suo collocamento all'interno del satellite, analizzando che esso si adatti alla perfezione all'ambiente meccanico di destinazione.

Per far ciò si è utilizzato il software di disegno e progettazione tridimensionale parametrica chiamato *Solidworks*, che ha permesso l'analisi della geometria del circuito stampato (Figura 8.8) e una rappresentazione 3D dei componenti elettronici utilizzati.

Infatti il seguente *CAD* da la possibilità di importare i file (*Gerber, NC Drill*) relativi al *PCB* progettato, fornendo in uscita una sua visualizzazione in formato tridimensionale e consentendo una sua valutazione non più solo legata ad un punto di vista elettrico.

Prima di tutto si è realizzata una rappresentazione 3D della scheda utilizzata e rappresentata in figura seguente, al fine di valutare che essa si adattasse al meglio alla struttura del satellite già precedentemente realizzata, senza possibili problemi nel fissaggio dovuti alla presenza delle viti utilizzate.



*Figura 9.8:*Rappresentazione 3D dei circuito stampato costituenti le *tile* nell'architettura *AraMis* 

Analizzato il corretto inserimento del circuito stampato a bordo del satellite, si è analizzata la presenza dei componenti posti sulla scheda, osservandone il loro inserimento da un punto di vista dello spazio occupato:



#### VISTA TOP LAYER

Figura 9.9: Rappresentazione 3D dei circuito stampato con i componenti utilizzati

Si nota la presenza dei dispositivi più ingombranti all'interno della scheda(inclusi entrambi i layer esterni): sia in termini di area occupata, sia in termini di altezza tradotta in area occupata all'interno del satellite.

Questi elementi sono sostanzialmente le batterie poste in mezzo, i connettori (in rosso) posti nella parte inferiore e i due induttori (parte superiore). In particolare l'induttore rappresentato dal cubo in giallo è l'elemento determinante l'altezza massima del top layer, misurando 8mm. E rappresentando comunque l'elemento più alto dell'intera scheda come possiamo vedere meglio in figura (alto a sinistra):



Figura 9.10: Vista frontale 3D della scheda Bk1B114\_Battery\_System\_V2

Osservando invece l'altro lato del circuito stampato :

#### **BOTTOM LAYER**



Figura 9.11:Rappresentazione 3D lato bottom del PCB con i componenti

Possiamo osservare che lo spessore dei componenti su questo lato è invece più ridotto con un'altezza massima di 2.7mm.

Pertanto si ha un'altezza totale della *tile* realizzata, incluso lo spessore della scheda stessa, pari ad 12.522mm (Figura 9.12):



Figura 9.12: Vista laterale della scheda realizzata ruotata di 90° a sinistra

Il circuito stampato ottenuto, quindi occupa uno spazio minimo all'interno del satellite lasciando maggiore area a disposizione per l'inserimento al centro della struttura dell'opportuno *payload* caratterizzante la missione satellitare.

L'ultima verifica effettuata, è stata l'inserimento della scheda completa dei componenti, all'interno della struttura a cubo costituente il satellite *AraMis*. Sono state valutate le possibili interferenze meccaniche tra la geometria dei dispositivi utilizzati e la struttura metallica di supporto del satellite.



Figura 9.13: Vista su più sezioni della scheda collocata all'interno della struttura AraMis

Attraverso un'opportuna analisi messa a disposizione dal software *Solidworks* è stato possibile appurare l'assenza di qualsiasi tipo di interferenza meccanica.

Tutti i componenti infatti sono stati premeditatamente posizionati in fase di progettazione, al fine di adattarsi al meglio all'ambiente in cui sarebbero stati inseriti. Evitando ad esempio possibili posizionamenti ai bordi della scheda che avrebbero potuto interferire con la parte metallica del satellite, ed evitando di inserire i dispositivi troppo vicini ai fori che avrebbero causato eventuali conflitti con le viti di fissaggio.



*Figura 9.14:* Rappresentazione 3D finale della scheda *Bk1B114\_Battery\_System\_V2* posizonata a bordo del satellite *AraMis* 

# Capitolo 10 Conclusioni e sviluppi futuri

Il presente lavoro di tesi è stato incentrato sulla progettazione di un sistema di gestione dell'energia per nanosatelliti di tipo modulare, in particolare per l'architettura *AraMis*. La necessità di realizzare tale sistema nasce da un problema di alimentazione a bordo del satellite, poiché a causa del movimento orbitale della struttura satellitare intorno alla terra, non risulta essere costante. Ciò è dovuto al fatto che i pannelli solari, rappresentanti l'unica fonte di energia, sono sottoposti a radiazioni inferiori quando il satellite transita all'interno delle zone cosiddette d'ombra, producendo quindi un quantitativo di potenza molto ridotto, che rischia di non soddisfare a pieno il fabbisogno dell'interno sistema.

Per ovviare a tale problema si è ritenuto opportuno realizzare un sistema in cui sono presenti dei dispositivi accumulatori, in particolare due batterie a polimeri di litio, che hanno il compito di immagazzinare energia quando essa è prodotta in eccesso e di cederla quando è necessario.

Volendo integrare l'intero complesso circuitale all'interno di un unico circuito stampato di ridotte dimensioni (circa 10cm x 10cm), rappresentante una delle facce fisiche del nanosatellite, si è reso doveroso porre particolare attenzione non solo ai vincoli elettrici ma anche a quelli di tipo meccanico. Dal momento che la maggior parte dello spazio presente sulla scheda è occupato dagli accumulatori LiPo, sono state effettuate determinate scelte mirate alla riduzione dell'impatto del sistema per ciò che concerne il peso, le dimensioni e i costi. La scelta è ricaduta principalmente sull'utilizzo di componenti COTS facilmente reperibili sul mercato e che garantiscono alta affidabilità per tutto il range operativo del satellite(temperatura,tensioni) e facilità di produzione e commercializzazione della scheda una volta realizzata.

Il sistema di gestione dell'energia realizzato *Bk1B114\_Battery\_System\_V2*, è costituito principalmente da 3 macroblocchi ognuno dei quali svolge una funzione fondamentale (immagazzinamento, monitoraggio, distribuzione). Ognuno di essi è stato realizzato in modo da comprendere autonomamente(in maniera del tutto analogica) sulla base delle caratteristiche elettriche presenti sul bus di distribuzione (PDB), quando entrare in funzione, senza quindi ricorrere ad una logica di controllo dedicata.

Il primo blocco progettato è il *Bk1B118\_Battery\_Discharger\_V2*, il quale entra in funzione quando è necessario prelevare energia dalle batterie. Rappresentando dunque l'interfaccia tra la sorgente secondaria(7.4V) e il bus di distribuzione presente a bordo del satellite (tra i 12.5V e i 13.5V). A causa dei diversi livelli di tensione dei due elementi in gioco, è stato necessario includere all'interno del suddetto blocco un circuito elevatore di tensione, e in particolare un convertitore DC-DC di tipo Boost per ottenere un'elevata efficienza (convertitori isolati non sono utilizzabili a causa del loro ingombro). Quest'ultimo tuttavia deve lavorare in modo indipendente dal carico applicato sul PDB, che tende a variare in maniera non prevedibile. Per tale motivo non è stato possibile utilizzare la modalità di

funzionamento standard DCM (a causa della dipendenza dal carico), né tantomeno quella CCM a causa della difficoltà presentata nel controllo.

Per risolvere tale problema si è trovata una soluzione alternativa implementando attraverso un apposito circuito analogico-digitale, un controllo che permettesse di lavorare in una condizione limite tra il CCM e il DCM, definita BCCM (Boundary Condition Conduction Mode).

Per ottenere inoltre un sistema in grado di comprendere in maniera del tutto analogica la quantità di energia che bisogna fornire al satellite, è stata progettata una particolare rete a due variabili (tensioni e correnti sul bus) capace di generare un segnale in grado, attraverso successive elaborazioni (sempre analogiche), di pilotare opportunamente il convertitore, fornendo il quantitativo di energia desiderato. Questa rete che consente al sistema di essere molto più reattivo, è stata resa parametrica. In questo modo eventuali future modifiche, degli elementi utilizzati (ad esempio le batterie), non comportino una ridefinizione totale della rete, ma solo il cambiamento di un numero esiguo di componenti attraverso relazioni ben definite. L'azione complementare è stata implementata mediante la progettazione di un secondo blocco che prende il nome di Bk1B113\_Battery\_Charger\_V3. Esso ha il compito di caricare le celle LiPo quando è possibile, interfacciando quest'ultime con il PDB attraverso l'utilizzo di un convetitore buck., che a differenza del precedente permette la direzione inversa del flusso di potenza.

Non è stato utilizzato lo stesso convertitore definito precedentemente, poiché i livelli di tensione in gioco durante la seguente fase, risultano essere differenti rispetto al caso di scarica (tensioni sul PDB tra 14.5V e 15.5V). La gestione di una situazione di questo tipo avrebbe portato ad un maggiore ingombro sulla scheda.

Una delle particolarità principali relative a tale blocco è l'implementazione per via analogica del metodo di carica CC-CV delle celle, fatto in modo da non dover utilizzare software dedicati. La soluzione trovata prevede l'utilizzo di una rete non più a due variabili, come nel caso precedente ma a 3 (si ha anche la tensione del banco batterie). La nuova tipologia di rete realizzata (sempre parametrica per i motivi suddetti) permette sia di definire la quantità di energia da prelevare sul bus di potenza in modo del tutto autonomo, si di implementare il metodo e la massima corrente di carica desiderati.

