POLITECNICO DI TORINO

Master degree course in Electronic Engineering

Master Degree Thesis

UHF band channel module design for
micro and nano modular satellites

Supervisor Candidate

prof. Leonardo Maria Reyneri Enrico SANINO

Second supervisor:

prof. Claudio Sansoé

JuLy 2015

Acronyms & Abbreviations

ADCS
AraMiS
AUS
BER
COTS
CRC
DET
ESA
FCS
FSK
GENSO
GSS
ISIS
1SS
LEO
MCC
MCU
OBC
OBRF
P-POD
PA
PDB
PiCPoT
PIFA
RSSI
SEU
SMEs

Attitude Determination and Control System/Subsystem
Architettura Modulare per Satelliti

AUtentication Server

Bit Error Rate

Commercial Off The Shelf

Cyclic Redundancy Check

Department of Electronics and Telecommunication
European Space Agency

Frame Check Sequence

Frequency Shift Keying

Global Educational Network for Satellite Operations
Ground Station Server

Innovative Solutions In Space

International Space Station

Low Earth Orbit

Mission Control Client

Micro Controller Unit

On-Board Computer

On-Board Radio Frequency

Poly-Picosatellite Orbital Deployer

Power Amplifier

Power Distribution Bus

Piccolo cubo del Politecnico di Torino

Planar Inverted-F antenna

Received Signal Strength Indicator

Single Event Upset

Small Medium Enterprises

1I

SNR Signal to Noise Ratio
TCP Telemetry Command Processor

UML Unified Modelling Language

111

Acknowledgement

This work would never be completed without the help of my tutors Reyneri Leonardo and Sansoé
Claudio, as long as the PhD students and colleagues, which I would like to thanks for their deep

patience and availability.

I would like to thanks all my friends, which helped me in keeping the right mood and motiva-

tion during the thesis period, concluded with a big personal improvement.

Special thanks are going to my mother and my brothers, which have always supported me in

the difficult moments.

A final special thanks for everything else goes to my father, which is farther than where any

man made satellite will never be.

v

Summary

In Department of Electronics and Telecommunications (DET) of Polytechnic of Turin there are
projects involved in small satellites, CubeSat compatible but not limited to it. A project started
in 2007 called AraMiS, which stand for Modular Architecture for Satellites in italian, is born after
the first CubeSat compatible spacecraft developed in Turin, called PiCPoT. The main philosophy
in AraMiS is the modularity of the system in all its aspects.

This thesis work is focused on the engineering phase of the AraMiS telecommunication sys-
tem module, which will be applicable on every AraMiS spacecraft, including the CubeSat version,
named as AraMiS-C1. To accomplish this, it has been developed the whole set of system’s use
cases, the basic firmware design along with a new revision of the telecommunication hardware,
taking into account the already defined constraints and requirements of the AraMiS spacecraft
telecommunication system. The real challenge of this work is to bring into practice all the consid-
erations made for reliability purposes, and in part adapting them to obtain a final, modular and
reliable design.

In chapter 1 will be presented an introduction to the small satellite concept, letting the reader
understand more in depth the actual development of these small spacecrafts, and provides the basic
description of how a modular architecture like AraMiS can be the key to keep high dependability
on low costs, even on more complex systems which are not limited to CubeSat environment only.
Moreover, will be described briefly the ground telecommunication network which will going to be
used for low cost and university small satellites.

In chapter 2 is provided an UML introduction in order to understand better the notions adopted
in this work.

In chapter 3 is described the starting point of the system. Therefore are provided the specifica-
tions to comply when developing the entire system. It is introduced the concept of the OSI Stack,
and as a consequence are provided the telecommunication protocols adopted to encapsulate the
frame, like the AX.25, and the protocols of the content of the frame, called AraMiS protocol.

In chapter 4 are shown the constraints which are needed to be taken into account when developing

a telecommunication module. Finally is implemented the whole set of the use cases of the system,

A%

essential to implement the specifications to the module which will be designed.

In chapter 5 will be shown the final implementation of the system. It is devised an affordable
power handling and a new sensor unit sub-system. The OBC now have more control on the OBRF
hardware, to handle better the latch-up protection. More sensors are used in order to control
the different organization of the power supply sub-system. Therefore the sensors sub-system is
completely redesigned. All the hardware library is then reorganized updating the components and
creating reusable locks, to comply with the AraMiS philosophy.

In chapter 6 is going to be described the firmware designed starting from the previously described
use cases and the adopted hardware. The algorithms are devised starting from sequence diagrams
and finite state machines, mainly for being compliant with the AX.25 radio amateur protocol in
an affordable way. These algorithms are then implemented to correctly handle the RF streaming
and also described, when necessary, with sequence diagrams. All the on-board and the OBC
communications are also integrated with the AraMiS software modules already present in the
AraMiS library. Are also integrated the housekeeping functions and the transceiver drivers, and
are devised all the procedures to handle correctly the digital interface of the RF circuitry. The
software is written in C++.

In chapter 7 are analysed the possible physical constraints in order to achieve a reasonable
placement criteria of components on the PCB. Therefore, after a thermal rough worst case analysis

of the critical components, is shown the final PCB implementation.

VI

Contents

Acronyms & Abbreviations
Acknowledgement
Summary

1 Introduction

1.1 Small satellite concept Lo
1.2 PiCPoT CubeSat e
1.3 AraMiS
1.3.1 Mechanical subsystem L o
1.3.2 Power management subsystemo
1.3.3 Telecommunication subsystem
1.3.4 OBC Tile computer subsystem
1.3.5 Attitude determination and control subsystem
1.3.6 Payload
1.3.7 AraMiS-C1 CubeSat
1.3.8 Antenna
1.4 Earth network GENSO
1.5 Space environment L
1.5.1 Temperature L
1.5.2 Pressure
1.5.3 Radiations e
1.5.4 Total dose
1.6 Thesis purpose e

2 UML approach
2.1 Use Case diagram

11

v

<

© o0 N N o w o= =

I T T e T e S e ey e
o 00 N 9N N 399 o woNno= O

19

2.2 Class diagram Lo e 21

2.3 Sequence diagrams e 21
System specifications and protocols 24
3.1 Satellite Organization 24
3.2 OSIstack e 26
3.3 AX.25 protocol 26
3.3.1 CRC check and algorithm 31
3.4 AraMiS Telecommunication protocol L0000 32
3.4.1 OBRF interfacing functions L. 32
3.4.2 Behaviour of the protocol oo 39
System constraints and use cases 53
4.1 Constraints 53
4.2 Use case definitions of the communication channel 56
4.2.1 OBCactor e 56
4.2.2 Antenna actor 58
4.2.3 Receive e 58
4.2.4 Get Received Packet oo o 58
4.2.5 Transmit oL e 58
4.2.6 Deploy 59
427 Get TX/RX status 59
4.2.8 Status and configurations 1B31 oo 60
4.2.9 Packet Composition and protocols 61
4.2.10 Backdoor 61
4.2.11 RF Beacon e 62
4.3 Housekeeping and module configuration oL 65
4.3.1 Channel selection 65
4.3.2 Get Power Amplifier Status 67
4.3.3 Set/Get Transmission Power 67
4.3.4 Set/Get Modulation L0 L o 67
4.3.5 Set/Get baudrate e 67
4.3.6 Standby 68
4.3.7 Wakeup 68
4.3.8 OBRF enabling 69
4.3.9 OBRF disabling 69
4.3.10 Get PA Current L 69

4.3.11 Get PA Temperature 69

4.3.12 Get Voltage o 69
4.3.13 Set AX.25 Destination Address 70
4.3.14 Configurator actor L L 71
4.3.15 Frequencies Lo e e 71
4.3.16 Manage Addresses 71
4.3.17 Firmware storing and JTAG L 72
4.4 On-Board communication protocol 1B45 Subsystem Serial Data Bus 72
4.4.1 Overview of the 1B45 system protocol 72
4.4.2 Basic functions supported by the 1B45 Slave 76
Hardware 79
5.1 Hardware organization Lo 79
5.2 Design of OBRF at wire level Bk1B31A2W and the top-level module Bk1B31A2M 80
5.2.1 Schematics 81
5.3 Processor unit Bk1B4221W Tile Processor 4M 89
5.3.1 Schematics 90
5.4 Power supply unit Bk1B31A2_ Power_ Supply 92
5.4.1 Schematic L 96
5.4.2 Sub-schematic V. PA block 98
5.4.3 Sub-schematic Bk1B121D Load Switch High Voltage 101
5.4.4 Sub-schematic Bk1B121D Load Switch 102
5.4.5 Sub-schematic VregPA block L. 103
5.5 Sensor unit BkIB31A2 Sensors 105
5.5.1 Sub-schematic Bk1B131A_Voltage Sensor block 111
5.5.2 Sub-schematic Bk1B131C_ Voltage Sensor block 111
5.5.3 Sub-schematic Bk1B132F Current Sensor 113
5.5.4 Sub-schematic Bk1B133B_Temperature Sensor 113
5.6 Transceiver unit Bk1B31A2 Transceiver 116
5.6.1 Top level schematic of transceiver 120
5.6.2 Sub-schematic of power amplifier block 0. 120
Software 123
6.1 Software organization L L 123
6.2 Algorithms and functions of Bk1B31A2S main class 128
6.2.1 Algorithm of the main() routine, 128
6.2.2 main() 134

6.3 Transceiver CC1020 class and algorithms, 134

6.4

6.3.1 The CC1020 digital interface 135
6.3.2 ReadReg() and SetReg() . . - . - . o o o o o o 137
6.3.3 The CC1020 signal interface 138
6.3.4 Transceiver’s configuration Lo oL 139
6.3.5 Filter parameters selectiono oL 142
Algorithms and functions Bk1B31A2S class 143
6.4.1 init() 144
6.4.2 AX.25 Unpacking algorithm 146
6.4.3 ax25unpack() 147
6.4.4 getCommandCode() 150
6.4.5 executeBackdoor()o 150
6.4.6 subfieldID() 150
6.4.7 Beacon packing Lo 152
6.4.8 beaconPack() e 152
6.4.9 OBRF status and configuration updater concepts 156
6.4.10 updateStatus() L 158
6.4.11 updateConfig() L 158
6.4.12 writeConfig() 160
6.4.13 Initialization of radio-frequency reception mode 161
6.4.14 CCLO20INItRX() . . o o v v oo o 165
6.4.15 PAEnable() 166
6.4.16 PADisable() 166
6.4.17 SWtoTX() o o 166
6.4.18 SWtoRX() o 166
6.4.19 DCLK_ disableInterrupt() and DCLK _enableInterrupt() 167
6.4.20 AX.25 Packing algorithm L 167
6.4.21 ax25pack() 170
6.4.22 Initialization of radio-frequency transmission mode 171
6.4.23 CCL020InItTX() . . . o o oo oo 175
6.4.24 Data handling of RF data 176
6.4.25 RX Flag Handle State Machine 178
6.4.26 isr_ CC1020RxData() o v 180
6.4.27 Transmitting State Machine o000 184
6.4.28 isr_ CC1020TxData() o v v v v i i 184
6.4.29 Bit storing and bit stuffing oo oo 188

6.4.30 destuff() 189

6.4.31 StuffStatus() 189

6.4.32 ShiftIn() 191

6.4.33 shiftOut() 191

6.4.34 hwCRC init() o 191

6.4.35 hwCRC_result() o e 191

6.4.36 hwCRC() o 192

6.4.37 checkCRC() oo o 192

6.4.38 System Timer L 192

6.4.39 isr__TimerAL() 193

6.4.40 Methods based on external classes 195

6.4.41 interpret() 197

6.4.42 CCL020PD() . . . o oot 198

6.4.43 CC1020AutoWakeUpMode() 200

6.4.44 CC1020TxMode() o oo i 210

6.4.45 CC1020Calibrate() o 219

7 Tile Layout 221
7.1 Placement criteria 221
7.2 Traceso e e 225
7.3 PCB implementation L oL 228
7.3.1 Layer organization L0 oL 228

8 Conclusions 234
A CC1020 Registers 236
B Bill Of Material 1B31A2M__OBRF module 237
Bibliography 241

XI

Chapter 1

Introduction

1.1 Small satellite concept

The progress of technology in electronic and software fields, allows a huge reduction in terms of costs
in majority of designs. This allows a cost reduction on launching vectors in space environment
too. For that reason the interest from universities and SMEs on building their own spacecraft
is grown. Moreover, the investments can be reduced a lot when using the ready-to-use COTS
components, with a less cost and powerful elaboration capabilities allowing to execute more complex
and redundant algorithms. Furthermore, still due to the COTS elements, the hardware can become
redundant as well. Affordable launches can be achieved by grouping more satellites and making
them small, namely small-satellites, from more universities and SMEs, in a single launching vector,
spreading the costs. They can also be launched “piggyback”, using excess capacity on larger launch

vehicles.