Entrambi i sottosistemi progettati sono stati validati attraverso mirate simulazioni che hanno permesso di verificare il completo soddisfacimento delle specifiche di progetto. Inoltre è stato possibile valutare la bontà dei sottosistemi realizzati, attraverso un' analisi di efficienza, ottenendo risultati ampiamente soddisfacenti. In particolare è stato ottenuta un'efficienza di circa il 95% per il Bk1B118\_Battery\_Discharger e il 90% per il Bk1B113\_Battery\_Charger.

Un ultimo problema che si è dovuto affrontare nel corso di questa tesi, è dovuto alla presenza di due celle poste sulla scheda. Esse sono state collegate in serie in modo da aumentare la tensione fornita dal banco batterie e avere una quantità di energia immagazzinabile compatibile con le richieste progettuali del satellite. Tale connessione durante la fase di carica potrebbe creare problemi di sbilanciamento, portando ad un malfunzionamento delle celle e creando danneggiamento delle stesse.

Per risolvere questi problemi di bilanciamento è stato progettato un circuito ad hoc che permettesse:

- di monitorare real-time di questa condizione, mediante l'invio di opportuni segnali di controllo ad un microprocessore posizionato sulla scheda
- di eseguire l'equalizzazione delle due celle, ogni qualvolta sia necessario, mediante comando inviato dal microprocessore

Anche quest'ultimo sottosistema è stato validato attraverso opportune simulazione atte ad analizzare il suo comportamento a fronte di condizioni operative critiche, sia dal punto di vista elettrico sia ambientale, ottenendo anche in questo caso risultati ampiamente all'interno delle specifiche date.

Oltre hai 3 macroblocchi descritti è presente sulla scheda un microprocessore che ha il compito di:

- abilitare e disabilitare il sistema totale o solo una parte di esso
- di permettere la comunicazione con gli altri sistemi a bordo del satellite attraverso l'utilizzo di opportune interfacce

Dopo la fase di progettazione e validazione simulativa dell'intero sistema, si è passati alla sua realizzazione su un circuito stampato a 4 layer. Le sue dimensioni ridotte e l'esigenza di occupare la minore area possibile all'interno del satellite (per il posizionamento del relativo payload) hanno reso necessario: uno studio a priori del posizionamento critico dei componenti, e una successiva analisi mirata a valutare il suo collocamento all'interno della struttura satellitare. Mediante l'utilizzo di un opportuno software di valutazione tridimensionale parametrica, si è constatato che il sistema così integrato si adatta alla perfezione all'ambiente meccanico di destinazione .

In conclusione il sistema realizzato permette in assoluta autonomia, di implementare tutte le principali attività riguardanti le fonti di energia secondarie a bordo di nanosatelliti, basati su architettura *AraMis*. Esso risulta essere facilmente riconfigurabile per essere introdotto su una qualsiasi struttura satellitare, basata su uno standard di tipo CubeSat largamente diffuso, e rendendolo pertanto estremamente commerciabile.

Sulla base delle suddette considerazioni ulteriori sviluppi futuri potranno riguardare dei test mirati a garantire la completa affidabilità e sicurezza del sistema ai vari utilizzatori.

Inoltre data la presenza di un microprocessore all'interno della scheda, potrebbero essere sviluppati opportuni programmi software finalizzati allo svolgimento di funzioni più complesse e dedicate in base alla missione da compiere

## **Appendice A**

Spice Netlist del sistema completo Bk1B114\_Battery\_System\_V2 generata mediante il *Design Capture* di *Mentor Graphics*:

```
* Project Bk1B114_Battery_System_V2
* Mentor Graphics Wirelist Created with Version 6.4.002
* File created Fri Jun 10 18:54:51 2016
* Inifile :
* ConfigFile: C:\MentorGraphics\7.9.4EE\SDD_HOME\standard\wspice.cfg
* Options : -__ -.spi -h -$ -kC:\MentorGraphics\7.9.4EE\SDD_HOME\standard\wspice.cfg
bk1b114_battery_system_v2
* Levels :
*
X1I207 POSBAT CENBAT LIPO BATTERY V=3.700000 Q=2.000000 R=80.000000M
X1I217 CENBAT DGND LIPO BATTERY V=3.700000 Q=2.000000 R=80.000000M
XDistribution Interface D PDBPDB SOLAR PANEL DGND
XJTAG_Interface N3V3A_3V3 DGND TDI Bk1B4854_JTAG_Interface
XI2C_Interface A_PDB DGND N3V3A_3V3 KS Bk1B4851_I2C_Interface
XBk1B113_Battery_Charger_V3 C_D7_A1IPDB_char AGND B_D0_RX_SOMIENABLE_char
+DGND D_PDBPDB VBAT Bk1B113_Battery_Charger_V3
XBK1B118_Battery_Discharger_V2 D_D7_A1ENABLE_dis_delay AGND VBAT DGND
+D_D6_A0IPDB_dis D_PDBPDB C_D0_RX_SOMIENABLE_dis
+Bk1B118_Battery_Discharger_V2
XPROCESSOR TDI C_PDB D_PDBPDB A_PDB B_PDB DGND AGND N3V3A_3V3
+Bk1B4221W_Tile_Processor_4M_V1
XBk1B114 Battery Monitor B D6 A0VBAT M C D6 A0TEMP B D7 A1V UNBAL
A D7 A1VREF
+ A D6 A0IBAT M VBAT AGND A D0 RX SOMIEN EQU DGND CENBAT N3VA REF
N5VA 5V
+POSBAT N3V3A_3V3 Bk1B114_Battery_Monitor
N1I355 N0 Connector_1PIN
* Pin is not connected
N1I360 N1 Connector_1PIN
* Pin is not connected
N1I365 N2 Connector_1PIN
```

| * Pin is not connected                                                    |
|---------------------------------------------------------------------------|
| N1I370 N3 Connector_1PIN                                                  |
| * Pin is not connected                                                    |
| R1I385 AGND DGND {MC( 200Mohms , 1000.000000M /100)} TC=200.000000U       |
| N1I448 N5VA_5V N3VA_REF CELL NAME                                         |
| * Dictionary 15                                                           |
| * 5V,A_5V=N5VA_5V                                                         |
| * 3V,A_REF=N3VA_REF                                                       |
| * A_D0_RX_SOMI,EN_EQU=A_D0_RX_SOMIEN_EQU                                  |
| * A_D6_A0,IBAT_M=A_D6_A0IBAT_M                                            |
| * A_D7_A1,VREF=A_D7_A1VREF                                                |
| * B_D7_A1,V_UNBAL=B_D7_A1V_UNBAL                                          |
| * C_D6_A0,TEMP=C_D6_A0TEMP                                                |
| * B_D6_A0,VBAT_M=B_D6_A0VBAT_M                                            |
| * C_D0_RX_SOMI,ENABLE_dis=C_D0_RX_SOMIENABLE_dis                          |
| * D_D6_A0,IPDB_dis=D_D6_A0IPDB_dis                                        |
| * D_D7_A1,ENABLE_dis_delay=D_D7_A1ENABLE_dis_delay                        |
| * B_D0_RX_SOMI,ENABLE_char=B_D0_RX_SOMIENABLE_char                        |
| * C_D7_A1,IPDB_char=C_D7_A1IPDB_char                                      |
| * 3V3,A_3V3=N3V3A_3V3                                                     |
| * D_PDB,PDB=D_PDBPDB                                                      |
| *Warning : No ground node (Label a net GND)                               |
| *Definition For Project Bk1B114_Battery_System_V2                         |
| .SUBCKT Bk1B114_Battery_System_V2 PDB SOLAR_POS DGND                      |
| X1I207 POSBAT CENBAT LIPO_BATTERY V=3.700000 Q=2.000000 R=80.000000M      |
| X1I217 CENBAT DGND LIPO_BATTERY V=3.700000 Q=2.000000 R=80.000000M        |
| XDistribution_Interface D_PDBPDB SOLAR_PANEL DGND                         |
| XJTAG_Interface N3V3A_3V3 DGND TDI Bk1B4854_JTAG_Interface                |
| XI2C_Interface A_PDB DGND N3V3A_3V3 KS Bk1B4851_I2C_Interface             |
| XBk1B113_Battery_Charger_V3 C_D7_A1IPDB_char AGND B_D0_RX_SOMIENABLE_char |
| +DGND D_PDBPDB VBAT Bk1B113_Battery_Charger_V3                            |
| XBK1B118_Battery_Discharger_V2 D_D7_A1ENABLE_dis_delay AGND VBAT DGND     |
| +D_D6_A0IPDB_dis D_PDBPDB C_D0_RX_SOMIENABLE_dis                          |
| +Bk1B118_Battery_Discharger_V2                                            |
| XPROCESSOR TDI C_PDB D_PDBPDB A_PDB B_PDB DGND AGND N3V3A_3V3             |
| +Bk1B4221W_Tile_Processor_4M_V1                                           |
| XBk1B114_Battery_Monitor B_D6_A0VBAT_M C_D6_A0TEMP B_D7_A1V_UNBAL         |
| A_D7_A1VREF                                                               |
| + A_D6_A0IBAT_M VBAT AGND A_D0_RX_SOMIEN_EQU DGND CENBAT N3VA_REF         |
| N5VA_5V                                                                   |
| +POSBAT N3V3A_3V3 Bk1B114_Battery_Monitor                                 |
| N1I355 N0 Connector_1PIN                                                  |