Improvements and documentation can grow easily under common standards. The first idea of
standardizing these small spacecrafts is born between 1999 and 2001 with the nano-satellite Cube-
Sat, developed by California Polytechnic State University in collaboration with Stanford University.
The CubeSat having a starting dimension of (100x100x100)mm? has evolved as CubeSat Standard
[1] referred to a starting point of 1 unit size (known as 1U), which can be increased along one
axis. It can be stated that the state of the art of small, low cost satellites is represented by this
standard. As a result, nowadays is possible to make students able to work on complex systems
and become familiar with interdisciplinary problem-solving, as a result of deep cooperation among

different engineering departments.

CubeSat specifications are defined to solve some high-level issues, for example the simplification

of satellite infrastructure to produce a workable low cost spacecraft, by standardising the design of

1

1 — Introduction

pico-satellites. Then defines the encapsulation of the obital deployer interface, in order to remove
the re-designing costs that would be needed if a different interface would be required every time.
The minimum size, 1U, of 100mm side, can grow on one axis dimension by creating satellites of 1U,
1.5U, 3U or 3U+ sizes. These pico-satellites [5] are called from here in their general classification
miniaturized satellites or small-satellites, for sake of simplicity. Heavier spacecrafts which can
differs from CubeSats, as mentioned later, are also called small-satellites since are still under the

threshold of 500Kg.

A standardized CubeSat Poly-Picosatellite Orbital Deployer (P-POD) (figure 1.1) has been de-
signed to deploy these small satellites with a face of 100x100mm?2. This P-POD is still developed at
California Polytechnic State University. P-PODs are mounted to the launch vector and they carry
CubeSats into orbit until the deployment command is received from the launcher. Such launchers
can be used also on the International Space Station (ISS), where in picture 1.2 are deployed a pair
of 3U+ CubeSats. Such a structure must avoid any possible collision among the small spacecrafts
during the deployment procedure, so, once the aperture has been opened, a piston-spring pushes
outside all CubeSats which are kept separated each other by means of additional intermediate

springs, if are more than one inside the launcher.

Figure 1.1. P-POD launcher

A lot of nano-satellite CubeSats compatible designs are developed in Europe. Few of them are
the AAU spacecraft developed at Aalborg University in Denmark, the NCube designed by four
Norwegian universities, PicPoT and AraMiS-C1 developed at Polytechnic of Turin. Not to mention
the University of Wurzburg in Germany, the University of Rome La Sapienza and the University
of Trieste. Here will be presented a more detailed description to the PicPoT, and then the new

concept of the AraMiS project, born after the PicPoT project.

2

1 — Introduction

Figure 1.2. Small Satellites deployed from the ISS [4]

1.2 PiCPoT CubeSat

The Department of Electronic and Telecommunication (DET) here at Polytechnic of Turin, has
developed its first nano-satellite called PiCPoT [2], which was intended to be launched together
with other university and military satellites by a DNEPR Launch Vehicle rocket in July 2006,
which unfortunately couldn’t deploy due to a launcher failure.

The set of specifications was:
e Cubic shape with 13 cm side
e Mass equal to approximately 2.5 Kg
e Power in TX-mode lower than 1.5 W
e At least 90 days of life
e LEO target
e COTS electronic components
e P-POD launcher compatible

Initial mission requirements were to verify the reliability of COTS components in space applica-
tions, to take pictures of Earth from space, to exchange data with the ground station and to study

the behaviour of GPS for LEO purposes.

1 — Introduction

Figure 1.3. PiCPoT

The satellite incorporated two hot-redundant systems. Each one with power management, latch-
up controller, housekeeping, telemetry and telecommand facilities, one optical payload with three
multispectral camera-systems with JPEG compression and PAL encoding. It was composed of
5 interacting processors, two independent half duplex RF links (one at 437 MHz with a dipole
antenna and the other at 2.44 GHz with a Planar Inverted-F antenna or PIFA), 5 solar panels
which are covering 4 outer faces and finally, 6 battery packs. Was tested to be fully functional
before launch. Moreover, a set of kill-switches was adopted to ensure the electric isolation of the
satellite during launch, increasing the dependability, as required by the CubeSat standard. The
project was including a ground station placed on the roof of Polytechnic of Turin.

Redundancy was the key-idea in PiCPoT project, although the failure of a single component
could happen, a graceful degradation is possible. For instance, the telecommunication subsystem
was based on two different physical channels (different frequencies and antennas) and also the
related processing units were differentiated: one was based on Chipcon CC1010 transceiver and it

handled a 9.6 Kbps data link with output power equal to 35.7 dBm, while the other was based on

4

1 — Introduction

MSP430 microcontroller and it handled a 10 Kbps data link with an output power of 30.8 dBm.

1 — Introduction

1.3 AraMiS

AraMiS, italian acronym for Modular Architecture for Satellites, is a project born at DET in
Politecnico di Torino in 2007 and still going on, which goes beyond the CubeSat concept and aims
to achieve a true modular architecture [3]. The goal of this project is to be modular at a software,
hardware and mechanical levels. This modularity allows to reuse the design on more missions, i.e.
more times and/or with different dimensions and power requirements, all with the same designs
which are then already qualified and tested. The final user then should be aware only on placing
the designs on the required shape and design the payload, which will be the only mission dependent
design. Combining the designs in different shapes can lead to a different satellites which are already
tested, lowering the total time to launch and designing costs.

Under this philosophy, can be accomplished different missions involving different spacecrafts,
from CubeSat sized to larger ones, with the minimum effort. In picture 1.4 are presented various
combinations of a one-time designed module, which is combined in different ways, giving an idea
of the AraMiS mechanical modularity. A single square module is also called tile. This modular
concept is adopted by the electronic point of view also. Most of the internal subsystems are
developed in such a manner they can be composed together. For example, the power management
subsystem in conventional missions is designed to get maximum solar power, by placing solar cells
on all the available surfaces. But since their number can be different in various missions, a redesign
will be required each time. This new modular approach instead makes use of a standard module,

as can be seen in figure 1.4 which can be replicated many time to fit mission requirements [6].

|
|

h.
|
N
i
A
|
X
B
ot

Figure 1.4. Different AraMiS architectures

In the CubeSat environment, is under development the AraMiS-C1, which is composed by 6 tiles
of reduced size to follow the CubeSat standard, fixed a cubic aluminium skeleton. Tiles have both

electrical and mechanical functions, where in the inner part are placed the various processors and

6

1 — Introduction

the outer part contains solar panels or antennas, depending on the type of tile. In this way there
is a lot of room for the payload, even including the batteries and various actuators. Here are now
presented the various main subsystems of the AraMiS, which combined together can bring to a

complete satellite system.

1.3.1 Mechanical subsystem

Is a backbone of the spacecraft, whether it is CubeSat or not, the functions are the same. It is used
to keeping combined together the various tiles, giving to them also additional mechanical strength
and radiation protection. Made using aluminium, these chassis are composed by square rods on
which are fixed with screws on it thin panels, which are carrying the telecommunication or power
management subsystems.

The number of these tiles mainly depends on satellite size and power requirement. This provides
a degree freedom to mission designers since size and generated power can be increased by simply
adding more modules. Since tiles are used on the spacecraft sides, there is space inside for payload,

batteries and any other additional required object. In figure 1.5 are depicted some AraMiS chassis.

Figure 1.5. Three types of AraMiS chassis

1.3.2 Power management subsystem

It is is responsible for generating, storing and delivering power to all the other satellite subsystems
and for itself. It provides various voltages according to a well defined protocol, and a maximum
limited power per subsystem, therefore the more power management subsystems, the higher the
power available, along as a replicated and then fault tolerant solution.

Conventionally, power management is mission dependent which requires ad-hoc development for
the specific needs. This tends to increase overall system cost and testing time. For this reason the

AraMiS project uses modular power management system that can be adapted for various missions.

7

1 — Introduction

Figure 1.6 shows different solar panels of AraMiS satellites, where specifically for the AraMiS-
C1, on the other side of the PCB, are present the power management controls and the on-board
computer (or at least one instance of the redundant architecture). In the C1 version, the project

related to this subsystem is called 1B8 CubePMT, as will be shown later.

Figure 1.6. AraMiS power management tiles

1.3.3 Telecommunication subsystem

It follows the same modularity concept. There is a basic telecommunication tile that is provided
in a standard AraMiS satellite. In case of special applications, dedicated tiles, like in Figure 1.7,
can be added to meet mission criteria.

This module is used to receive command and control packets from ground and send back com-
mands response, telemetry, status and beacon data. The bandwidth needed to exchange this kind
of information is low, so the RF link is designed for low speed and low power. The module has been

designed using COTS components. There are two different frequency bands used for satellite and

8

1 — Introduction

Figure 1.7. AraMiS telecommunication tiles

ground communication, i.e. the UHF 437TMHz and the SHF 2.4 GHz band. To reduce occupied
bandwidth, both channels are implemented using half-duplex protocol, sharing the same frequency
per channel, for downlink and uplink. Any module can be shaped and reused to fit in a tile which
can be different, with a very little effort since the design is already verified.

The processing capability of this tile is related in interpreting some commands from the OBC
and generating the header data for the packets to be transmitted, and reading the payload from the
received ones, as it will be described later. In the C1 version, the project related to this subsystem

is called 1B9 CubeTCT, as will be shown later.

1.3.4 OBC Tile computer subsystem

Also called On-Board Computer (OBC), is composed by redundant MSP430 microcontrollers and,
except for AraMiS-C1, also FPGAs. The firmware modularity and hardware abstraction layer
allow to easily implement the OBC capabilities also in tiles with a microcontroller that is not
heavily used, therefore having computation capability in excess. Under this point of view, the
AraMiS-C1 uses the power management tile also as OBC.

Some of the key responsibilities performed by OBC includes:
o Creating and transmitting (by Transceiver board) Beacon packets,
e Decoding and executing commands,
e Executing attitude control algorithm,
e Storing housekeeping data,

e Controlling Payload sub-systems.

1 — Introduction

1.3.5 Attitude determination and control subsystem

This subsystem is mainly responsible for sensing and modifying satellite orientation for keeping
the tile subsystems pointing at their targets, for example keeping the antenna toward Earth. In
araMiS-C1 is integrated in the PMT tile.

Attitude control can be performed in passive or active way: passive attitude control is usually
achieved by mounting a permanent magnet in the satellite which acts as a compass in the Earth
magnetic field. This system is extremely simple and consume no power. The main drawback is
lack of spin control due to the variable Earth magnetic field. Active control is performed using
controlled actuators that modify satellite attitude on OBC commands. In AraMiS, attitude control
is automatically performed by the satellite using magnetorquer and reaction wheels, as shown in

figure 1.8.

Figure 1.8. AraMiS ADCS

For attitude determination, three types of sensors are used: magnetic, spin and Sun sensors.

These sensors consist of COTS components which were selected on the basis of small dimension,

10

1 — Introduction

light weight and low power consumption while achieving better performances.

1.3.6 Payload

The payload is heavily mission dependent and the AraMiS architecture is developed to allow
high flexibility on it. The only requirements for payload are the compatibility with the power
distribution bus (PDB) and data bus. This implementation can differ from AraMiS-C1 and other

bigger AraMiS satellites. An exmaple of payload implementation is shown in figure 1.9.

Figure 1.9. From top to bottom. Rendering of generic AraMiS payload; a picture of possible
payload implementation of AraMiS-C1 payload.

11

1 — Introduction

1.3.7 AraMiS-C1 CubeSat

As briefly mentioned before, the C1 version is a 1U size CubeSat implementation of the AraMiS ar-

chitecture. This cube is composed by two main tile modules, 1B9 CubeTCT and 1B8 CubePMT.
The 1B8__CubePMT covers four sides by four identical instances of that tile. Each PMT tile

mount solar panels on the exterior PCB, while in the internal side share with each others a combined
power management, attitude control and computing subsystem. The remaining two sides are the
1B9 CubeTCT, where on the external side are mounted, one for each side, a deployable UHF
antenna and a patch SHF antenna. Each TCT tile mount these two band frequencies, and takes
care of decoding and encoding commands from or to Earth, and communicate with the OBC. Each
tile contains in its turn a modular design: for example, if the TCT tile contains two different
channel modules (UHF and SHF) to allow redundancy, then only one tile can be used. Inside the
satellite there is room for batteries and payload. Once deployed from the P-POD, the cube will
expand four antenna baffles, which are part of ISIS deployable antenna system.

To keep a simple design, maintenance, manufacturing, testing and integration, the modular
architecture apply. Here major bus functionalities are split over a number of identical modules,
which are then simply placed in a proper order on the tile (in the same PCB). Various modules
are dynamically connected with each other, exchange data and power in a distributed and self-
configuring architecture. Its flexibility is due to the standardised interfaces between the various
components. If a substitution is needed, a single module is changed without affecting the rest of
the design, by simply testing a part that new module.

AraMiS-C1 is made by assembling a number of tiles developed at Politecnico di Torino, as
detailed further, plus a few commercial off-the-shelf subsystems from AraMiS-C1 ISIS’s CubeSat
shop. Photograph of 1U AraMiS-C1 with four 1B8_CubePMT and two communication tiles is
shown in figure 1.10.

The AraMiS-C1 is designed to be functional over a period of two to three years on an orbit in
the 500 km range, but even lower orbits with higher atmospheric drag that will guarantee a few
months in space are acceptable for our purposes. Obviously longer orbital life (at least one year)
will be more appropriate for the scientific objectives of the mission.

AraMiS-C1, where C1 is related to CubeSat 1U, is structured at high level as described in
diagram 1.11. Here the modules are listed under 1B classification, from 1B1 to 1B7. Every sub-
project of the main one (project 1, or ARAMIS in the image) have a proper letter, here from 1A to
1C, then the subdivision become in numbers, i.e. 1B1, 1B2 and so on recursively. The previously
mentioned tiles, numbered 1B8 and 1B9, are containing a combinations of projects from 1B1 to
1B7, building up a complete tile. This low cost university satellite is designed to communicate

with Earth using a particular educational network, called GENSO.

12

1 — Introduction

Figure 1.10. AraMiS-C1 CubeSat

1.3.8 Antenna

All of the telecommunication tiles and the 1B9 CubeTCT tile in the AraMiS-C1 are using antennas
that can be designed with the tile or can be a complete external system. In AraMiS satellites which
are not CubeSat, a complete antenna design has been performed. The antenna can be integral
part of the extenal side of the tile as seen before in figure 1.7, or an external piece, which is an
antenna tile only and it is connected through a coaxial cable to the telecommunication module.
The AraMiS-C1 uses a patch antenna for the SHF channel, integrated with the tile, already shown
before in figure 1.10 in the top of the satellite. Another version of an internally designed AraMiS

antenna is shown in figure 1.12.

The UHF band subsystem of the telecommunication tile of the CubeSat uses an external antenna
connected through a coaxial cable, implemented as a tile to be attached on a side of the cube. This

antenna is shown in figure 1.13.

13

1 — Introduction

Figure 1.11. AraMiS project organization

14

1 — Introduction

Figure 1.12. AraMiS antenna

Figure 1.13. AraMiS-C1 UHF antenna

1.4 Earth network GENSO

GENSO (Global Educational Network for Satellite Operations) is a project approved by ESA in
2006. Its purpose consist in a workaround to the problem of the limited satellite visibility to the
owner university, since in LEO these windows are around 20 minutes per day. The workaround is to
tunnelling over the Internet the data exchanged under another university visibility window, which
is part of GENSO. In this way, all the participants to GENSO project are using and providing
resources, extending the visibility to potentially 24h per day, with the possibility on relying on
radio amateur stations. This project offers the capability to plan and schedule the use of ground

station resources, to predict the trajectories of spacecraft over the ground station and to automate

15

1 — Introduction

tracking the satellite during a pass. The AraMiS project will use GENSO.

@
o
. . =
Mission .f]'
AUS Controller [== ===========-=-c-c--c------o--- » oBc 5
(MCC) =)
A o3
Ground '
Station On-Board Radio
Server [P Frequency Module
(GSS) (OBRF)
A

Radio Channel
L :
(UUHEF' 8-Band)

Physical Layer! Data link Laver

Figure 1.14. Roles between each layer in GENSO

Using this protocol consist of using some abstraction layers in order to achieve the connection
from any location. A Mission Control Client (MCC), such as the university that has built the
spacecraft, that needs to establish a connection with the satellite; to obtain this, will use internet
for a connection to the Ground Station Server (GSS) located all over the world. This secure access
is controlled by the GENSO Authentication Server (AUS), which ensures at all times that the
entities participating in the network are allowed to do so. Under a visibility window of a given
ground station (which is then under the footprint of the antenna’s satellite), receives the spacecraft
data and it is stored locally by the GSS, which can be an university that do not own the satellite.
Then the GSS notifies the AUS, which in turn notifies the MCC owning the satellite. Finally,
the MCC can establish downlink/uplink sessions directly from the GSS. Since ground stations
are physically placed all over the world, the satellite is automatically tracked and MCC can be
connected with the spacecraft independently from its real position. This behavior is layered as
said before, and is depicted in figure 1.14.

To give access on amateurs, the data link layer follows the AX.25 protocol. In this way the
GSS can be implemented by a TNC in kiss mode, in the same way as of the satellite OBRF. This
module, in uplink, will check the correctness of the packet and its destination address, while other
data contained is extracted and passed to the OBC, which in turn check and interpret the command
at an higher OSI level with respect to the OBRF (except for particular functions described later,
like backdoor). In downlink the situation is reversed, where the OBC send to OBRF a command
to be sent to the GSS, and the OBRF itself will build it up to a complete AX.25 packet and then

16

1 — Introduction

send it, while the content of the packet is transparent to the OBRF.

1.5 Space environment

The AraMiS project is designed to work in LEO orbits, so between 400Km and 600Km of altitude
from Earth. Here the electronic components can be affected by the environment conditions, because
here the satellites are near the end of the terrestrial atmosphere. Here are starting the Van Hallen

belts, in which are beginning non-negligible radiations.

1.5.1 Temperature

During the orbit, the satellite is exposed, at the same time, with faces to enlightened side and on
the opposite direction to a darkened side. This provides a huge thermal gradient (creating thermal
cycles) between the satellite faces. Moreover, due to the absence of the atmosphere, the solar
radiation is higher than on the Earth.

In the space the temperature depends on the power balance of the satellite, therefore on the power
absorbed from the Sun, the power converted to other types of energy and the power generated
from components heating. Therefore, a smart way to cool the satellite is to absorb its energy using
the solar panels, converting it in electric energy. Theoretically, keeping into account the power

balance, temperatures are inside -30°C and +75°C .

1.5.2 Pressure

In LEO orbits the atmosphere is almost non-existent. Therefore it is a vacuum condition and the
thermal dissipation through convection (where hot body transfers its energy to a surrounding flux,
like air) is not possible. The exchange happens only through thermal conduction and thermal
radiation.

Moreover, attention must be paid to liquids inside all the mechanical and electronic components,
where they can overheat or explode. For this reason all of the capacitors used are need to be not
polarized, for example electrolytic and tantalum capacitors could contain electrolyte or bring to

dependability issues.

1.5.3 Radiations

The LEO altitude is in proximity of the lower Van Hallen belt, a a toroidal shaped area with

charged particles, therefore full of ionizing radiations.

17

1 — Introduction

These charged particles when hit the semiconductor are generating the direct ionization and a
pair of electron-hole is generated, leading to a various possible misbehaviours. The most known

are the Single Fvent Effect (SEE) which are:

o Single Event Latch-Up: the parasitic BJTs of a CMOS cell start conducting, leading to a

positive reaction which is creating a low impedance path between supply and ground rails.

e Single Event Up-Set: where one or more bits of a CMOS cells change their logical value.

Writing again that value will restore the correct bit.

1.5.4 Total dose

The previous phenomenon are all instantaneous, but are existing also effects which are depending
on the quantity of absorbed radiations, so are depending on the time in orbit. The total dose is
the quantity of radiation which can be absorbed by a device before misbehaviours start happening.
Threshold voltage of a MOS is a typical example, which increase its value proportionally with the

absorbed radiations. This can increase the propagation time of signals leading to possible errors.

1.6 Thesis purpose

This thesis is a natural prosecution of a previous work, which has defined the main specifications
and constraints of an AraMiS telecommunication module, then an initial version of the hardware
were also defined. But the system’s use cases were not completely devised and the firmware was
missing.

Therefore, the main objective of this thesis work is focused on checking the constraints and
specifications provided, completing the set of use cases and developing the firmware. Then a
revision on the hardware will be performed in order to achieve better hardware performances
and a PCB shape capable to be fit in a tile. And everything must be developed to be as much
modular and fault tolerant as possible in order to comply with the AraMiS project specifications

and dependability.

18

Chapter 2

UML approach

The Unified Modeling Language (UML) is a high level specification, description and documentation
language. The purpose of this approach is to obtain a complete development flow for mixed-systems
able to produce, on one side, documentation always close to real project implementation and, on
the other, a fast and reliable method for reducing time-to-market in developing these objects. The
project AraMiS is fully based on this approach. Initially developed in 1995 for designing software,
the UML was optimally adapted to the description of systems made of both hardware and software.

The UML provide description of the system by means of diagrams, easing the understanding of
a system’s behaviour. The design flow of an AraMiS module consist in defining mainly, but not
limited to, three diagrams: Use case diagram, Class diagram and Sequence diagrams. Reading this
chapter will help in understand better the UML descriptions adopted in this thesis, because the
project AraMiS has been thought to be very large and covering a lot of modules; therefore to avoid
any kind of disorder and allow an easy coherent documentation process, has been heavily used the

UML approach.

2.1 Use Case diagram

Use case diagrams show main function of the system (use cases) and the entities that are outside
the system (actors). Use case diagrams show how the class and objects of the class relate and
hierarchical associations and object interaction between classes and objects. These diagrams allow
us to specify the requirements of the system and show interaction between system and external
actors. These diagrams are the starting point in the system modelling and consist of actors and

use cases.

19

2 — UML approach

Actor

Actors are generic entities, human users, other systems or the external environment, which interact
with the system under design and implements one or more use cases. They are usually shown as
sketched person (figure 2.1) with a short name which identifies the role in the system. They
are associated with a detailed documentation. The list of actors is fundamental to understand
all entities which might interact with the system. The actors are very fundamental entities and
missing an actor will miss all the interfaces and functions associated with it. Are therefore external

entities to the project which interacts with the use cases.

Use case

A use case is the system scenario saw by the actor which is interfacing to it. Are usually described
by an oval with a name which shortly describes it. Building up the list of use cases means starting to
specify the functions of the satellite or its subsystem and therefore thinking to the mission. There
exist several kinds of relations between use cases and actors including generalization, inclusion,
extensions, associations.

In figure 2.1 the continuous lines without direction are associations, while arrows with continuous
lines are specializations of the generic use case to which they are pointing. Dashed lines mean the
inclusion or the extension (depending on what the connections states) of the pointed use case, in

order to guarantee the correct behaviour of the use case from which the arrow starts.

" SetBitrate

<<BPNPUI>

JTAG communication Configurator

Figure 2.1. Example of use case diagram used in this thesis

20

2 — UML approach

2.2 Class diagram

Exploiting the analogy of the object oriented languages, classes and their characteristics are in-
herited also for mixed-system which are not only software. Since an attribute can refer to an
object of some class type, in UML can be referred to a physical object too, which is contained in
a particular class describing physical objects. This potential of melting hardware and software in
the same language can be exploited to design a complete system, putting in evidence the relation
of a physical object with a piece of software using a graphical representation.

All objects of the same type are represented by a class. A class and its attribute and methods
could contain some stereotypes. A stereotype is needed to distinguish a class from another in terms
of functionality and types of objects that will be instantiated by that class.

A class in UML is structured as in figure 2.2: that figure provide a software stereotyped class,
square shaped divided in 3 horizontal sections inside, and from the top to bottom these sub-sections

are indicating its characteristics:

o the stereotype (where the software is «SW», but in UML the classes could be also hardware,

electronic modules and so on, as seen in chapter 5)
o Class name, i.e. Bk1B4221W_ Tile Processor 4M)
o Attributes (which could contains stereotypes too, like «piny, «constants» and so on)
e Operations, which are the methods if it is a software class, or connections if hardware

On the top of the class could be present a dashed white square, which is representing the
templates adopted. A template is a set of parameters used to instantiate a class with different
template-defined values w.r.t. another identical class, which are used in the commons methods.

When the class is not labelled (stereotyped) as software («SW»), the operations are representing
the physical pins or buses. Otherwise, as used to be in UML and in object oriented programming,

are referred to be methods or software operations (like stated by the UML tool).

2.3 Sequence diagrams

These diagrams are used to make clear and intuitive the relations with the various actors and
classes over the time. The time-line increase vertically downwards. In this work these diagrams
are heavily used to describe the protocols with their proper timing, easing the understanding of
the system complexity. In figure 2.3 is provided an example, describing physical connections with

classes and the actor associations.

21

2 — UML approach

e T TR

cPU zdass}

Figure 2.2. Example of class diagram used in this thesis

22

2 — UML approach

V{PANTENNA_INTERFAC| [SLOT_D_MSP430 ; Bk1B31A2_Power_Supply :
E SLOT_D_MSP430 Bk1B31A2_Power Supply
Antenna : : :
; I I i
i | | |
—— 1.4: D2 SCL SOMI() i i |
~|Bus 0 of |
1.2: D3_SDA_SIMO() :EI aafenna I
|
I I
| |
1,3: D2_SCL_SOMI{) I I
|
1.4 D3_SDA_SIMO[) »ﬁ |Bus 1.of |
bh antenna I
| |
I I
| |
1.5:dUT3v:sn }
1.6:GND() 'ﬁ]
|
i | g |
I I I
Ll | | |

Figure 2.3. Example of sequence diagram used in this thesis

23

Chapter 3

System specifications and

protocols

In this chapter are going to be described the satellite organization inside the AraMiS structure.
Then is highlighted the developed sub-module of the spacecraft and are going to be listed its

specifications and the various protocols adopted.