\* Pin is not connected N1I360 N1 Connector 1PIN \* Pin is not connected N1I365 N2 Connector 1PIN \* Pin is not connected N1I370 N3 Connector 1PIN \* Pin is not connected R1I385 AGND DGND {MC( 200Mohms , 1000.000000M /100)} TC=200.000000U N1I448 N5VA\_5V N3VA\_REF CELL NAME \* CROSS-REFERENCE 15 \* 5V,A\_5V=N5VA\_5V \* 3V,A REF=N3VA REF \* A\_D0\_RX\_SOMI,EN\_EQU=A\_D0\_RX\_SOMIEN\_EQU \* A\_D6\_A0,IBAT\_M=A\_D6\_A0IBAT\_M \* A\_D7\_A1,VREF=A\_D7\_A1VREF \* B D7 A1,V UNBAL=B D7 A1V UNBAL \* C\_D6\_A0,TEMP=C\_D6\_A0TEMP \* B D6 A0, VBAT M=B D6 A0VBAT M \* C\_D0\_RX\_SOMI,ENABLE\_dis=C\_D0\_RX\_SOMIENABLE\_dis \* D D6 A0, IPDB dis=D D6 A0 IPDB dis \* D\_D7\_A1,ENABLE\_dis\_delay=D\_D7\_A1ENABLE\_dis\_delay \* B\_D0\_RX\_SOMI,ENABLE\_char=B\_D0\_RX\_SOMIENABLE\_char \* C\_D7\_A1,IPDB\_char=C\_D7\_A1IPDB\_char \* 3V3,A\_3V3=N3V3A\_3V3 \* D\_PDB,PDB=D\_PDBPDB .ENDS \*Definition For Project Bk1B114\_Battery\_Monitor .SUBCKT Bk1B114\_Battery\_Monitor VBAT\_M TEMP V\_UNBAL VREF IBAT\_M VBAT AGND +EN EQU NEGBAT CENBAT N3V N5V POSBAT N3V3 XBk1B133A Temperature Sensor V1 AGND TEMP N3V Bk1B133A Temperature Sensor V1 XBk1B1142 Battery Equalizer V1 AGND N3V N5V V UNBAL EN EQU NEGBAT CENBAT +POSBAT Bk1B1142\_Battery\_Equalizer\_V1 XBk1B1331B\_Voltage\_Sensor\_V1 VBAT\_M POSBAT AGND Bk1B131B\_Voltage\_Sensor\_V1 XBk1B132H\_BID\_Current\_Sensor\_V1 VREF IBAT\_M VBAT AGND N3V3 POSBAT +Bk1B132H\_BID\_Current\_Sensor\_V1 \* CROSS-REFERENCE 3 \* 3V3=N3V3 \* 5V=N5V \* 3V=N3V .ENDS

\*Definition For Project Bk1B132H BID Current Sensor V1 .SUBCKT Bk1B132H BID Current Sensor V1 VREF IBAT OUT AGND N3V3 IN X1I11 N1N68 N1N46 N3V3 AGND IBAT VREF INA213 X1I89 N1N99 AGND VREF LT1790 1V25 C1I24 N1N99 AGND {MC( 100.000000N , 10.000000 /100)} TC=100.000000U R1I101 N3V3 N1N99 {MC( 1Kohms , 1000.000000M /100)} TC=100.000000U X1I116 IN OUT N1N68 N1N46 RES 4WIRE R={MC(10.000000M,1000.000000M/100)} +TC=100.00000U \* CROSS-REFERENCE 1 \* 3V3=N3V3 .ENDS \*Definition For Project Bk1B131B\_Voltage\_Sensor\_V1 .SUBCKT Bk1B131B\_Voltage\_Sensor\_V1 Vout Vin AGND CC1 Vout AGND {MC( 0.01uF , 10.000000 /100)} TC=10.000000U RR1 Vin Vout {MC( 390Kohms , 1000.000000M /100)} TC=100.000000U RR2 Vout AGND {MC( 133Kohms , 1000.000000M /100)} TC=100.000000U \* CROSS-REFERENCE 0 .ENDS \*Definition For Project Bk1B1142\_Battery\_Equalizer\_V1 .SUBCKT Bk1B1142\_Battery\_Equalizer\_V1 AGND VREF V5V V\_UNBAL ENABLE NEGBAT +CENBAT POSBAT RR1 XSIG010060 XSIG010055 {MC( 1Kohms , 1000.000000M /100)} TC=100.000000U XM1 XSIG010035 XSIG010034 NEGBAT IRLML2803 XM2 XSIG010091 XSIG010034 NEGBAT IRLML2803 RR3 XSIG010026 XSIG010035 {MC( 15ohms , 1000.000000M /100)} TC=100.000000U XR4 POSBAT XSIG010096 XSIG010096 NEGBAT PRA100I2 RR6 VINPOS XSIG010060 {MC( 270hms , 1000.000000M /100)} TC=100.000000U XM3 CENBAT POSBAT VINPOS IRLML2803 XR5 POSBAT VINNEG VINNEG NEGBAT PRA100I2 X1I587 VINPOS VINNEG V UNBAL VREF AGND V5V Bk1B137E Diff V Sensor V1 RR2 ENABLE XSIG010034 {MC( 15ohms , 1000.000000M /100)} TC=100.000000U RR7 XSIG010060 XSIG010065 {MC( 49.900000K , 1000.000000M /100)} +TC=100.00000U XU1 XSIG010096 XSIG010065 XSIG010007 XSIG010091 XSIG010055 LM6142 RR8 POSBAT XSIG010026 {MC( 100Kohms , 1000.000000M /100)} TC=100.000000U XM4 XSIG010007 XSIG010026 POSBAT IRLML6402 \* CROSS-REFERENCE 0 .ENDS

\*Definition For Project Bk1B137E\_Diff\_V\_Sensor\_V1 .SUBCKT Bk1B137E Diff V Sensor V1 VINPOS VINNEG VOUT VREF AGND VAL XU1 AGND VINPOS VINNEG AGND VAL REF FB VOUT AD8237 RR1 VREF REF {MC( 200Kohms , 1000.000000M /100)} TC=100.000000U RR2 REF AGND {MC( 143Kohms , 100.000000M /100)} TC=50.000000U RR3 FB VOUT {MC( 78.7Kohms , 100.000000M /100)} TC=10.000000U RR4 REF FB {MC( 18Kohms , 1000.000000M /100)} TC=100.000000U \* CROSS-REFERENCE 0 .ENDS \*Definition For Project Bk1B133A\_Temperature\_Sensor\_V1 .SUBCKT Bk1B133A\_Temperature\_Sensor\_V1 AGND TEMP REF\_3V RR1 TEMP AGND {MC( 1Mohms , 1000.000000M /100)} TC=100.000000U RR2 REF\_3V TEMP {MC( 220Kohms , 1000.000000M /100)} TC=100.000000U XR3 TEMP AGND NTC100K \* CROSS-REFERENCE 0 .ENDS \*Definition For Project Bk1B4221W\_Tile\_Processor\_4M\_V1 .SUBCKT Bk1B4221W Tile Processor 4M V1 MODULE JTAG MODULE C MODULE D MODULE A + MODULE\_B DGND AGND VCC\_CPU RR1 J\_VDDVCC\_CPU RST {MC( 47Kohms , 1000.000000M /100)} TC= CC1 XSIG010096 DGNDJ\_GND {MC( 12pF , 0.000000F /100)} TC=10.000000U CC2 XSIG010097 DGNDJ\_GND {MC( 12pF , 0.000000F /100)} TC=10.000000U CC3 XSIG010445 DGNDJ\_GND {MC( 12pF , 0.000000F /100)} TC=10.000000U X1 XSIG010096 XSIG010097 xtal REUSE CELL REF DES CC4 XSIG010447 DGNDJ\_GND {MC( 12pF , 0.000000F /100)} TC=10.000000U X2 XSIG010445 DGNDJ GND DGNDJ GND XSIG010447 XTAL4 REUSE CELL REF DES CC5 DGNDJ GND J VDDVCC CPU {MC( 100.000000N , /100)} TC=10.000000U CXCMP6 DGNDJ GND J VDDVCC CPU {MC( 10uF , /100)} TC=10.000000U CXCMP25 RST DGNDJ\_GND {MC( 0,01uF , /100)} TC= X1B1261Z Short C1 A D3 SDA SIMO B D3 SDA SIMO 1B1261Z Short Circuit V1 X1B1261Z\_Short\_C2 A\_D2\_SCL\_SOMI B\_D2\_SCL\_SOMI X1B1261Z Short C3 C D3 SDA SIMO D D3 SDA SIMO X1B1261Z\_Short\_C4 C\_D2\_SCL\_SOMI D\_D2\_SCL\_SOMI U1 C\_D6\_A0 C\_D7\_A1 D\_D6\_A0 N1N2445 N1N2367 N1N2365 N1N2363 D\_D7\_A1 N 1N2322 +N 1N2325 J VDDVCC CPU AGND XSIG010096 XSIG010097 DGNDJ GND J\_VDDVCC\_CPU +A\_D8\_ID N1N2443 B\_D9\_EN\_PWM2 A\_D9\_EN\_PWM2 N1N2027 C\_D9\_EN\_PWM2 D D8 ID

+C\_D8\_ID N1N2330 N1N2332 N1N2334 N1N2336 N1N2338 DGNDJ\_GND J\_VDDVCC\_CPU +B\_D8\_ID N1N2340 N1N2342 A\_D4\_CLK A\_D3\_SDA\_SIMO A\_D2\_SCL\_SOMI B\_D4\_CLK +A D1 TX SIMO A D0 RX SOMI C D4 CLK C D3 SDA SIMO N1N2441 B D5 PWM C D5 PWM +D D5 PWM N1N2344 N1N2346 XSIG010199 DGNDJ GND J VDDVCC CPU A D5 PWM N1N2350 +C D2 SCL SOMI D D4 CLK C D1 TX SIMO C D0 RX SOMI N1N2369 B D0 RX SOMI +B\_D1\_TX\_SIMO D\_D0\_RX\_SOMI D\_D1\_TX\_SIMO N1N2359 N1N2357 N1N2355 N1N2353 +J VDDVCC CPU DGNDJ GND XSIG010445 XSIG010447 TEST TDO TDI TMS TCK RST A\_D6\_A0 + A\_D7\_A1 B\_D6\_A0 B\_D7\_A1 REUSE CELL REF DES \* CROSS-REFERENCE 4 \* \_1N2325=N\_1N2325 \* 1N2322=N 1N2322 \* DGND,J GND=DGNDJ GND \* J VDD,VCC CPU=J VDDVCC CPU .ENDS \*Definition For Project 1B1261Z Short Circuit V1 .SUBCKT 1B1261Z\_Short\_Circuit\_V1 B A \* CROSS-REFERENCE 0 .ENDS \*Definition For Project Bk1B118\_Battery\_Discharger\_V2 .SUBCKT Bk1B118\_Battery\_Discharger\_V2 ENABLE\_delayed AGND V\_BAT DGND I\_PDB +PDB ENABLE XBk1B121L\_Load\_Switch\_slow ENABLE DGND V\_battery\_dis V\_BAT +Bk1B121L Load Switch slow XBk1B118\_V2\_Boost\_converter OUT\_CONV ENABLE\_delayed DRV DGND V\_battery\_dis +VA DIODE Bk1B118 V2 Boost converter XBk1B118\_V2\_Feedback\_net I\_PDB feedback AGND Vbus\_dis OUT\_CONV V\_battery\_dis +Bk1B118 V2 Feedback net XBk1B121H\_Load\_Switch\_slow Vbus\_dis PDB DGND ENABLE +Bk1B121H Load Switch slow XBk1B118\_V2\_BCCM\_Control DRV V\_battery\_dis AGND DGND ENABLE\_delayed OUT CONV +VA\_DIODE feedback Bk1B118\_V2\_BCCM\_Control \* CROSS-REFERENCE 0 .ENDS \*Definition For Project Bk1B118\_V2\_BCCM\_Control

.SUBCKT Bk1B118\_V2\_BCCM\_Control OUT V\_battery AGND DGND En\_delayed\_dis +VK diode VA diode feedback XX3 DGND N1N37 OUT N1N32 N3V3 DGND 74HC27 XX80 En delayed dis N1N30 N3V3 DGND INVERT2 X0 V\_comp\_diode DGND Vpwm N1N37 N3V3 DGND 74HC27 CC1 N1N1026 AGND {MC( 100.000000N , 10.000000 /100)} TC=100.000000U XBk1B118\_V2\_Triangular\_waveform DGND N3V3 Vtri OUT V\_battery AGND +Bk1B118 V2 Triangular waveform XBk1B118\_V2\_Compensator Vcontr AGND N3V3 feedback N2v5 +Bk1B118\_V2\_Compensator XU4 N1N1026 AGND N2v5 LT1790-25 X1 N1N32 N1N30 Vpwm OUT N3V3 DGND 74HC27 RR7 N1N202 AGND {MC( 10Kohms , 1000.000000M /100)} TC=100.000000U RR8 AGND N1N203 {MC( 10Kohms , 1000.000000M /100)} TC=100.000000U CC9 V\_battery DGND {MC( 100.000000N , 10.000000 /100)} TC=100.000000U XX5 Vtri Vcontr N3V3 AGND Vpwm LTC6752 XX6 N1N203 N1N202 N3V3 AGND V\_comp\_diode LTC6752 XU2 V battery N3V3 DGND LM1117 CC2 N3V3 DGND {MC( 1uF , 10.000000 /100)} TC=10.000000U RR10 V battery N1N1026 {MC( 1Kohms , 1000.000000M /100)} TC=100.000000U RR12 VK\_diode N1N202 {MC( 100Kohms , 100.000000M /100)} TC=100.000000U RR13 VA\_diode N1N203 {MC( 100Kohms , 100.000000M /100)} TC=100.000000U \* CROSS-REFERENCE 2 \* 2v5=N2v5 \* 3V3=N3V3 .ENDS \*Definition For Project Bk1B118\_V2\_Compensator .SUBCKT Bk1B118 V2 Compensator OUT AGND Val IN REF CC7 N1N9 OUT {MC( 100pF , 10.000000 /100)} TC=10.000000U RR28 N1N9 N1N5 {MC( 13Kohms , 100.000000M /100)} TC=100.000000U CC8 N1N5 OUT {MC( 100pF , 10.000000 /100)} TC=10.000000U RR29 IN N1N9 {MC( 39Kohms , 1000.000000M /100)} TC=100.000000U XX9 REF N1N9 Val AGND OUT TLV2211 \* CROSS-REFERENCE 0 .ENDS \*Definition For Project Bk1B118\_V2\_Triangular\_waveform .SUBCKT Bk1B118\_V2\_Triangular\_waveform DGND N3V3 OUT IN VAL AGND XM6 N1N115 N1N50 AGND irf7821 RR26 VAL N1N32 {MC( 10Kohms , 1000.000000M /100)} TC=100.000000U RR27 N1N32 OUT {MC( 150Kohms , 1000.000000M /100)} TC=100.000000U

CC6 OUT AGND {MC( 100.000000P , 5.000000 /100)} TC=10.000000U XX4 IN N1N50 N3V3 DGND INVERT2 XX12 N1N32 N1N115 SL43 \* CROSS-REFERENCE 1 \* 3V3=N3V3 .ENDS \*Definition For Project Bk1B121H Load Switch slow .SUBCKT Bk1B121H\_Load\_Switch\_slow OUT IN DGND EN XM4 N1N173 EN DGND irlml2502 RR5 IN N1N11 {MC( 178Kohms , 1000.000000M /100)} TC=100.000000U RR3 N1N132 DGND {MC( 1.5Kohms , 1000.000000M /100)} TC=100.000000U XM3 OUT N1N173 N1N132 irlml2502 XX83 OUT N1N11 IN atp304 RR6 N1N11 N1N173 {MC( 665.000000K , 1000.000000M /100)} TC=100.000000U \* CROSS-REFERENCE 0 .ENDS \*Definition For Project Bk1B118\_V2\_Feedback\_net .SUBCKT Bk1B118 V2 Feedback net Iout measured feedback AGND V bus +out\_converter VAL RR14 N1N483 N1N542 {MC( 1.6MEGohms , 1000.000000M /100)} TC=100.000000U RR9 feedback N1N199 {MC( 10Kohms , 1000.000000M /100)} TC=100.000000U XR31 out\_converter V\_bus N1N937 N1N939 RES\_4WIRE +R={MC(100Mohms,1000.000000M/100)} TC=100.000000U RR30 N1N436 AGND {MC( 1Kohms , 1000.000000M /100)} TC=100.000000U RR18 N1N483 AGND {MC( 9.53Kohms , 1000.000000M /100)} TC=100.000000U RR19 Iout\_measured N1N877 {MC( 68Kohms , 1000.000000M /100)} TC=100.000000U RR20 N1N170 N1N483 {MC( 120Kohms , 1000.000000M /100)} TC=100.000000U XX7 N1N170 N1N199 VAL AGND N1N199 TLV2211 DD1 N1N589 feedback MBRM140 XU3 N1N937 N1N939 VAL AGND Iout measured INA138 RR22 N1N441 N1N436 {MC( 24.000000K , 1000.000000M /100)} TC=100.000000U RR23 out\_converter N1N441 {MC( 110Kohms , 1000.000000M /100)} TC=100.000000U XX8 N1N542 N1N557 VAL AGND N1N589 TLV2211 RR24 N1N877 N1N170 {MC( 1.8Kohms , 1000.000000M /100)} TC=100.000000U RR15 N1N441 N1N542 {MC( 1.6MEGohms , 1000.000000M /100)} TC=100.000000U RR16 N1N557 feedback {MC( 1.6MEGohms , 1000.000000M /100)} TC=100.000000U RR17 N1N557 AGND {MC( 1.6MEGohms , 1000.000000M /100)} TC=100.000000U \* CROSS-REFERENCE 0 .ENDS

\*Definition For Project Bk1B118\_V2\_Boost\_converter .SUBCKT Bk1B118 V2 Boost converter OUT EN GATE DGND IN VA DIODE LL1 VA\_DIODE IN {MC( 33.000000U , /100)} RSER=94.500000M XX81 DGND GATE OUTA N1N16 DGND EN IN DGND UCC27425 XX11 VA DIODE OUT SL43 XM5 VA DIODE N1N16 DGND irf7311 CC3 IN DGND {MC( 100.000000U , 20.000000 /100)} TC=15.000000U CC4 N1N261 DGND {MC( 2.200000N , 5.000000 /100)} TC=10.000000U CC5 OUT DGND {MC( 330.000000U , 10.000000 /100)} TC=10.000000U RR25 VA\_DIODE N1N261 {MC( 56ohms , 1000.000000M /100)} TC=10.000000U \* CROSS-REFERENCE 0 .ENDS \*Definition For Project Bk1B121L\_Load\_Switch\_slow .SUBCKT Bk1B121L\_Load\_Switch\_slow EN DGND OUT IN XM2 N1N126 EN DGND irlml2502 RR1 N1N264 N1N126 {MC( 324Kohms , 1000.000000M /100)} TC=100.000000U RR2 N1N127 DGND {MC( 1.5Kohms , 1000.000000M /100)} TC=100.000000U XM1 OUT N1N126 N1N127 irlml2502 RR4 IN N1N264 {MC( 220Kohms , 1000.000000M /100)} TC=100.000000U XX82 OUT N1N264 IN atp304 \* CROSS-REFERENCE 0 .ENDS \*Definition For Project Bk1B113\_Battery\_Charger\_V3 .SUBCKT Bk1B113\_Battery\_Charger\_V3 I\_PDB AGND ENABLE DGND PDB V\_BAT CC1 N5V DGND {MC( 4.700000U , 10.000000 /100)} TC=10.000000U XBk1B121G\_Load\_Switch\_Shunt ENABLE DGND Vbat\_char V\_BAT +Bk1B121G\_Load\_Switch\_Shunt XBk1B113\_V3\_Feedback\_Net N2V5 FEEDBACK V\_BAT N5V AGND IN\_converter Vbus\_char +I PDB Bk1B113 V3 Feedback Net XBk1B113\_V3\_Triwave\_Gen N3V3 TRI AGND Bk1B113\_V3\_Triwave\_Gen XBk1B113 V3 Compensator N2V5 AGND N5V FEEDBACK V CONTROL +Bk1B113\_V3\_Compensator XBk1B113 V3 Buck Converter charger Vbus char V PWM Vbat char DGND +IN\_converter Bk1B113\_V3\_Buck\_Converter\_charger XU1 Vbat\_char N3V3 DGND LM1117 XX1 V\_CONTROL TRI N3V3 AGND V\_PWM LTC6752 CC3 N1N990 AGND {MC( 100.000000N , 10.000000 /100)} TC=30.000000U RR1 Vbat\_char N1N990 {MC( 1Kohms , 1000.000000M /100)} TC=100.000000U CC4 N3V3 DGND {MC( 1uF , 10.000000 /100)} TC=10.000000U CC5 Vbat\_char DGND {MC( 1uF , 10.000000 /100)} TC=10.000000U