3.1 Satellite Organization

In this thesis is developed the sub-module of the 1B9_CubeTCT tile, applied on the AraMiS-C1
spacecraft, described in section 1.3.7. The organization of the 1B9_ CubeTCT tile inside the whole
system is described in figure 3.1. The communication with the ground segment happens through
2 antennas, one per sub-module. Each of these modules are communicating with the second tile
on the system, the 1B8__CubePMT which contains the OBC. In each tile can be present other
subsystems, and two of them are the 1B31_ Telecommunication_System and the 1B42 OBC. The
1B31 sub-system contains the redundant module radios, namely 1B31A and 1B31B On-Board RF
Module; redundant because each module work on different band, therefore the satellite can uses
two radios. The sub-module of this thesis is the 1B31A, which operates in UHF band.

In AraMiS project classification of the 1B31A On-Board Radio Frequency Module, the A is
related to the UHF band and it is the second revision, therefore it is referred to it also as A2. So
the second one, called 1B31B which works in the SHF. When combined together, these modules
are constituting a single redundant 1B9 _CubeTCT Telecommunication Tile on the AraMiS-C1
CubeSat satellite. But the design is not limited to a CubeSat shaped spacecraft.

This module allow an AraMiS satellite to exchange data with the Ground Station, reaching the

24

3 — System specifications and protocols

Ara_MiS-Cl_

// 1B9 CubeTCT \\ f 188 CubePMT \\

(banda SHF)
1B31A On-Board
Telecommunication
(banda UHF)

L uir) [sHF)

Ground Station

Figure 3.1. AraMiS-C1 system organization

Mission Control centre. Moreover, the data in downlink from the satellite should be accessible to

the radio amateur community. The AraMiS initial specifications of the 1B31A module are:
e Operating frequency: 437 MHz
o Data rate: 9600 bit per second
o Maximum satellite transmission power: 33 dBm
e Maximum ground transmission power: 47 dBm
o Module control interface: 12C
e Available power supply:

— Power Distribution Bus: 15W, from 12V up to 18V

— 3.3V, 1W

25

3 — System specifications and protocols

- 5V, IW
e AX.25 protocol compatible

In these communication systems it is important to understand the protocols at high level, dis-
covering the system dependability and timings. Before describing all the protocols devised for the
system, will be reported the layering concept of provided by the OSI stack, to understand the role
of each protocol adopted.

3.2 OSI stack

A briefing on the OSI stack is needed to understand the complexity of the adopted protocol.
The Open Systems Interconnection model (OSI) is a conceptual model that characterizes and
standardizes the internal functions of a communication system by partitioning it into abstraction
layers. The model is a product of the Open Systems Interconnection project at the International
Organization for Standardization (ISO), maintained by the identification ISO/TEC 7498-1. The
model groups communication functions into seven logical layers. A layer serves the layer above it
and is served by the layer below it. For example, a layer that provides error-free communications
across a network provides the path needed by applications above it, while it calls the next lower
layer to send and receive packets that make up the contents of that path. Two instances at one
layer are connected by a horizontal connection on that layer. The 1B31A OBRF is handling the
Layer 2 (except for Backdoor and RF Beacon which needs the support for Layer 3), while the OBC

uses the Layer 3 at least. In figure 3.2 are depicted the various parameters. [9]

3.3 AX.25 protocol

In this section are provided the characteristics to comply with AX.25 v2.2 protocol used in AraMiS.
Packet radio networks use AX.25 as a data link layer protocol, that is derived from the more general
X.25 suite and adapted for radio amateur use. AX.25 is a pre-OSI model protocol, so at the origin
the layering was not clearly delineated. However, since both the transceiver and the UHF channel
have been already identified, the goal is to use AX.25 just for the data link layer specifications.
[10]

The AX.25 protocol uses three types of packets, the Information Frame, Supervisory Frame
and Unnumbered Frame. On this 1B31A On-Board Radio Frequency Module at 437MHz will
be adopted a connectionless link type which uses only the Information Frames. The Information
frame is structured as picture 3.3, where is clear the insulation role of the first and last Flag, with

a constant value, used to separate one frame from another in the medium.

26

3 — System specifications and protocols

OS] Model
Layer Data unit Function Examples

s . High-level APls, including resource sharing, remote file access, directory services
7. Application HTTPR, FTP. SMTP
and virtual terminals

2 Translation of data between a networking service and an application; including
6. Presentation Data ASCIl, EBCDIC, JPEG
Host character encoding, data compression and encryption/decryption

layers } Managing communication sessions, i.e. confinuous exchange of information in the
5. Session RPC, PAP
form of multiple back-and-forth transmissions between two nodes

Reliable fransmission of data segments between points on a network, including
4. Transport Segments TCP, UDP
segmentation, acknowledgement and multiplexing

Structuring and managing a multi-node network, including addressing, routing and
13. Netwaork Packet/Datagram IPv4, IPv6, IPsec, AppleTalk
traffic cantrol

——— . - Reliable transmission of data frames between two nodes connected by a physical
layers 2 Data link Bit/Frame ; PPP, IEEE 8022, L2TP
ayer
1. Physical Bit Transmission and reception of raw bit sireams over a physical medium DSL, UsB
Figure 3.2. Description of OSI layers
Flag Address Control PID Info FCS Flag
01111110 |112/224 Bits| &/16 Bits 8 Bits N*8 Bits 16 Bits 01111110

Figure 3.3. Information Frame

Address Handling

Despite the AX.25 constitutes an OSI Layer 2, in this application it is not used any repeater in
the AX.25 Layer 2, so the destination address (the address field in the image 3.3) is the callsign
and SSID of the amateur radio station to which the frame is addressed, and it is not followed by
any repeater. The source address contains the amateur callsign and SSID of the station that sent

the frame. These callsigns are parts of the two ends of a Layer 2 AX.25 link only (figure 3.4).

First
Octet
Sent
Address Field of Frame
Destination Address Subfield Source Address Subfield
Al A2 A3 A4 AS A6 A7 A8 A9 A10 All Al2 Al3 Al4

Figure 3.4. Non-repeater address field encoding, byte structure

A1 through Al4 in figure 3.4, are the fourteen octets (bytes) that make up the two address
subfields of the address field. The destination subfield is seven octets long (Al through A7), and

27

3 — System specifications and protocols

is sent first. This address sequence provides the receivers of frames time to check the destination
address subfield to see if the frame is addressed to them while the rest of the frame is being received.
The source address subfield is then sent in octets A8 through Al4. Both of these subfields are
encoded in the same manner, except that the last octet of the address field has the HDLC address
extension bit set. The HDLC address field is extended beyond one octet by assigning the least-
significant bit of each octet to be an “extension bit”. The extension bit of each octet is set to “0”
to indicate the next octet contains more address information, or to “1”; to indicate that this is
the last octet of the HDLC address field. To make room for this extension bit, the amateur radio
call-sign information is shifted one bit left. Here the extension bit is never used, except to make
room for the Source Address Subfield and here will be always set to one in the A14 byte (octet).
In fact, the spacecraft should work with address fields that are not providing repeaters from
one station to another. This is due to the GENSO structure, where it is not needed any radiolink
repeating mechanism. But the local callsign can have more stations therefore the SSID byte is
supported without any increase in the complexity, but only in the address handling algorithm. The
detailed example structure of addresses in satellite compatible AX.25 frame is shown in figure 3.5,

where can be spotted the extension bit mentioned before. Bits positions of figure 3.5 are defined

Octet ASCII Bin Data Hex Data
Flag Or111110 7E
Al N 10011100 98
A2 J 10010100 94
A3 7 01101110 6E
A4 p 10100000 A0
A5 space 01000000 40
A0 space 01000000 40
A7 SSID 11100000 EO0
A8 N 10011100 98
A9 7 01101110 6E
Al10 L 10011000 98
All E 10001010 8A
Al2 M 10011010 9A
Al3 space 01000000 40
Al4 SSID 01100001 61

Figure 3.5. Non-repeater AX.25 address bit structures

28

3 — System specifications and protocols

from 7 (left, MSB) to 0 (right, LSB). The SSID bits in positions from 1 to 4 are the four bits used
to identify an SSID. The other bits a not used and kept as shown in this image above (i.e. octet
= 011SSIDx, where x is the extension bit, active low).

NOTE: The correctness of SSID field is responsibility of the OBC as long as the correctness
of the whole destination address, excluding the left shift of bytes of the destination address which
are performed by the 1B31A OBRF. The correctness of the source address (i.e. the spacecraft)
should be responsibility of the Configurator at compile-time, along as the correctness of destination

address when dealing with autogenerated packets (see section 4.2.11).

29

3 — System specifications and protocols

Control Handling

The control field is shown in figure 3.6, to be part of an I-frame. The receive sequence number
N(R) and send sequence number N(S) are handled by the OBC, and for what concerns transmission
from the satellite, are sent in a single byte from OBC to the 1B31A On-Board Radio Frequency
Module 437MHz which takes care of their correct positioning inside the AX.25 frame and finally
send them over the radio-link. In reception, those are find from the frame itself and unpacked in

a byte which is sent back to the OBC. The P bit is not used, it should always be 0.

Control-Field Bits

Control Field Type
76 5413 2 1]0

Information N(R) P N(S) 0

Figure 3.6. I-frame control field byte

Protocol Identifiel Handling

For the spacecraft communication system it is not used any OSI Layer 3. Therefore the PID value
should always set to a code which is defined to denote no layer 3 adopted, PID = 0xF0 (refer to
figure 3.3).

Info Handling

This field contains the payload which is sent or received. The info field defaults to a length of
256 bytes and contains an integral number of bytes. These constraints apply prior to the insertion
of zero bits (bit stuffing, described in software chapter). Any information in the info field is
passed along the link transparently, except for the zero-bit insertion necessary to prevent flags
from accidentally appearing in the Info field. It is not written explicitly how many bits are present

in the AX.25 packet, but can be devised since before the final ending flag there are 2 bytes of FCS.

Frame Check Sequence Handling

The Frame-Check Sequence (FCS) is a sixteen-bit number calculated by both the sender and the
receiver of a frame. It ensures that the frame was not corrupted by the transmission medium. The
Frame-Check Sequence is calculated in accordance with recommendations in the HDLC reference
document, ISO 3309. The algorithm used is the standard CRC-16-CCITT ans stored reversed
w.r.t. other bytes, conventional to CRC bit orders. The bit order is defined better here below.

30

3 — System specifications and protocols

Data and FCS bit orders

All fields except the Frame Check Sequence (FCS) are transmitted low-order bit first. FCS is
transmitted the bit 15 first. Therefore the reversed (i.e. original) calculation must be adopted. In

all figures shown here, the right position is the LSB, except for the FCS.

Starting/ending flag

The whole packet in included in the AX.25 flag, which denoted by the value 0b01111110.

3.3.1 CRC check and algorithm

Provides the capability of the 1B31A OBRF module to handle, check and generating the Cyclic
Redundancy Check (CRC). As it will be shown in next chapters, will be used a microcontroller
which can handle this elaboration directly in hardware, by using a Linear Feedback Shift Register
(LFSR). The CRC module produces a signature for a given sequence of data values. The signature
is generated through a feedback path by means of an LFSR, implemented in hardware and shown
in figure 3.7. This feedback takes back data bits 0, 4, 11, and 15. The CRC signature is based on
the polynomial given in the CRC-CCITT-BR standard polynomial:

fx) =20 22 42541

Data In
-.
—jabfF-q1e Do QD—QD-—‘QD—QDJ aQDl—jaeDfF—-faDp—JQe D]
Bit Bit Bit Bit BIt Bit Bit Bit Bit Bit
15 12 11 10 6 5 4 3 1 0
& L & & L & & & i
Shift Clock

Figure 3.7. LFSR Implementation of CRC-CCITT Standard, Bit 0 is the MSB of the Result

With a given data of a given length, a unique signature of 16 bits is obtained, with one bit per

flip-flop in the figure 3.7. In this way identical input data sequences result in identical signatures

31

3 — System specifications and protocols

when the CRC is initialized with a fixed seed value, whereas different sequences of input data, even
in one single bit, result in different signatures, if the aliasing of the signature does not take place.

Initial seed must be OxFFFF for all Basic Communication Protocols, included the AX.25 proto-
col. Once all data have been processed through the CRC check, the value stored inside the register

is added at the end of data for error protection.

3.4 AraMiS Telecommunication protocol

This protocol is aimed to achieve a reliable data exchange on an unreliable radio-link with the
GSS (at OSI layer 3), using a standardized data link (OSI layer 2) protocol, the AX.25, which was
not born for the space environment. The dependability is provided by an higher layer 3 protocol,
developed in the AraMiS project called 1B3_ TTEC Telecommunication_Subsystem, capable to
interpret always the content of the frame and guaranteeing that a complete packet will be always
received.