CC2 Vbat\_char DGND {MC( 100.000000N , 10.000000 /100)} TC=30.000000U XU4 N1N990 AGND N2V5 LT1790-25 XBk1B121I\_Load\_Switch\_Delayed ENABLE DGND Vbus\_char PDB +Bk1B121I Load Switch Delayed XX17 Vbat\_char DGND Vbat\_char N5V TPS76150 \* CROSS-REFERENCE 3 \* 3V3=N3V3 \* 2V5=N2V5 \* 5V=N5V .ENDS \*Definition For Project Bk1B121I\_Load\_Switch\_Delayed .SUBCKT Bk1B121I\_Load\_Switch\_Delayed ENABLE DGND OUT IN XM2 OUT N1N16 N1N11 irlml2502 XM1 N1N16 ENABLE DGND irlml2502 RR34 N1N11 DGND {MC( 1.5Kohms , 1000.000000M /100)} TC=100.000000U XX15 OUT N1N14 IN atp304 RR9 N1N14 N1N16 {MC( 143Kohms , 100.000000M /100)} TC=50.000000U RR14 IN N1N14 {MC( 100Kohms , 100.000000M /100)} TC=100.000000U \* CROSS-REFERENCE 0 .ENDS \*Definition For Project Bk1B113\_V3\_Buck\_Converter\_charger .SUBCKT Bk1B113\_V3\_Buck\_Converter\_charger VAL GATE OUT DGND IN XX13 N1N9 N1N71 IN IRF7324 XX14 GATE EN DGND N1N71 N1N71 VAL UCC27531 LL1 OUT N1N9 {MC( 68.000000U , /100)} RSER=105.000000M CC10 IN DGND {MC( 10.000000U , 10.000000 /100)} TC=10.000000U XX12 DGND N1N9 SL43 CC11 OUT DGND {MC( 10.000000U , 10.000000 /100)} TC=10.000000U CC12 VAL DGND {MC( 1000.000000N , 10.000000 /100)} TC=10.000000U \* CROSS-REFERENCE 0 .ENDS \*Definition For Project Bk1B113\_V3\_Compensator .SUBCKT Bk1B113\_V3\_Compensator N2V5 AGND N5V FB V\_CONTROL RR29 FB N1N10 {MC( 27Kohms , 1000.000000M /100)} TC=100.000000U XX9 N2V5 N1N10 N5V AGND N1N12 TLV2211 CC7 N1N10 N1N12 {MC( 100pF , 5.000000 /100)} TC=10.000000U RR36 N1N16 AGND {MC( 10Kohms , 1000.000000M /100)} TC=100.000000U RR37 N1N10 N1N11 {MC( 16.000000K , 1000.000000M /100)} TC=100.000000U

RR38 FB N1N9 {MC( 16.9Kohms , 1000.000000M /100)} TC=100.000000U CC8 N1N9 N1N10 {MC( 1000.000000P , 10.000000 /100)} TC=10.000000U RR27 N1N12 V\_CONTROL {MC( 330Kohms , 1000.000000M /100)} TC=100.000000U RR39 V CONTROL N1N16 {MC( 249Kohms , 1000.000000M /100)} TC=100.000000U CC9 N1N11 N1N12 {MC( 3.300000N , 10.000000 /100)} TC=10.000000U \* CROSS-REFERENCE 2 \* 5V=N5V \* 2V5=N2V5 .ENDS \*Definition For Project Bk1B113\_V3\_Triwave\_Gen .SUBCKT Bk1B113\_V3\_Triwave\_Gen N3V3 OUT AGND CC6 OUT AGND {MC( 1000.000000P , 10.000000 /100)} TC=30.000000U RR28 POS N1N52 {MC( 27Kohms , 1000.000000M /100)} TC=100.000000U RR30 POS N3V3 {MC( 220Kohms , 1000.000000M /100)} TC=100.000000U RR31 POS VD {MC( 18Kohms , 1000.000000M /100)} TC=100.000000U RR32 N1N52 AGND {MC( 3.9Kohms , 1000.000000M /100)} TC=100.000000U XX2 POS OUT N3V3 AGND VD LTC6752 RR33 OUT VD {MC( 1.5Kohms , 1000.000000M /100)} TC=100.000000U \* CROSS-REFERENCE 1 \* 3V3=N3V3 .ENDS \*Definition For Project Bk1B113\_V3\_Feedback\_Net .SUBCKT Bk1B113\_V3\_Feedback\_Net N2V5 FB V\_BAT N5V AGND IN\_conv PDB I\_PDB XU3 N1N24 N1N23 N5V AGND I\_PDB INA138 RR5 N1N544 N1N47 {MC( 2.430000K , 1000.000000M /100)} TC=100.000000U RR6 V BAT N1N142 {MC( 6.04Kohms , 1000.000000M /100)} TC=100.000000U XX6 N1N1144 FB N5V AGND N1N250 TLV2211 RR8 N1N95 N1N64 {MC( 143Kohms , 100.000000M /100)} TC=50.000000U RR10 N1N99 N1N97 {MC( 5.6Kohms , 1000.000000M /100)} TC= RR11 N1N237 N2V5 {MC( 75Kohms , 1000.000000M /100)} TC=100.000000U XX8 N1N47 N1N64 N5V AGND N1N64 TLV2211 RR12 N1N174 N1N144 {MC( 100Kohms , 100.000000M /100)} TC=100.000000U RR7 N1N144 AGND {MC( 143Kohms , 100.000000M /100)} TC=50.000000U RR13 N1N180 N1N174 {MC( 100Kohms , 100.000000M /100)} TC=100.000000U RR17 N1N237 AGND {MC( 165Kohms , 1000.000000M /100)} TC=100.000000U RR18 N1N97 N1N95 {MC( 150Kohms , 1000.000000M /100)} TC=100.000000U RR2 FB N1N180 {MC( 1Kohms , 1000.000000M /100)} TC=100.000000U RR3 N1N1144 N1N99 {MC( 1Kohms , 1000.000000M /100)} TC=100.000000U XX7 N1N282 N1N306 N5V AGND N1N358 TLV2211

RR19 PDB N1N282 {MC( 1MEGohms , 100.000000M /100)} TC=25.000000U RR21 N1N284 AGND {MC( 7.5Kohms , 100.000000M /100)} TC=100.000000U XX4 N2V5 N1N174 N5V AGND N1N180 TLV2211 XX5 N1N237 N1N95 N5V AGND N1N99 TLV2211 RR22 N1N1144 N1N345 {MC(7.5Kohms, 100.000000M /100)} TC=100.000000U RR16 N1N345 N1N306 {MC( 165Kohms , 1000.000000M /100)} TC=100.000000U RR23 N1N507 AGND {MC( 1.2Kohms , 1000.000000M /100)} TC=100.000000U RR24 N1N47 N1N507 {MC( 63.4Kohms , 1000.000000M /100)} TC=100.000000U XR42 PDB IN\_conv N1N24 N1N23 RES\_4WIRE R={MC(100Mohms,1000.000000M/100)} +TC=100.00000U RR25 I\_PDB N1N544 {MC(133Kohms, 1000.000000M /100)} TC=100.000000U RR26 N1N142 N1N144 {MC( 330Kohms , 1000.000000M /100)} TC=100.000000U RR15 N1N282 N1N284 {MC( 165Kohms , 1000.000000M /100)} TC=100.000000U RR20 N1N306 N1N64 {MC( 1MEGohms , 100.000000M /100)} TC=25.000000U DD1 N1N1144 N1N358 MBRM140 DD2 FB N1N250 MBRM140 \* CROSS-REFERENCE 2 \* 2V5=N2V5 \* 5V=N5V .ENDS \*Definition For Project Bk1B121G\_Load\_Switch\_Shunt .SUBCKT Bk1B121G\_Load\_Switch\_Shunt ENABLE DGND OUT IN RR40 N1N158 N1N8 {MC( 2.7Kohms , 1000.000000M /100)} TC=100.000000U XM3 OUT N1N8 N1N9 irlml2502 XM4 N1N8 Enable DGND irlml2502 RR35 N1N9 DGND {MC( 1.5Kohms , 1000.000000M /100)} TC=100.000000U XX16 OUT N1N158 IN atp304 RR41 IN N1N158 {MC( 2.7Kohms , 1000.000000M /100)} TC=100.000000U \* CROSS-REFERENCE 0 .ENDS \*Definition For Project Bk1B4851 I2C Interface .SUBCKT Bk1B4851\_I2C\_Interface MODULE DGND V3V3 KS J1 V3V3 DGND A D3 SDA SIMO A D2 SCL SOMI KS REUSE CELL REF DES \* CROSS-REFERENCE 0 .ENDS \*Definition For Project Bk1B4854\_JTAG\_Interface .SUBCKT Bk1B4854\_JTAG\_Interface VCC\_CPU DGND MODULE J1 TDO DGND TDI VCC CPU TDO TCK TEST RST WM7612CT