In order to be adopted correctly, the protocol is described in sequence diagrams, which are
representing function calls (in horizontal axis) versus time (vertical axis, downward). Since these
diagrams in this chapter are dealing with a system that runs some software, the best way to achieve
a description is to represent the interactions between various events as a function calls. These calls
are adopted to make a clear description of what the software should be ready to accept or to
prepare, what to expect, its data dimensions and alignment. In this way the description starts to
be lower w.r.t previous sections, in this top-down approach.

The functions are contained in few high-level class diagrams (1B31 class in figure 3.8) and are
then used in these sequence diagrams. With considerations just made, these functions can be
interpreted to be the OBRF logical interface (comprehending layers 2 and 3 of the OSI) with the
OBC and Ground Segment or any other external actor involved (see previous use cases sections). So
after a description of these functions, sequence diagrams have been adapted to became compatible
with the OBRF behavior which, in turn, it has been thought to be as much compatible as possible

with the previous protocol, obtaining a final good compromise of design.

3.4.1 OBREF interfacing functions

Here are described what are the data specifications of the OBRF, represented at logical level by
some functions, in order to define what kind of data is supported in the OBRF-OBC interaction.
In figure 3.8 there is the class diagram of a redundant module named 1B31 OBRF containing these
interfacing functions, which includes the SHF band (1B31B) and the UHF (1B31A). This last one

is the one designed in this thesis work.

32

3 — System specifications and protocols

An introduction on the top-level system organization is needed to understand the interaction
of the interfacing functions with the system and understand their level of abstraction. The class
Bk1B31A2M_ OBRF_ 437TMHz consist of the module implementation, marked as M. This
codename indicates that a project which have this class, in its final implementation will have only
the UHF subsystem (because the 1B31A2), and will be complete of connectors and PCB layout
(because of the M, module). For example a module, which when realized on AraMiS is called “tile”,
when complete of two redundant systems in two different bands, should have instead the module
codename Bk1B31M_ OBRF_ 437MHz, which includes all of the OBRF sub-systems. With
these considerations in mind, the class Bk1B31A2W__OBRF__437MHz instead represents the
wired module (marked as W), which contains everything but the external connectors and PCB
layout, so it is not a final tile in a module of type M.

Here is now evident the modularity of AraMiS, where any complete final system can be put
together with already tested sub-modules and only decide the external connectors and the PCB
shape. The diagram of the complete module is shown and explained in chapter 5 at section 5.1.

In figure 3.8, since the M and W classes are coinciding, the physical interfaces are the same.

Here are now described the behaviours of the OBRF logical interfacing functions, needed by the

external actors which they must know how to interface to the tile.

33

3 — System specifications and protocols

Figure 3.8. Top level class diagram of the On-Board Radio Frequency Module, with both
437MHz and 2.4GHz sub-modules

34

3 — System specifications and protocols

Interfacing functions

As can be seen in figure 3.8, these logical functions are shared by any RF module which should
be compliant with the defined use cases. In the figure, the module at 2.4GHz will adopt the same

behaviour, using the same interfacing functions.

frame(destAddr, sourceAddr, N(R), N(S), info, crc)
This function implements the use case AX.25 protocol in section 3.3, and contains all the packet
parameters, therefore handle the data at OSI Layer 2 from the OBRF side, and the parameters

are exactly what is transmitted /received in the RF link:

o destAddr corresponding to the address AX_SAT_ ADDR : char const of 1B31A On-
Board Radio Frequency Module 437MHz in reception, or Ground station address if trans-

mission.

e sourceAddr corresponding to the address AX__SAT__ADDR : char const of 1B31A On-
Board Radio Frequency Module 437MHz in transmission, or Ground station address if re-

ception.
o N(R) is the sequence number used in case of 1B31A OBRF transmission.
o N(S) the sequence number used in case of 1B31A OBRF reception.

o info is the payload of readCom(N(S), payload_len : ushort, payload) : bool or the payload
of sendMessage(N(R), payload_len : ushort, payload, address) (both described later).

e cre is part of AX.25 protocol and is generated by the OBRF LFSR.

readCom(N(S), payload_len : ushort, payload)

This function implements use case Get Received Packet in section 4.2.4, by calling the method
1B31A On-Board Radio Frequency Module 437TMHz::ReadData(command, data : ushort &, length
: ushort &) : void with command = GET__ PACKAGE. This description is important, because
the OBC should know what command search inside the payload and the OBRF should know where
to put the payload itself; the same consideration apply for the sendMessage() function described
after this one. Therefore the OBC must support the OSI Layer 3 in order to handle the payload
which contains a command. The parameters are the relevant AX.25 informations, provided by the

OBRF from the Layer 2 point of view:

o N(S) (corresponding to data[0] from ReadData(command, data : ushort &, length : ushort
&) : woid), where the system which reads this data can assume N(R) to be 0

35

3 — System specifications and protocols

o payload_len of payload (number of bytes; corresponding to length-1 from ReadData(command,

data : ushort &, length : ushort €))
o payload (data[l-255] taken from ReadData(command, data : ushort &, length : ushort &))

In other words, this function calls the ReadData(command, data : ushort &, length : ushort &)
: void with command = GET__PACKAGE, returns the payload_ len = length-1, to take
into account that N(S) is taken apart, and therefore corresponds to the AX.25 protocol payload
length only, in bytes. It then splits data; returns its first byte as N(S) and the other bytes(as many
as payload_len) which are the payload.

sendMessage(N(R), payload__len : ushort, payload, address)

This function implements the use case Transmit in section 4.2.5 by calling method 1B31A On-
Board Radio Frequency Module 437TMHz:: WriteData(command, length : ushort &, data : ushort
&) : void with command = CMD__ TRANSMIT to send from OBC to Antenna the relevant
AX.25 information. Therefore handle the data at OSI Layer 2 from the OBRF side, and requires
a Layer 3 from the OBC side:

e N(R) corresponding to data[0] from WriteData(command, length : ushort &, data : ushort
&) : woid. In case of auto-generated messages from the OBRF, this is always 0. The system

which reads this data (i.e. Ground Station) can assume N(s) to be 0.

o payload_len of payload (number of bytes; corresponding to length-1 from WriteData(command,
length : ushort &, data : ushort &) : woid). This value is not sent but only used by the
sender system. In case of auto-generated messages from the OBRF (the sender system),
this value must be calculated since there is no length parameter (from OnBoard Protocol in

section 4.4).

o payload (data[l-255] taken from WriteData(command, length : ushort &, data : ushort &) :
void). This part of the vector contains the required fragments, in case of fragmented messages.

The organization of the payload is then OBC dependent except for auto-generated messages.

In other words, this function calls WriteData(command, length : ushort &, data : ushort &) : void
with command = CMD_ TRANSMIT, generates the payload_ len = length-1, which is
the length in bytes of the info (from frame(destAddr, sourceAddr, N(R), N(S), info, crc)), to allow
a correct AX.25 encapsulation and take apart the N(R) from payload. It then merge all correctly
in the packet according to the AX.25 protocol (section 3.3), before serialize it to the Antenna. In
case of auto-generated messages from the OBRF (e.g. RF Beacon), the OBRF module sends the

content without the need of any triggering command, therefore any function which depends on any

36

3 — System specifications and protocols

OBC interaction (like those functions used by the namesake modes in section 4.4, i.e ReadData and
WriteData, previously mentioned and described here below) is excluded from the sending process.

This require, in this case, a Layer 3 support from the OBRF.

WriteData(command, length : ushort €, data : ushort &) : void
This function implements use case Write Data mode of 1B45 protocol described in section 4.4.
Briefly, the OBRF will receive a command from OBC and then a subsequent length parameter,

followed by the data buffer containing data related to the command.

ReadData(command, data : ushort €, length : ushort €) : void

This function implements use case Read Data mode of 1B45 protocol described in section 4.4.
Briefly, the OBRF will receive a command from OBC and the OnBoard Radio Frequency will re-
turns back a response with a given length and then the data buffer containing what was requested

in command by the OBC.

CommandOnly(command) : void
This function implements use case Command Only mode of 1B45 protocol in section 4.4. It is
implemented to support the 1B31A On-Board Radio Frequency Module 437MHz to receive a com-

mand from OBC and will execute it without any other data exchange.

A graphical representation of information parsing is shown in figure 3.9. That figure represents
the satellite shown in figure 3.1 but at logical level. Moreover emember that the 1B45 functions
are used to generate the readCom/sendMessage functions, therefore the 1B45 should be considered

at a lower level. These interactions are described in sequence diagrams, starting from image 3.10.

37

3 — System specifications and protocols

ANTENNA

Figure 3.9. Interactions and interfacing functions involved between On-Board Radio Frequency
Module, On-Board Computer and the Antenna

38

3 — System specifications and protocols

3.4.2 Behaviour of the protocol

Once all the functions used by the OBRF, the ones required by the OBC and various bus pro-
tocol are defined, are now introduced the sequence diagrams of the telecommunication protocol,
describing the Layer 3 handling guidelines for the OBC and also the sequence of the 1B45 protocol
operations described in the previous section. These diagrams are modified w.r.t. to previous imple-
mentation, but kept the same from a conceptual point of view of the 1B3 protocol, in order to be
able to communicate with the OBRF while keeping at the same time original algorithm structure
of the protocol itself.

The AraMiS telecommunication protocol is subdivided in multiple type of OSI Layer 3 commands

(i.e. contained in payload). These can be:

e Short command: it is a command which is just transmitted or received without any further

response.

¢ Long command: it requires an additional response after some time, for example data which

can be available in next instants (for example, earth’s photo of a given time).

¢ Fragmented command: with a long command is required a very long data which need to
be fragmented on more packets. With a fragmented command type are required fragments

of a long command response.

All of these macro-types are briefly analysed. This protocol has been adjusted to be coherent with

the use cases of the module in section 4.2.

39

3 — System specifications and protocols

L LHMH S = puswiscqlpousied iy

I
I
|
|
|
|
|
|
|
|
I
I
|
m‘;ﬂnﬁﬂﬁucu_uﬁﬂ{ _
v =
|

]
_
_
_
_
_
[
_
_
_
_
|
[
|
|
_
_
_
_
_
_
_
_ ,.mmen_um W10 ‘Bpod
|
|
|
|
_
_
_
_
_
_
_
_
_
_
|
|
|
|
_
_
_
_

4407 0 T X
= SMjEjE 'pPUBLIWOD oU

4

Yivd HOv

ﬂ'};___________________

Aed

(hawg Is) 0|

pon ; (guoysn | yBua) 'STUEIS = FUOUSN | BIER ‘SN L

15139 awo = u.:mET_oo.dEmmﬁmﬁn_ 10l
| |

I N S

HIOHIME L8

|
|
D 2D LTS

tc._m_.__“ ua| peopied _ﬂbu [HINjeBessappuas |

bcr

'SIN VY = Ippyacinos,

[=202 'umogdiabupo = o ‘000 = (8N
“DX08| = ppyisap)auty 11 s
[F101 %d =(8NLYLS ¥d 50 7 smes]]

|
[v1vQd = EEp

H

(g isi L
DR (LD

|
|
|
+ = oo ‘wonfeupo = o“,_“lﬁ ..m_.caﬁ =8N "~ ={HIN
|
|

{
9

0S| = PPYeNN0s ‘S|

=L

poAf(gHeusn ; yBua Emers = guoysn : BIEP SILYLS 13D a0 = Emew_aoﬁmmumum)
|

p)

[wawy ssiig |
|

pioa ; (guoysn ; yhue) sn

(vl 21E0 11 60HE = PuBwWWOSipusInd if
I
’ | : ST
Wlvad = ﬂnﬁ __.__z_u_._m = m:ﬂtsou:cm iz u_n_,, L
| |
_ (wivd = ﬂmn_ TLHOHS = E_EES:% i _
	JOSER00).	
Eidue, | giudsayasnoy Aoiuapy |
[Esayduad ; zied | |sad TdH : AOuE ! FuR

-

I

| |

I - -

B ylyd = ,mi:.—m: VEJED 'ONIJIIHISNIOH LID QWD = PUBLILIGIE B0 PESY £
|

|

|

|

_

|

W = IpPyISap)awel) |'g
| |- = swesed 'apo

LTHOHS = adf Jwoo

| | e
| T T T
I I _._._ 'D I |
_ u_.a+ (puoysn ; ybu ﬂ___ 'SNIEJS = FUOYSN | BJED .%Eﬁmuﬁwums_u = n:ﬂTEouuﬂE pESY f _
P | 1 | | |
Lig | | | |
A | | |
D E - - — . -
i L m (073 || DuD DNOEM) =(SMLVLS Xy SO B smeEs]]
o} 1opa ; (p00™| LHOHS = peoifed Jpusn - sy pecied D05 fsINuoopes: 2 : | "
_ _ _ I
| | . _ _ =
_ |
_ |
_ |
_ |
_ |

= (5N woopuas g

1E]S = FUOUST | BlED .m_._+ﬁm|_|n_w|m WO = PUBIILICS | EIBQPEDY [|'5

puBLLODAjeLSE]

SdDL

anpoy) fouanbaid opey
PIECH-UQ LEF) | dHAC

JBABGUOMEISP UNaIS)

fuoREgpunod |

JUBDGHUO UG SS I
== "... EE&._,.___:.__; SBE

Basic Telecommunication AraMiS protocol, short command case)

Figure 3.10.