## \* CROSS-REFERENCE 0 .ENDS

| .include "\\sym\74HC27.mod"         |
|-------------------------------------|
| .include "\\sym\AD8237.mod"         |
| .include "\\sym\Connector_1PIN.mod" |
| .include "\\sym\INA138.mod"         |
| .include "\\sym\INA213.mod"         |
| .include "\\sym\INVERT2.mod"        |
| .include "\\sym\IRF7324.mod"        |
| .include "\\sym\LIPO_BATTERY.mod"   |
| .include "\\sym\LM1117.mod"         |
| .include "\\sym\LM6142.mod"         |
| .include "\\sym\LT1790-25.mod"      |
| .include "\\sym\LT1790_1V25.mod"    |
| .include "\\sym\LTC6752.mod"        |
| .include "\\sym\MBRM140.mod"        |
| .include "\\sym\NTC100K.mod"        |
| .include "\\sym\PRA100I2.mod"       |
| .include "\\sym\RES_4WIRE.mod"      |
| .include "\\sym\SL43.mod"           |
| .include "\\sym\TLV2211.mod"        |
| .include "\\sym\TPS76150.mod"       |
| .include "\\sym\UCC27425.mod"       |
| .include "\\sym\UCC27531.mod"       |
| .include "\\sym\WM7612CT.mod"       |
| .include "\\sym\atp304.mod"         |
| .include "\\sym\irlm                |

## **Appendice B**

Lista dei componenti utilizzati per il sistema completo *Bk1B114\_Battery\_System\_V2*:

Part Lister output for Bk1B114\_Battery\_System\_V2 Generated on Monday, June 13, 2016

| #   | ĮQTY | Part Number                  | PartLabel                        | PartName                                | Ref Designator                   | Value                                    |
|-----|------|------------------------------|----------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|
| 1   | 4    | DK_ATP304-TL-HOSCT-ND        | Q_ATP304_ATPAK_PMOS_100A_60V     | ATP304                                  | 5_X15,5_X16,6_X82,               | ,,,                                      |
| 2   | 1 2  | 1<br>INK 400-1318-1-ND       | <br>  C                          | լ<br>լբնաք                              | 15 02 5 03                       | <br> 100n 100n                           |
| 2   | 1 1  | INK 490 1313 1 10            | 10 10 8482 X78 58 18             | 1010                                    | 15_02,5_00                       | 110011 , 10011                           |
| հ   | l i  | 185 534-5789                 | 10 1n 8683 X78 581 18            | 1010<br>1010                            | 15_00                            | 1n                                       |
| 5   |      | 1NZ_534-5782                 | 10 10 8682 180 18                | 1010                                    | 15_00<br>15_00                   | 10<br>  10   10                          |
| 2   | 1 2  | 10K_401-2700-1-ND            | 10_10_0003_10V_10                | 1010                                    | 15_04,5_05                       | 10 , 10<br>  10 - 10                     |
| 7   |      | 10K_507-2400-1-10            | 10_10_0000_020_20_10             | 100-0                                   | 15_012,0_02                      | 10,10                                    |
| 6   |      | UK_490-1459-1-ND             | C_2  2_0003_CUG_50_5             | 162112                                  | 10_04                            | 2.20                                     |
| 8   |      | UR_PUU232501-NU              | [C_4U7_0805_A5K_10_10            | 10407                                   | 15_61                            | 4.70                                     |
| 40  | 2    | KS_534-5730                  | 10_101_0003_A7K_50V_10           | 10100                                   | 17_67,43_61                      | ופר, ופר<br>וארי ה                       |
| 10  | ! !  | UK_399-3525-0-NU             | 10_100_1200_A7K_10V_10           | 10100                                   | 7_60<br> 7_64 7 69 7 69 7 64     | 100<br> 105 105 105                      |
| 11  | 4    | UK_445-1270-1-NU             | LC_12h_0003_006_50_5             | leizp                                   | 1_61,7_62,7_63,7_64              | 12p ,12p ,12p ,                          |
| 40  |      |                              |                                  | 104.99-                                 | 17.05                            | 12p                                      |
| 12  | 11   | 185-010-A3A1                 | [C_100N_0603_25V_10              | 10100                                   | 17_05                            | 100n                                     |
| 13  | 1 3  | KS_204-4030                  | [C_10011_00.03_V\K_10_10         | 101000                                  | 0_01,0_09,04                     | 10011,10011,                             |
| 41. | ! .  |                              | <br> 0_489=                      | 104.995                                 |                                  | 100  <br>  400= - 400=                   |
| 14  | 2    | UK_311-1024-1-NU             | [C_100p_0402                     | 10100                                   | 15_07,0_00                       | 100p,100p                                |
| 15  | 2    | UK_445-5490-2-NV             | C_100P_0402_X5K_10_10            | 10.000                                  | 0_07,0_08                        | ן אין אין אין אין אין אין אין אין אין אי |
| 10  | 1 1  |                              |                                  | 10_303                                  | 15_09                            | 3.3N                                     |
| 17  | 2    | DK_399-8224-1-ND             | U_10U_1210_X7R_25V_5             | 10_100                                  | 15_010,5_011                     | 100,100                                  |
| 18  | ! !  | KS_788-3057                  | [C_100U_1206_10V_X5R_20          | 10_1000                                 | 0_03                             | 1880                                     |
| 19  | ! !  | DK_597D337X9020H21-ND        | [C_3380_3226_280                 | 10_3300                                 | 10_05                            | 3300                                     |
| 20  |      | UN_14HC27PW,118-NU           | UIG_74HC27_NUK_ISSUP_3_1         | [DIG_74HC27                             | 0_73                             |                                          |
| 21  | 2    | UK_497-5778-1-NU             | [D1G_74LVC04H_NU1_1550P_6_1      | DIG_74LUC04H                            | 0_14,0_180                       | ,                                        |
| 22  | ! !  | UK_296-25241-1-NU            | URV_UCC27425_SUIC8               | DRU_UCC27425                            | 0_881                            |                                          |
| 23  | 11   | DK_296-35581-1-ND            | DRU_UCC27531_SU123_6_1           | [DRU_00027531                           | 15_X14                           |                                          |
| 24  | 11   | RS_610-668/                  | U_IRF/311_SU8_N_6A6_2UV_double   | I RF 7311                               | 16_M5                            |                                          |
| 25  | 1    | DK_IRF7324PBFC1-ND           | U_1RF7324_SU8_P_9A_20V_double    | 1RF7324                                 | 15_X13                           |                                          |
| 26  | 1    | RS_650-4069                  | Q_IRF7821_S08_N_13A6_30V         | IRF7821                                 | 6_M6                             |                                          |
| 27  | 8    | DK_IRLML2502CT-ND            | Q_IRLML2502_SOT23-3_MOS_N_4A2_20 | IRLML2502                               | 5_M1,5_M2,5_M3,5_M4,             | ,,,,,,,                                  |
|     |      | I                            | l                                | 1                                       | 6_M1,6_M2,6_M3,6_M4              |                                          |
| 28  | 3    | RS_302-022                   | Q_IRLML2803_S0T23-3_M0S_N_1A2_30 | IRLML2803                               | 23_M1,23_M2,23_M3                | ,,                                       |
| 29  | 1    | RS_301-322                   | Q_IRLML6402_SOT23-3_MOS_P_3A7_20 | IRLML6402                               | 23_M4                            |                                          |
| 30  | 4    | XX_1_TH_Donut6mm_Hole3mm5    | J_1_TH_Donut6mm_Hole3mm5         | J_1                                     | J1-J4                            | ,,,                                      |
| 31  | 1    | DK_WM7606CT-ND               | J_2_MALE_SMT_PicoBlade_1A        | J_2_MALE                                | J5                               |                                          |
| 32  | 1    | DK_WM7608CT_ND               | J_4_MALE_SMT_PicoBlade_1A        | J_4_MALE                                | 2_J1                             |                                          |
| 33  | 1    | DK_WM7609CT-ND               | J_5_SMD_PicoBlade_1A             | J_5_MALE                                | 4_J1                             |                                          |
| 34  | 1    | DK_WM7612CT-ND               | J_8_SMD_PicoBlade_1A             | J_8_MALE                                | 3_J1                             |                                          |
| 35  | 11   | RS_748-7261                  | L_33u_4040_4.4_95m_20            | L33u                                    | [6_L1                            | 33u                                      |
| 36  | 1    | DK_513-1053-1-ND             | L_68u_12.5x12.5x8_2A44_105m_20   | L68u                                    | 5_L1                             | 68u                                      |
| 37  | 3    | DK_MBRM140T3GOSCT-ND         | D_MBRM140T3_SH_D0216AA_40V_1A    | MBRM140T3                               | [5_D1,5_D2,6_D1                  | <b>,</b> ,                               |
| 38  | 11   | DK_296-23766-1-ND            | MSP430F5437_80LQFP               | MSP430F5437                             | 17_01                            |                                          |
| 39  | 11   | RS_684-1273                  | NIC_100K_0603_1                  | INIC_100K                               | [22_R3                           |                                          |
| 40  | 11   | DK_AD8237ARMZ-R7CT-ND        | OA_AD8237_MSOP8                  | 0A_AD8237                               | 26_01                            |                                          |
| 41  | 1 2  | DK_INA138NA/250G4-ND         | UA_INA138NA_SU123-5_1_360_2.70   | UA_INA138NA                             | 15_03,6_03                       | ,                                        |
| 42  | ! !  | UK_296-23421-1-NV            | UH_INH213_5070-0_1_20V_2.0V      | [UH_INH213                              |                                  |                                          |
| 43  | ! !  | UK_LM0142BIM-NU              | UH_LM6142_SUIC8_24V_1V8          | UH_LM0142                               |                                  |                                          |
| 44  | 1 4  | UK_LIG0752H3G0-1#IKMPBFGI-NU | UH_LIG0752H55_ISU123_1_3_0V      | UH_LIG0752H35                           |                                  | ,,,                                      |
| 45  | 1 9  | UK_290-10501-1-NV            | UH_ILV221110BVR_S0123_207_100    | IUH_1L02211                             | 15_84,5_85,5_80,5_87,            |                                          |
|     | !    | 1                            |                                  | 1                                       | 15_88,5_89,0_87,0_88,            |                                          |
|     |      |                              |                                  | I Dana                                  | 10_77                            | 4 9 9 4 - 5                              |
| 40  | l z  | K2_200-333_K                 | K_0K1_1200_250_1                 | I K OK 1                                | 15_K4Z,0_K31                     | 100000005,                               |
| 1.7 |      |                              |                                  |                                         | 1                                | 10011011115<br>  0.00Mahma               |
| 47  | 1.1  | 10K_KL123.20F61-HD           | IN_UNZ_U0UJ_ZJU_I                |                                         | 64<br> 4 040 4 090 99 04 09      | ZUUNUNNS                                 |
| 40  | 1 4  | 183_204-0920                 | 14_14_0002_100_1                 | ININ                                    | U_KIU,U_K3U,23_KI,K3             | TRUINS, TRUINS,                          |
| 60  |      | <br>  [ ] 099_099[           | <br> D_1V_0602_62_1              | 1                                       | <br>  E D4 E D9 E D9             | TRUTHUS, TRUTHUS                         |
| 47  | 1 3  | n_720-7207<br>               | <br> n_in_0402_00_1              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12_n1,2_n2,2_N0<br>1             | inonnis, INONNIS,<br>I 1Kohme            |
| 58  | 1 1  | 1<br>105 E84-0989            | 1 11/2 8682 188 1                | 10102                                   | <br> E   D 2 2                   | 1 9 Kohme                                |
| 51  |      | 185 58h-069h                 | IN 185 0603 100 1                | 18182                                   | 12 033 2 037 2 032<br>17 n23     | 1 Skohme                                 |
| 21  | 1 2  | N3_304-9084                  | 1 1 1 1 2 0 0 0 1 0 0 1          | 18183                                   | 5_N00,5_N04,5_N05,<br> 6 D9 6 D9 | 1.5KUINS,                                |
|     | 1    |                              |                                  | -                                       | 10_n2,0_n3                       | 1.5Kullis,                               |
|     | 1    |                              |                                  |                                         | -                                | 1.5Kohms,                                |
|     | 1    |                              |                                  |                                         | 1                                | 1 Skohme                                 |
| E.S | 1 1  | 100 200-0000                 | <br> D 1/0 0602 100 1            | 1                                       | <br> & D2                        | 1 9Vobmc                                 |
| E9  | 14   | 105 E81-90E6                 | ID 1MEC 8682 188 1               | ID-1MEC                                 | 10_624                           | 1 1MECobmc                               |
| 55  |      | 185_504 0750                 | ID 1MEC 8682 62 891              |                                         | 22_N <br> 5 040 5 020            | 1 MECohme                                |
|     | 1 -  | 1.0_000 2217                 | 1                                | 1                                       | 12_01792_020                     | 1MECohme                                 |
| 55  | 1 1  | IRS 678-9954                 | IR 1MEG6 0603 100 1              | IR1MEG6                                 | I<br>16 R14-6 R15 6 R16          | 1.6MFGobms                               |
| .,  | 1 7  | 1                            | 1                                | 1                                       | 16 R17                           | 1.6MFGobms                               |
|     | 1    |                              |                                  | 1                                       | 10_000                           | 1 6MEGohme                               |
|     | 1    |                              |                                  | 1                                       |                                  | 1 6MECobmc                               |
| 56  | 1 2  | I<br>IRS 505-0842            | I<br>IR 2K7 0603 100 1           | I<br>I R 2 K 7                          | 1<br>15 RL0 5 Rb1                | 12 7Kohme                                |
| 50  | 1 -  | 1.0_202 0042                 | <br>                             | 1                                       | 12_040;2_041                     | 12 7Kohme                                |
| 57  | 1 1  | I<br>IDK RHM2 J3KECT-ND      | IR 2K/3 1206                     | 1<br>1 R2KA3                            | 1<br>15 R5                       | 2 138                                    |
| 50  | 14   | IRS 504-6016                 | IR 3K9 8683 188 1                | 18380                                   | 15_12<br>15_R32                  | 12 QKohme                                |
| 50  | 14   | 185 584-7882                 | IR 5K6 0603 100 1                | IRSK6                                   | 15_102<br>15 R10                 | 15 6Kohme                                |
| 60  | li.  | IRS 504-8013                 | IR 6K84 8683 188 1               | IRAKA4                                  | 15_R6                            | 16.04Kohms                               |
| 61  | 1 2  | IDK TNP7.50KAACT-ND          | IR 7K5 0603 100 0%1              | IR7K5                                   | 15 R21.5 R22                     | 17.5Knhms                                |
| 01  | 1 4  | 180-1001 130000001 100       | 1                                | 1                                       | 12_112 1 1 2_1122                | 1                                        |