3 — System specifications and protocols

Basic Telecommunication AraMiS protocol, normal case

This communication condition is referred to image 3.10. This sequence shows the events related to a
short command without errors. Step 1 and 2, are associated to a housekeeping information transfer
between a general peripheral on the spacecraft and the OBC, with a ReadData(command, data :
ushort &, length : ushort &) : void and get(command, data &), which is a periodic interrogation
issued to other peripherals using the 1B45::ReadData. As soon as the data is retrieved, in step
4 the putShort(command, data), which is another interfacing function of the TCP, therefore not
used by the OBRF, puts the retrieved data in the OBC’s Memory. Then, with an isr_timer() ISR
which runs on the OBC in step 5, the Telemetry Command Processor ask if there is data available
from Ground station by checking the status of the 1B31 OBRF by using ReadData(command, data
: ushort &, length : ushort &) : void. This will return some data (as seen in section 4.2.7) which
is associated to a no data available in this case. The OBC returns then to its other tasks.

Now suppose that in a given time the Mission Control Client requests the housekeeping data
telemetry. Through the step 6 sendCom(N(S), comType, params) by means of the Internet sends
to the Ground station the command. When Ground station receive it, will compose it according

to Frame AX.25 with this fields (see section 3.3):
e The AX SAT ADDR : char const in the destination address field
e Its own callsign in the source address
o The sequence numbers N(R), N(S) in the control field and the PID
o The command in Info of type byte[INFO__LEN], of a given length INFO_ LEN.
o The FCS : byte[2] (CRC)

The Ground station send the frame on the radio channel towards the satellite in step 6.1 according
to frame(destAddr, sourceAddr, N(R), N(S), info, crc) structure defined in the OSI level 2. When
the frame is received is checked the FCS : byte[2] and (transparently to the OBC) the destina-
tion address AX_SAT_ADDR : char const is checked by the 1B31 On-Board Radio Frequency
Module (step 6.1.1). The behaviour in the 1B31 On-Board Radio Frequency Module is described
at high level in another diagram in figure 3.13 and more in depth in software chapters. If the
address is correct, whether it is CRC correct or not, the content of the frame is decapsulated and
ready to be sent to the OBC, signalling an eventual FCS error with updating the status with a
RX_WRONG_CRC flag. But the TCP ask the availability first (after isr_timer() has triggered
the check), by using again the ReadData(command, data : ushort &, length : ushort &) : void

with the proper status command in steps 7.x.

41

3 — System specifications and protocols

If the OBRF module responds with a proper status of data ready (see section 4.2.7) (step 7.1), the
transfer begin only after a second command which uses the readCom(N(S), payload_len : ushort,
payload) : bool (step 8). Note that the connection between the 1B31 On-Board Radio Frequency
Module and the Telemetry Command Processor is made through polling, since the former is an
hardware object and the latter is a software object of the OBC. This is accomplished, as said
earlier, by using an isr_timer(). The TCP checks the N(S) (step 7.2) and interpret the command
accordingly. In this case it is a simple short command, which means that is retrieved only one
kind of data from the Memory (step 9), regardless the sequence number. In step 10 is checked
again if the transmitter is available with a proper command put in ReadData(command, data :
ushort &, length : ushort &) : void and, if so, the message is sent back to Ground station (step 11)
with sendMessage(N(R), payload_len : ushort, payload, address), which has the double function
to acknowledge the Ground station and carry the content of the required data. The transmission

in downlink is the symmetric to the previous described for the uplink.

Basic Telecommunication AraMiS protocol, long command case

This communication condition is referred to images 3.11 and 3.12. Here are described the events
in case of a LONG command without errors.

In a given time, it is supposed that the MCC decides to request an image acquisition to be
taken at one hour from now. In step 2 the command is then sent with sendCom(N(S), comType,
params) to the Ground Station Server: here a value to params is assigned to identify uniquely a
command to a further data request generated by its execution. The command is transported to
the Telemetry Command Processor as described in section 3.4.2. Then the N(S) is checked (step
3.3) to understand if it is the first command received and then interpret the command according
to a TCP’s table.

Supposing that is the first command, the TCP communicate with the interested peripheral
and issue the command’s execution ezec(command, arguments) : bool at step 3.4, while with
put(applNum, data) : bool at step 3.5 it allocates a location in Memory to store the future data
generated by the peripheral. Since the Mission Control Client need to know if data is received
even though it is not yet executed, the TCP generates an acknowledge signal with no subsequent
data (pure acknowledge), steps from 4 to 5.1.2.

From this moment on, the peripheral used with that command is added to an OBC’s list of
peripherals that will be polled periodically, to evaluate if its execution has been finished and
eventually acquire the generated data. A polling while the execution is not yet finished is made in
step 7 where a NULL data is returned into Memory. After a reasonable time, the Mission Control
Client in step 8 decides to check if the previously required data is available. But here is not yet

ready and the TCP returns a "data not ready" at step 11, according to what has been retrieved

42

3 — System specifications and protocols

from Memory with a getLong(applNum, data &) (step 9.4).

In step 13 the TCP polls again the peripheral, and now the data is retrieved and memo-
rized (step 14). In a subsequent moment the MCC asks again the data request, step 15. Now
the getLong(applNum, data &) at step 16.4 will return the peripheral’s data from Memory. An
ACK__DATA response can be generated by the TCP with the content of the peripheral’s response
(steps from 16.6).

43

| |
_ |

| R |
G ppld Pon: {guousn : WBUA| 'STE)S = FUOUST | BIEN 'SMLYLS 139 QWD = PUFUALCSIBIEQDEDY (| 4
|
|

75T T

QD NP L

|
I |
| |
| |
| |
| |
e _ _ 2D T = DU WO DABUIDIO = _ - =
sy 1 41 33% o jiaydiad | | o = ojul ‘WwoDAEume = (SN 100 = (HIN : ——
3y} Ayeaipouad od _ | EY0S| = IPPYaRN0s ‘S| WysY = bppviseplawsl 1o {2 = swesed ‘spoo BlEOIR
_ i,l._ _ _ = adA | woo Lo = (SINweopuds 19
| ana:{TINN = BIEp ' LONOT = U_.__u..c:._bu;a.m % pUBLLWOD OU m _ _
_ _ i _ Pl ! :
_ _ _ poA: (gHoysT © ybus| 'smels = atozwz “ejep _mEﬁmum_m.E‘Tu = puBWWOS|RIROPETY | ' _
_ _ | _ _
_ _ _ i _|_ _
_ | | [bawg sy T 4 |
| | | | |
_ _ _ _ DD R LV LE
_ _ _] (8po0"aaAE0TY OWD = \| abessayy
_ _ _ (= 202 'UMDOAIEUIRIO = oJu) 000 = (8N ‘000 = (MIN)abessappuss T | L E
_ _ _ "SNYHY = IPPYEcNs TOX0S] = JPPYISepla Ry (! _ _
- - ; [31a ={snLvis ¥ so g smes)]
_ ¥ =iy o} _ _ (ssaippe o555 GINTOTH OND = FEorie : _ :
I SRR M S I I [poysn : uaj peojied 'gog = (HINjeBessappuas g | m
| S | |
| e | ! _
[l -
| | d _ _
F ar) [joog _._._:Z = BIEP 'p) = wnndde)nd 5§ _

ang jooq: (= ﬂ:ue.__._uﬁ_ JONGQT = PUBLILICD) 29X 8 5

: _ _
N _“_V angjeoq ; (') '8pod”LONGT = peatied
(s ¥eau e'e § ‘oysn ; vay peaiied ‘000 = (SN Em_uma T

[0 X4 || DHO DNOHM X} =ISMNLY.LS XH S0 7 smes]]

_ _ —_ﬂ

|
I
pon (pudusn wpbue) 'smes = guUousn BIED 'SNLYLS ._In_muln_ W= U_._m.r_._Eco__ﬂ_wmu%.m g %_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

e T

|
|
|
|
|
|
|
|
;
.
| |
_ |
| e
| | pioA Haﬁzﬂ_ i pBUB| 'SMES = FUOUSN : BIEP 'SMLVLS QWD = PUBLAUCOIEIEOPEAY | E
_ _ (A Iss A_l !
_ _ _ DHD IR (LT _|’_V
| | |
_ _ _ {200 " = ojuy ‘wop/ieuind = ()N ‘000 = (dIN <
_ _ _ IDX0S| = JPPyaunos m__.,__q”__qtuuﬁmquﬁ;”_‘.m S _%ouu_‘wza_._
| | | | | =adAwoo ‘000 = (SINJWoDPUgs T
_ ! 440730 40 'TI0 M = Snjes 'pusiiwed ou _ ! ! !
| | _|_ ' | |
_ _ pro7t N : pBua) SMEs = JUOYSN : BIBP 'SMLVLS d:u”ucqpﬁooﬁmmg_{m L _
| | (pawnIsi | | |] |
| 085 J0SS80014 e npopy Aousniany I |
a0 dbudeayasnoy puBLWOD Anawes OfpEY MEOEUD BAIBSUCIBISPUNOIS)
[Eiayduad ; gead [eisyduad ! | sad dH Aiowap @ Aowaiu JRRULL | B tdoL VAl 4880 ‘uogerspunciB |- | JUSHIDIPRUDDUSIESING ONIRd

Basic Telecommunication AraMiS protocol, long command case (part 1/2)

Figure 3.11.

| |
|
L |
| | | vonorpusuon
_ _ _ 10 =Bp paAZaal
t f f

N =BY 0U10d
It &

= pegjAed 'spoo WLy WY = od4| pbessaw

k ‘8p0 Y LY Y = DMD ¥R 1 LET | S
(ss9UpPE| vLYQ '9pos WiV D MOV = pEciAed 010 = Euzuu@nw_ﬁé puss 7 Ilez

‘poysn © udl peopted '0L0 = (diNjebessappuas £F _
(=202 ‘umogiueG ol ‘010 = (HIN (3701 %d =(SNLYLS ¥d 52 FsnEs]]
'SINYH Y = JPPYE0MOs DX0g||= P pyiseplewsy (L €2

T =

J

pion Pgapysn yBua) ‘'snIEls = PUOYSN @ BIED .m:._.d._..mlh_lu_wlm___.__u = PUBLWAUCO)BIBJDEDY ZT
|

e

- ————— &=

!
|
(Y10 = BEp ‘v = junydde)Bucyeb 1z ana oo |y '8pod BEQeg = peojAed |
(SIN Y292 0z poysn ; ua - pecAed 'oLo = (SIN)woeopEas i1
|
| : = = = o v_._._ |
[0		ouo DNOHM XH) =(SNLYLS ¥d 53 ¥ smes)]
]	
L		
i 0] Vﬂ		
T		

- B> ol
(Lawn 151 gpon E._%% :pBuel 'smEels = PUOUSN | EIBP 'SMLYLS 139 QWD = PUBWWOSIBIEAPESY (')

QDD LL

paUsiu
sBY [elayduad sy

—— - = i DXOS! = PRYI0INOS ‘SINYHY = IPPYISFROWeY 1| 4|
ani} joeq | (vL1yd =[Bep ‘v = winjddelnd ig| | |

| (§ =sweed ‘spos BEQeD u__

_
(vLvQ ={E1ep LONOT = pupwuiosiaf 5| L _ ladA jweo 940 = (giNjweopuas i1,
PUBLLILIOD 0U j hu_ |
_ _

w3

{op = OL.__ | PUBWALICDARBUIRIC = Hmuz_. =14IN W

%

o g

=t —

- T
{Lawn st g1

|
|
=0 yBua) ‘'snjEE = PUOYS | BjEp .m:._.ﬁ._.ml._lu“mulms_uﬂ PUBWALCDEIEQPEPY #1 _
T f
| |
|
|

DA

Bpe0” AQHN W1vd = adila @ﬂT@E
‘100 = (WINJebessappuas (7 |jZ)
|

i

[UPPE ‘8po3 AQWN ¥.1%0 = peopied ‘Loysn

- 2 b Bk
- paj peoied ' 100 = (WiNebessappuas 7L SIS O b

(= 210 'umogAPEUIND = oju oo = (RN X = (SNLVLS X S ¥ smes)
'SINYHY = Jppy aanosl 10| = ppvIsap)auEy ”“\.N_

DR

ESIETTON | NS R N T

i
i I
| |
| T | He
_ ploa : {guoysn © bua) sNIEs = FUOYS | BIEP 'SNLYLS 139 OWD = PUBWWICS)EIEQPESY || V{ _ _
| | | |
| | | |
_ _
FJEIEAE . F 4 E _
||||||| = BB = (unpydde)BucT af : ’ . y — |
e a— (TINN = BjEp "¢, _ Nidde)Buo 8l g1 L3 1909 (b opo3 €169 = peojfed _ !
| | {gusn : ua| peojied 'L o0 = (SINJweopes. g |
| | (8N a2 Lu |
| I 5 - — A _
_ _ [ivo 7w || ouo DNOdM X =(SNLYLS Xo 50 ¥ smes]] _
| |
| | | | (e |

Basic Telecommunication AraMiS protocol, long command case (part 2/2)

Figure 3.12.

3 — System specifications and protocols

Basic Telecommunication AraMiS protocol, OBRF behaviour

This communication condition is referred to image 3.13. In steps 1.x is presented the situa-
tion in which a packet received is not designated to be received from this satellite. In this
case, the 1B31 On-Board Radio Frequency Module keeps the RxStatus : t_ RX__ STATUS in
RX__IDLE. When the TCP asks to the 1B31 On-Board Radio Frequency Module its status with
ReadData(command, data : ushort &, length : ushort &) : void with the CMD_GET_ STATUS
command, in the answer of the OBRF will be present a statusRegister : CS__ REDUN-
DANCY [LENGTH _ STATUS] with the value of RxStatus : t_ RX__STATUS and no
data transfer takes place. The exact codification of the status should can be find in the 1B31
OBRF’s module documentation. Note that it is not a mandatory to fully receive a wrong ad-
dressed packet: in this way some optimizations can be achieved. In fact, the implemented software

will stops the receiving.

In steps 3.x the status is read by the TCP exactly as previous steps. But here the RxStatus :
t_ RX_ STATUS is RX_ WRONG__CRC, since the address is right but the packet has some
errors. Here the TCP will not issue any data reception request, but if it is needed for any reason,
it can be still received wrong even thought it is not advised. The OBC will signal to the 1B31
On-Board Radio Frequency Module that the packet is not needed so that the status flag can be
reset to RX_ IDLEand the content of the packet trashed. In order to do this, the OBRF buffer
should be flushed by requesting the packet. In other words, the OBC should always receive the
packet, but should keep trace if this is needed or not. If this is not made, the OBRF’s buffer will

overflow and the new packets will overwriting the old ones.

Then from step 4.2 on, the TCP will generate a command related to the wrong packet received,
a pure NACK, to be sent to the GroundStationServer. Before a transmission, the OBRF’s status is
checked by reading the RxStatus : t_ RX__STATUS of the statusRegister : CS_REDUNDANCY
[LENGTH_STATUS]. If it is available, then a sendMessage(N(R), payload_len : ushort, payload,
address) is performed, the data (a pureNACK generated by Telemetry Command Processor, parsed
to OBC which sent it to OBRF) is packet in the chosen protocol (like AX.25) then sent to the
Ground Station Server. If the transmitter is not yet available, the OBC should wait or can continue
postponingg that transmission: this should be mission dependent and depending on how much the
satellite on board traffic is high. Note that a missing response, anyway, is handled by this basic

protocol.

In steps 5.x it is received a packet which is fully correct. Again, as in steps 1.x, is read the
1B31 On-Board Radio Frequency Module status to understand the correctness of the last received
packet. The a readCom(N(S), payload_len : ushort, payload) : bool is issued and the whole packet

is sent to the Telemetry Command Processor.

46

3 — System specifications and protocols

These mechanisms are applied to the whole 1B3 basic protocols (the other diagrams), each time

the OBRF is involved.

At S S5 EEBRHIRRITH 1 O = oratndStat OERF : 1B31 On-Board Radio TGR: timer ;
MissionCon on: Frequency Module TelametryC. Timer
traiClint GroundStati T ommandPro T
' onSenver } cessor }
1L [
I

1. sendCom{N({S) = 000, oqlmT\,'pe = SHORT1_code, params =) |
| |
b 1.1: frame (destAddr = ARAMIS, bourceAddr = 1S0XGL, N#R] =000, N(3) = ordinaryCommand, info= ...,

| 111 check CRC | Zisr_timer) |
| D
| I
2 1: ReadData{command = CMD_GET_STATUS, data : ushortd = status, lepith : ushort&) : void |
i |
|
|

l 3: sendCom{N{S) = 000, -.Ja mType = SHORT1_code, pa.rarruTL]

b 3.1; frame(destiddr = ARAMIS,JI_soerceMdr = |30XGL, N{R) =000, N(5) = ordinaryCommand, info = ...
| 3.1.1: check CRC 4 isr_timer)

|

4.1: RcadDatadmmmand =CMD_GET_STA ES, data ! ushort& = status, Icm ushortd) @ void

|
42 RaadDataqmmmand =CMD_GET_STATUS, data : ushort& = status, leng

| |
I 4.3 sendMessage(N(R) = 000, payiogd len ushort
payload = pureNACK, addrpss)

. ushortd) : void

4.31: fmame{destiddr = IS0XGL| source Addr] = ARAMI

: , N{R} =000, info = pureNACK, cre =)
4.3.1.1: send Pun , comBaghum = 030}

8
|
|

|
5 sendCom{N(S) = 000, bomType = SHORT1_code, paramg =-)

|

5.1 frame(destiddr = AFEAMIS,IsoumeMdr = |S0XGL, H{R) =000, N(5) = ordinaryCommand, info = .., orc
N |

511 check CRG | & isr_timer)

RS e s il s s s s e s

|
|
|
6.1}: ReadData(command = C : : 1
|
| alt] | J
| | '
| [istatus & CS_RX_STATUS) = (RX_OK)]
s re%k:chm[N[S] =000, pay]oad_hen :ushort = -, payload = SHDRT|_mda : bool: true

i

tus, length ush-c:xrt&]l: void

Figure 3.13. Basic Telecommunication AraMiS protocol, behaviour at the OBRF

47

3 — System specifications and protocols

Basic Telecommunication AraMiS protocol, fragmented packet

Previously was described a long command with getLong(applNum, data &) data where its di-
mension doesn’t need more than one frame. Another case is presented here and shown in figures
from 3.14 to 3.17, where the data need to be fragmented on more frames of type frame(destAddr,
sourceAddr, N(R), info, crc). This is recognized by using a GetFrag command from the Mission
Control Client and sending the requested fragments with sendCom/(N(S), comType, params) and
with the fragment numbers placed in parameters params, related to the desired frames that will
be received consecutively on the next spacecraft’s transmission.

In step 1 are requested the first 4 fragment generated from the execution of an example command
number 74. In step 2.3 the Telemetry Command Processor perform a Memory access to read the
first fragment and generates an ACK_FRAM command with the frame’s content, to be sent in
downlink from step 2.5. These steps are repeated for the other 3 fragments. The fragment number
2 sent in step 2.11 is supposed to be lost. In this case, while the remaining fragments are sent,
at the next request from the Mission Control Client, the fragment number 2 will be requested
again, as in step 3. The GetFrag command requests are repeatable until the complete fragmented
data is received. Usually the number of fragment of the requested data is known at ground, so the

communication can end up with the request of the last fragment needed to complete the download.

48

3 — System specifications and protocols

>
pionf|iguoysn Bua) 'SMElS = UOUST { BIEP 'SMLVLS 135 (IND = PUBLLOO|RIEQPESY (L T
Lt : e . ot
= 7 = Bl K| IPUSS 1" LT
(19ved = Bep 't/ = wnydde)Buopat gz WERES _.‘E_Pcr‘r e cﬁ_u =
e U ‘000 = (WIN 'SINWHY = JPPYE0IN0S “IDXOS| = IPPVISOPIOWEY [LSF 0y = (SMLYLS XS0 B smes)]
{ssasppe '0ovHd PPeo 9vud MDY = peojied ‘poysn ; usl peoifed ‘000 = (4N leBesssppuas 57 ?ﬂ
t
pll
H.L poafi|iguoysn Bua) 'SMEIS = UOYST [BIED 'SMLYLS 135 QWD = PUBLLLOO|BIEOPESRY (&' F
i |
(09w = Biep by = wnydde)Buoab gz
an jjoog (@]
i(gBey ‘gBey '\ Bey gley ‘v ‘opoc Brijlen = peopled - = poysn ; v peojded 1doo = (SINjweppeas T o
(407 |l D2 DNOBEM XH) = (SNLYLS XY 80 2 smes)]
e

e

(bawn =1z

mon

if(guoysn : bua) 'smels = gUoUSN | BJEp 'SMLYLS 139 (N0 = PUEWLOOJEIEOPESY (L

- = oy fu

{poys
E) puetio)eupo B

i

b@@ |
wophieupso = ()N 000 = (dIN * e : = e |
EunIeQfEIRI0 = (SIN 000 = (N 19X08| SR, : e m.mm_.wm_m%&oruﬂuzum = adA | woo .n.u_ou (g)NJwoopuas 1|

75“_&54 75._._.._._.5.._.__—

7.5&“%55%&*._.&0._.

ZHW.EE Bnpoyy Asuanbaiy opey peEog-UO WIEE) | JHAC 7

7 JEBAIBS UONE] SPUNDIS) | UoEISpunob 7

7 USHDIGAUODUOSSIN m..E_EL

Basic Telecommunication AraMiS protocol, fragmented data (part 1/4)

Figure 3.14.

3 — System specifications and protocols

|
|
|
T
(7 =212 'O NI = 0JU ‘000 = (HIN (BINYYY = IDPY 19X 08I = Jpp

(ss2.ppE ‘ZovHd 'epcd

e MO = pecyied - = poysn | ua pecded ‘000 = @

M

[abessappuas (1L T

. D = =(uIN}abessa
vl iLELE o
L » = s
. o = = — 5 W . [31axd =(snNLYLS Xd 82 ¢ smes)]
eV apod | ave 4 HOY = peafed - = Lousn | usi peaiied ‘000 = (4 WPUas 712 i
>
_| pion :({Ruoysn : yibual 'sTIElS = FUOYSN | BIBP ‘SN LY LS 139 QD = PUBLWWOD)BIEAPESY (€12
Rl
(E9wld = E1ep ‘7 = winidde)buomat z1z (=04 ‘umaq =0JUl* 000={HIN 'SIINvH Y=IppY “IOX0S|=IPPYIFY PIMLEY 1L LLE
>@ 37018 =(SnLvLs Xy S2

[g
|

(29w = eEp

£ = wndde)bucat

(ssauppe '

| .
pioA:{(BlIoUSN : LIBUS| 'STIETS = BUOUSN ; F1EP 'SMNLYLS 139 QN = PUBLIMIGOEIEQPESY 01
(LOWHA = peojded ') {dinyBe) ‘apoa” ol MOV = adA) sbEssauw ‘900 = (IN Wpuas i| |-
6T (= 210 ‘umoQ AEUPIO = OJu1 ‘000 = (I ' SINVHY = 1pPY OX0S! = pPyEplewel 1|87 V&
> > (37017 = (SNLYLS X80 ¥ smies))
9w fi[9poa 9y DY = ProjAed ‘Loysn : uaj peatked ‘000 = (IN)ebEssaPUSS 57 "

PUSS L LFLE

50

Basic Telecommunication AraMiS protocol, fragmented data (part 2/4)

Figure 3.15.

3 — System specifications and protocols

_ _
_ >
Q proaltiguoysn © ybua) sniels = gUoysn : BIEp 'SNLYLS Ewuﬂ* 0 = PUBLILCO]BIEPEDY (L ¥
|
E (zowsd = peoyied|f = wnpnBey 'Bpos” oydd WOy = adi abessaw .Wmn (M Jofessap puas ©
= b2 = wnpdde)b : . N
(PO = ElEp p . = windde)buciad 9 % [+ = w0 ‘umog AreupIo = ot .00 = (YN 'SV Y = JpRyeoIncs ._wxcm_n_unéaaaeﬂzmvv |
(3101 %y = (SNLYLS ¥d 52 7 smes)]
(ssauppe ‘Z6E1 '9pPg Wyvdd MOV = peoifed - = poysn : ua| peojéed ‘|00 = E INJaBessappuss 5y e
| V_.._
poaifiguoysn | pBue| 'SNEls = JUOUSN | BIED 'SMULYLS 13D QWD = PUBWCORIEQPESY Fr
TTGDEN] FUE]} gDE) BP0 DEJED = pE == pouEn Lo | peopfed 'LoQ = (SINJweDpes) T —
WHA = BIEP 7/ = WnNddejBucTal £ > 0
107y || oun oNouM Xyl =(SNLYLS XS0 B smEs]
P
proaltiguoysn ©ybua) ‘snels = gUoysn T BIEP 'SNLYLS 139 (WD = PUBLALCOIBIEQPEDY (| ¥
—
T 14 (200 = o ! .,.m_m;Ea (SIN '000 = (4N TOX0S| = IPPYaunos 'Sy f IppyiSap)awel 1L g

(gbey ‘gheyy ‘pHey ‘zhey = swesed ‘apos Beig90 = adiwos ‘100 =
|

” a

(§iNhuogpues g

Basic Telecommunication AraMiS protocol, fragmented data (part 3/4)

Figure 3.16.