|      |   |                                         |                                                                  |                             |                              | 17 EKohme                   |
|------|---|-----------------------------------------|------------------------------------------------------------------|-----------------------------|------------------------------|-----------------------------|
| 60   | 1 | LDV LUV120010EEDCT_ND_V                 | D 18m 8482 188 1                                                 | 10.0-1                      |                              | 7.5KUII#5                   |
| 62   |   | DK_LOKIZKUI0FEKGI-ND_K                  | R_10#_0003_100_1<br> R_10#_0663_100_1                            | เตย<br>เตาณ                 | 64<br> 6 07 6 09 6 00        | 1011<br>  10Kobac           |
| 00   |   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | IN_10K_0003_100_1                                                |                             | [0_n7,0_n0,0_n7              | 110Kohms 10Kohms            |
| 64   | 2 | I<br>IRS 213-2418                       | IR 10K 0603 100 1                                                | 1                           | 15 R36 6 R26                 | 110Kohms 10Kohms            |
| 65   | 1 | IRS 668-8300                            | IR 13K 0603 63 021                                               | IR13K                       | 16 R28                       | 113Kohms                    |
| 66   | 2 | IRS 504-9684                            | IR 15R 0603 100 1                                                | IR15R                       | 123 B2-23 B3                 | 115nhms - 15nhms            |
| 67   | 2 | IRS 504-9959                            | IR 18K 0603 100 1                                                | R18K                        | 15 R31.26 R4                 | 118Kohms, 18Kohms           |
| 68   | 2 | IRS 505-0858                            | IR 27K 0603 100 1                                                | IR27K                       | 15 R28.5 R29                 | 127Kohms, 27Kohms           |
| 69   | 1 | IRS 505-0909                            | IR 27R 0603 100 1                                                | IR27R                       | 123 R6                       | 127ohms                     |
| 70   | 1 | RS 504-6922                             | IR 39K 0603 100 1                                                | R39K                        | 16 R29                       | 39Kohms                     |
| 71   | 1 | RS 504-7363                             | R 47K 0603 100 1                                                 | I R 4 7 K                   | 17 <sup>-</sup> R1           | 147Kohms                    |
| 72   | 1 | DK 311-49.9KHRCT-ND                     | R 49K9 0603 100 1                                                | R49K9                       | 23 R7                        | 49.9Kohms                   |
| 73   | 1 | RS_504-7868                             | R_56R_0603_100_1                                                 | R56R                        | 6_R25                        | 560hms                      |
| 74   | 1 | RS_504-8243                             | R_68K_0603_100_1                                                 | R68K                        | 6_R19                        | 68Kohms                     |
| 75   | 1 | RS_472-840                              | R_78K7_0603_63_0%1                                               | R78K7                       | 26_R3                        | 78.7Kohms                   |
| 76   | 1 | RS_504-8940                             | R_100K_0603_100_1                                                | R 1 0 0 K                   | 23_R8                        | 100Kohms                    |
| 77   | 5 | DK_MCT0603-100K-MBCT-ND                 | R_100K_0603_125_0%1                                              | R 1 0 0 K                   | 5_R12,5_R13,5_R14,           | 100Kohms,                   |
|      |   | 1                                       |                                                                  |                             | 6_R12,6_R13                  | 100Kohms,                   |
|      |   | 1                                       |                                                                  |                             |                              | 100Kohms,                   |
|      |   | 1                                       |                                                                  |                             |                              | 100Kohms,                   |
|      |   | 1                                       |                                                                  |                             |                              | 100Kohms                    |
| 78   | 2 | RS_684-2443                             | R_100K_2.2x1.8mm_100_0%05_2x                                     | R100K                       | 23_R4,23_R5                  | 100Kohms,                   |
|      |   | I                                       |                                                                  |                             |                              | 100Kohms                    |
| 79   | 1 | [RS_678-9699                            | R_110K_0603_100_1                                                | R110K                       | [6_R23                       | 110Kohms                    |
| 80   | 1 | [KS_504-9224                            | R_120K_0603_100_1                                                | R120K                       | 16_K20                       | 120Kohms                    |
| 81   | 2 | LK2_018-0120                            | R_133K_0603_100_1                                                | R133K                       | 5_R25,43_R2                  | 133Kohms,                   |
| 0.0  |   | <br>  DC 446 E300                       |                                                                  | 1041-08                     |                              | 133KONMS<br>  149Kobma      |
| 82   | 4 | K3_014-5799                             | K_143K_0805_100_0%1                                              | K 143K                      | 5_K7,5_K8,5_K9,20_K2         | 143KUIIMS,                  |
|      |   |                                         |                                                                  |                             |                              | 143KUIIMS,                  |
|      |   |                                         |                                                                  |                             |                              | 14aKUIIMS,                  |
| 02   | 2 | <br>  280 - 0454                        | <br> D 1587 8489 188 1                                           |                             | <br> E D10 6 D27             | 143KUIIIIIS<br>  15 BV obmc |
| 63   | 2 | 183_304-9030                            | N_120N_0000_100_1                                                | 101200                      | 5_N18,U_N27                  | 1150KUINS,                  |
| عاري | 1 | <br> RS_505-0151                        | IR 200K 0603 100 1                                               | 182008                      | 1<br>126 B1                  | 1200Kohmc                   |
| 85   | 3 | IRS 505-0331                            | IR 220K 0603 100 1                                               | 182208                      | 15 R30 6 R4 22 R2            | 1220Kohms                   |
| 0,   |   |                                         | 11_22.6K_60.60_166_1                                             | 12200                       |                              | 1220Kohms,                  |
|      |   |                                         |                                                                  |                             |                              | 1220Kohms,                  |
| 86   | 1 | IRS 679-0033                            | IR 249K 8683 188 1                                               | R249K                       | 15 R39                       | 1249Kohms                   |
| 87   | 2 | IRS 504-6528                            | IR 330K 0603 100 1                                               | IR330K                      | 15 R26.5 R27                 | 1330Kohms.                  |
|      | - | 1                                       | 1                                                                | 1                           | 1                            | 1330Kohms                   |
| 88   | 1 | IRS 584-6938                            | IR 390K 0603 100 1                                               | IRSORK                      | 143 R1                       | 1398Kohms                   |
| 00   |   | INC 71_TNDN04090VE9DEE0                 | ID 01/22 06 02 100 1991                                          | 10 0000                     | 40_n1<br> 6 D10              | 10 E9Vobmc                  |
| 07   |   | INC_71-11FW000037K530EEH                | ID 141 0400 100 001                                              | ID 446                      | 10_010                       | 17.Jokulius                 |
| 20   |   |                                         | IN_10K_0000_100_1                                                |                             | 12_000                       | TURUINS                     |
| 91   |   | UN_ KHITID.9KHUT-NV                     | IN 011 0003 100 1                                                | K_10K9                      | 15_K38                       | 10.9KUIINS                  |
| 92   |   | K2_505-0501                             | K_24K_0603_100_1                                                 | K_24K                       | 10_K22                       | 24Konms                     |
| 93   | 1 | DK_311-63.4KHCI-ND                      | R_63k4_0603_100_1                                                | K_63K4                      | 15_K24                       | 63.4Kohms                   |
| 94   | 1 | DK_P75KZCT-ND                           | R_75K_0805_100_0%1                                               | R_75K                       | 5_R11                        | 75Kohms                     |
| 95   | 3 | DK_RHM165KHCT-ND                        | R_165K_0603_100_1                                                | R_165K                      | 5_R15,5_R16,5_R17            | 165Kohms,                   |
|      |   | 1                                       |                                                                  |                             | 1                            | 165Kohms,                   |
|      |   | 1                                       |                                                                  |                             | 1                            | 165Kohms                    |
| 96   | 1 | DK RHM178KHCT-ND                        | R 178k 0603 100 1                                                | R 178k                      | 6 R5                         | 178Kohms                    |
| 97   | 1 | DK_RHM324KHCT-ND                        | R_324k_0603_63_1                                                 | R 324k                      | 6_R1                         | 324Kohms                    |
| 98   | 1 | DK RHM665KHCT-ND                        | R_665K_0603_100_1                                                | R 665k                      | 16 R6                        | 665Kohms                    |
| 99   | 2 | IDK LT1790BCS6-2.5                      | IREF LTT790 V SOT23-6 205 0%1                                    | IREF LT1790-205             | 15 04.6 04                   | i.                          |
| 100  | 1 | LDK   T1790BCS6-1-25                    | IRFE   T1790 U S0T23-6 1025 021                                  | IRFE   T1790 1025           | 182                          |                             |
| 101  | 2 | INK   M1117MPX-3 3/NOPRTR-ND            | IREG   M1117 T0252 0 80 3 30                                     | IREG   M1117                | 15 11 6 112                  |                             |
| 102  | 1 | IRS 661-1107                            | IREC TPS76150   IN SOT22-5 001 1611 511                          | IREC_TP\$76150              | 15 117                       | , ,<br>                     |
| 102  |   | INJ_001 4177<br>INV_SLA9_E97E7T0101_ND  | ID SING VA DA-241-20120 2 001_100_20                             | 191.69-697677               | 17_017<br>15 ¥19 6 ¥11 6 ¥19 | 1                           |
| 103  | 3 | 10%_3140~E073716161~MV                  | V_3L43_3N_VU=214=HD_4_30<br> V_11Da_Dattawn_MTVDAE_4408_0_70_966 | 3640-60/5/1<br> V 9 711 905 | J_A12,U_A11,U_A12            | <b>, ,</b><br>  9 7 9 7     |
| 104  | 4 | 152 191-0400                            | A_LIFU_DALLEFY_MIKKUL_  20.7V_ZHN                                | 10_0.7V_2HII                | 101,02                       | ð. / , ð. /                 |
| 105  |   | UN_001-1099-2-NU                        | IN_ 100025.00.5.000.200.000.000_000_0120F                        | A_10PEG                     | 17_AZ                        | 1                           |
| 106  | 1 | VK_XC1967C1-NV                          | אן_32K768_SMD_1.5X3.2X0.9mm_SMD_20ppm_C12pF                      | X_32K768                    | ۲۱ <u>۸</u> ۲۱               | I                           |

## Bibliografia

[1] M. B. D. D. C. A. H. C. P.D. R. C. S. S. S. M. T. N. U. V. A. C. M. B. L. S. L.M. Reyneri, *ARAMIS- an alternative approach to CubeSats for more demanding satellite applications*, Würzburg, 2009.

[2]Wikipedia, CubeSat[Online]. Available: https://it.wikipedia.org/wiki/CubeSat

[3]Anwar Ali,M.Rizwan Mughal,Haider Ali, Leonardo Reyneri , *Innovative power* management, attitude determination and control tile for CubeSat standard NanoSatellities, March 2014

[4]http://www.cubesat.org/indecx.php/documents/developers

[5] C. Passerone, M. Tranchero, S. Speretta, L. Reyneri, C. Sansoe, D. DelCorso, *Design* solutions for a university Nano-satellite, in: Proceedings of the Aerospace Conference, 2008 IEEE, vol. no., 1–8 March 2008, pp. 1, 13.

[6]Wikipedia, *Fasce di Van Allen*[Online]. Available: https://it.m.wikipedia.org/wiki/Fasce\_di\_van\_Allen

[7] Wikipedia, *Use Diagram*[Online]. Available: https://it.wikipedia.org/wiki/Use\_Case\_Diagram

[8] Wikipedia, *Class Diagram*[Online]. Available: https://it.wikipedia.org/wiki/Class\_diagram

[9] Wikipedia, *Accumulatore litio-polimero*[Online]. Available: https://it.wikipedia.org/wiki/Accumulatore\_litio-polimero

[10] Appunti Corso Prof. Maddaleno, Power Electronics, Luglio 2013

[11]Infineon,*datasheet irf7311* [Online]. Available: http://www.infineon.com/dgdl/irf7311.pdf?fileId=5546d462533600a4015355f5495a1b20, *datasheet* 

[12]Vishay,*datasheet diodo sl43*[Online]. Available: http://www.vishay.com/docs/88742/sl42.pdf

[13]Texas Instruments, *datasheet Ina138*[Online]. Available: http://www.ti.com.cn/cn/lit/ds/symlink/ina138.pdf

[14] BatteryUniversity, *BU-409: Charging Lithium-ion*[Online]. Available: http://batteryuniversity.com/learn/article/charging\_lithium\_ion\_batteries

[15]Infineon,*datasheet irf7324*[Online]. Available: http://www.infineon.com/dgdl/irf7324.pdf?fileId=5546d462533600a4015355f5e10a1b47

[16] Sergio Franco, *Design with operational amplifiers and analog integrated circuits*,2002

[17] Barsukov Y., *Battery Cell Balancing: What to Balance and How*, Texas Instruments, Inc., 2005 [Online]. Available: http://focus.ti.com/

[18]Luca Campanale, Sviluppo di un sistema di gestione delle batterie per satelliti modulari AraMis, Marzo 2014

[19] Texas Instruments, datasheet LM6142/LM6144[Online]. Available:

http://www.ti.com.cn/cn/lit/ds/symlink/lm6142.pdf

[20] Analog Devices, *datasheet AD8237* [Online]. Available:

http://www.analog.com/static/imported-files/data\\_sheets/AD8237.pdf

[21] Texas Instruments, INA21x Voltage Output, Low- or High-Side Measurement,

*Bidirectional, Zero-Drift Series, Current-Shunt Monitors (Rev. H)* [Online]. Available: http://www.ti.com/lit/ds/symlink/ina213.pdf

[22] Texas Instruments,*MSP430F543x and MSP430F541x Mixed-Signal Microcontrollers* (*Rev. E*) [Online]. Available: http://www.ti.com/lit/ds/symlink/msp430f5437.pdf