3 — System specifications and protocols

N

BIER pEABIA]
seU o704

(ssauppe 'ghey) -

=
@

(99vH 4 = peoied “W

-

lunpBely ‘spos oyed MDY = adh | aBessaw ._‘ccﬂmuziu@mm

Mo = oju’ Lo0 = (N ' SINVHY = PP IOX 0S| = PP

(=20 .=>Sn‘v_«
[

oS Wy d MOV = pecjéied ‘poysn : usy pegiied ‘100 =

i

Jabessappuss p|

JeiBl _..mw..ﬂm_\xw_ ={SNLYLS XH 52 7smes)]

He

KoppUaS 1| ||

pon |

l
B

(govu4 = B1Ep 'y

= wnndde)buomed iz

| .

—
pLoysn | yiBua) 'sMels = FUOUST | BIEP 'SNLVLS LID QD = PUBUACHBIEQPESY €L

N
0

sovrt—pestied

(ssauppe j5Belf « 8po Wy 4~ MOV = pecided ‘poysn | usy pegided 'Lo0=

{= u._u._._..soow.\

&

pio = ojut |00 = (LN 'SIWVY Y = IPPYS2IN0S 10X S| = JPP
INJebessappuss oLy

I
i T = I i =7
e T TSGR A7 SET 8 o e N 20

P

He

sappuss 1|

pron ([

S

(52vud = erep

Nidde)Buomiab gy

| .

- E
proysn : yiBua) 'Sniels = FUOYSN : Eiep 'SNLVLS LID QP = puewwoojeleapeay o)y

(sseuppe 'pheuy - oppy

Trovyd = pecied 4

>

{"= "»_u._.__i.uwH
CWYHd HOY = pegiAed - = poysn uap peopded 'Log =1

FWnNBEl} Bp05 OvHd MOV = 00ALShEsSaU ,PEN [MME

WpIo = ojUl ‘|00 = (HIN 'SINYHY = PPy EoInos 9 x0s| = Ip
leBessappues g F

isaplewe | [HI0| XY = (SNLYLS ¥u 50 ¥ smes]]

! e

ssepypuas ||

Fl¥

3% 4

Basic Telecommunication AraMiS protocol, fragmented data (part 4/4)

Figure 3.17.

Chapter 4

System constraints and use cases

The main constraints were already devised, but are here summarized and few of them are also
revised. Here will be shown the frequency selection reasons, how the doppler effect could affect the
channel and finally a briefing on the link budget. On the basis of these constraints, will therefore

be devised a complete set of the system’s use cases.

4.1 Constraints

Here are revised the constraints that will be adopted to choose the components transceiver unit in

chapter 5 and configure it in section 6.3 of chapter 6.

Carrier frequency

The complete 1B31 On-board telecommunication module will use two different frequencies, allowing
a real redundancy. One is the SHF band at 2.4GHz, while the other one, treated in this document,
is at UHF 437MHz. This wide difference allows a low electromagnetic interference between the

two channels, along as an high bandwidth per channel.

The UHF belongs to the radio-amateur bands, thus allowing a reception of the satellite data
to anyone which is interested; this band is regulated by the International Amateur Radio Union
allocation. The SHF band is another space which is freely available, regulated by the Industrial,
Scientifc and Medical (ISM) radio bands. As a result, no additional cost is required for this logistic

organization.

53

4 — System constraints and use cases

Doppler Effect in space environments

In LEO orbits, space-crafts are orbiting at very high speeds, appearing from one point and disap-
pearing at the opposite horizon. This bring to a significant doppler effect which has been already
devised and reported here for completeness.

In figure 4.1 is shown a simplified diagram of the various velocities. The velocity saw by the
receiving point at earth is V, = Vcosa and it is time varying. The frequency variation due to

doppler is described by:

V.

Af = fo—

c
The corner case is when the satellite appear and disappear at the horizon (angle o = 0°)
obtaining almost V, = V [7][8]. The doppler effect at these speeds need to taken into account

at receiving part and should be supported by the OBRF’s PLL when receiving from GSS. The

maximum doppler found (usually is less) is in table 4.1.

Table 4.1. Doppler effect at a given frequency and velocity

V =755 1= 600Km fo A frmaz
437MHz 10.925kHz
2.4GHz 61kHz

EARTH

AraMiS

Figure 4.1. Simplified scheme of AraMiS orbit and speeds

54

4 — System constraints and use cases

Link budget estimation

The hardware involved on the satellite need a minimum SNR in order to achieve a reasonable BER.

The link budget can be described by the Friis equation 4.1 (referred to figure 4.1):

1
P. = PG,G,—— (4.1)
00 Oty
Where:
e P, and P; are respectively the received and transmitted powers
e G, and G, are respectively the receiving and transmitting gains of the antennas
o ag = (4%”)2 is the free space attenuation of propagation

e« is the polarization loss

ey, are the medium losses (including atmospheric absorption, fading, diffraction by obstacles

and ground reflection)
The equation 4.1 translated in logarithmic form became:
Prlapm = Pilap + Gilas + Grlas — aolas — aplas — amlas (4.2)

The distance p at worst case (satellite at horizon) is calculated using Pitagora when the elevation

angle is 0%

p=/(t+h)2 — 12 = \/2th + h? ~ 2831Km (4.3)

Now, a quantification of the real implementation can be made with realistic values, since the
system have a predetermined output power and the antenna gains are available. Losses are ap-

proximated by excess and mismatches of 1dB are applied to the satellite antenna nominal gain.

Uplink It is used from the GSS a Yagi-Uda antenna, with +47dBm with gain of 12dBi. On
the satellite the deployable antenna has 0dBi, minus 1dBi to include mismatches, with a total of
-1dBi. The o = 155dB, o, = 4 dB and «,, = 2 dB losses are derived from above. The receiver

on the satellite should then have a sensitivity which is greater than the sum of these values, so:

S > —103dBm

55

4 — System constraints and use cases

Downlink It is used in the satellite a commercial deployable dipole antenna, with 0dBi of gain
minus 1dBi to include mismatches, with a total of -1dBi. The maximum output power from the
satellite is 33dBm (3dB). The receiving Yagi-Uda antenna have a 9dBi of gain including losses.
The o = 155dB, oy, = 4 dB and a,, = 2 dB losses are derived from above. The received signal

strength from the spacecraft is the sum of these values, therefore:
P, ~ —120dBm.

These result are a bit more stringent w.r.t. previous defined before the OBRF engineering, but
this is useful to estimate (in next pages) how weak (or not weak) can be the radiolink, on the basis

of chosen COTS components.

4.2 Use case definitions of the communication channel

Here are devised the use cases of the communication channel. Are conceived starting from the
requirements and the constraints. In figure 4.2 there is the diagram with actors and relations with
the use cases of the 1B31A module for what concerns the channel and data handling. All the
command codes used here are described better in next chapters, where here are considered in a
conceptual way, in order to analyse the feasibility and flexibility of the system. In these use cases,
to help start thinking on how the system can work, are defined part of the structures of logical
vectors handled on the module, along with flags and bit definitions, everything at high level, most
of them already defined by other use cases of other already developed projects, since every AraMiS
project rely on many sub-projects. Every reference to software chapters (whether it is an FSM,
class, variable or function description), refers to chapter 6.

The diagram in figure 4.2 provides the use cases of the front-end of 1B31__On-Board Radio
Frequency Module. Here is documented the behaviour of the system when the OBC issue some
commands on the bus (using the 1B45_Subsystem_ Serial Data_Bus sub-project), related to the
RF transmission and reception. The use case documentation and recommendations are devised
from the protocol in 1B3_TT&C_Telecommunication (see 3.4.2). It is described also the auto-
generation of beacon.

All data is handled at OSI Layer 2 by the system and therefore the content is transparent to it,
except from where specified which is at Layer 3 directly suppported by the OBRF module, because

of handling the actual info of the transmitted or received frame.

4.2.1 OBC actor

The On Board Computer of the ARAMIS satellite. For small systems, the OBC can be part of a

Tile Processor, that is, the OBC SW can run on one of the Tile Processors present in the system.

56

4 — System constraints and use cases

Visual Paradigm Standard Edition{Politecnica di Toring, Dip. Elettroni

<<Include>>

-- - LZepnpups T

N ssmsssssssssss s s s e s s s e e e ==

v
)

Figure 4.2. Use cases of the On-Board Radio Frequency Module 437MHz, radiolink data-handling

See also section 1.3.4.

57

4 — System constraints and use cases

4.2.2 Antenna actor

It is the antenna which can be connected to the external connector. See also section 1.3.8.

4.2.3 Receive

Receive and store the data from the Antenna. As soon as a transmission from Ground station
begins, bits are being received from the Antenna to the system if it is not transmitting. Prior
the reception of useful data, the hardware may need some synchronization bits, this triggers the

RX_PREAMBLE state of the internal FSM, which has the purpose to synchronize the channel.

Every byte which is part of the payload and need to be analyzed, is stored in a buffer if the
address matches the AX _SAT ADDR : char const*. The receiver can check at run-time if it
is a Backdoor data, therefore the system supports also the reading of the actual received data, so
supporting the OSI Layer 3. The OSI Layer 2 handling is supported by the Packet Composition
and Protocols. The receiving mode is a default state of the 1B31 On-Board Radio Frequency
Module.

4.2.4 Get Received Packet

Provides the received packet to the OBC. The OBC issue the GET_PACKAGE command only if
the status of 1B31 On-Board Radio Frequency Module is either RX_OK or RX_ WRONG_ CRC,
otherwise invalid data is provided. Then the 1B31 On-Board Radio Frequency Module responds
with a content described in readCom(N(S), payload_len : wushort, payload) (see section 3.4.1),
generated previously through the Packet Composition and Protocols.

This use case makes use of the Read Slave Data of 1B45_Subsystem_ Serial Data_ Bus.

4.2.5 Transmit

Provide transmission of data from the OBC to the Ground station. The OBC first gets the TX/RX
status; if status is not RECEIVING, OBC can send a system command CMD_TRANSMIT fol-
lowed by data formatted as described in sendMessage(N(R), payload_len : ushort, payload, ad-
dress) (see section 3.4.1). After the command, the 1B31 On-Board Radio Frequency Module will
format the packet through the Packet Composition and Protocols handling it at the OSI Layer 2,
then send it to the antenna. If the status is RECEIVING, the received data will be lost.

This use case uses the Write Slave Data of 1B45_ Subsystem_ Serial Data_ Bus.

58

4 — System constraints and use cases

4.2.6 Deploy

The deploy use case will send the opening command to the antenna upond command CMD_ DEPLOY
from the OBC, in order to open the baffles. This happens only once after the satellite is in orbit
and is fundamental for the antenna usage. As the transmit use case, the deployment will use
the OBC bus interface with the Write Slave Data of 1B45_Subsystem_ Serial Data_Bus. Since
the manufacturer does not provide software informations before selling the product, it is not yet

defined a proper I12C command to be sent to the antenna control bus.

4.2.7 Get TX/RX status

Gets the status of TX/RX transceiver 1B31 On-Board Radio Frequency Module. The Status can

assume either of the following values:

e RX OK when a whole packet has been received, no other reception is currently going on,
packet CRC is correct and it has not been read by OBCA (in this case, internal status is
RX__OK and status variable RxStatus : t_ RX__STATUS == RX_ OK)

¢ RX_ WRONG_CRC when a whole packet has been received, no other reception is going
on but packet CRC is not correct and it has not been read by OBC (in this case, internal
status is RX_WRONG CRC and internal variable RxStatus : t RX_ STATUS ==
RX_WRONG_CRC)

e RX_ IDLE when there is no reception in progress and there is no any received packet in
memory. Internal status is RX IDLE and corresponds to internal variable RxStatus :

t_ RX_STATUS = RX_IDLE.

e RX_RAW when a packet has been received but it is not yet processed by the 1B31 On-
Board Radio Frequency Module, therefore it is not yet available to OBC. Internal status is
RX RAW and internal variable RxStatus : t_ RX_ STATUS = RX_RAW.

e TRANSMITTING means that there is a transmission in progress, and it is interruptible.
Internal status is TRANSMITTING and internal variable RxStatus : t_ RX_ STATUS
= TRANSMITTING.

e« RECEIVING when there is a reception in progress and it is interruptible for a transmission,
despite it will delete the already received data. Internal status is RECEIVING and internal
variable RxStatus : t_ RX_ STATUS = RECEIVING.

59

4 — System constraints and use cases

This use case is supported by Status and configuration 1B31 (section 4.2.8) and makes use of Get
Module Status use case of 1B45 Subsystem_ Serial Data_ Bus by reading location 1 of status-
Register : CS_ REDUNDANCY [LENGTH__STATUS], masked by the MASK__CS_ RX
__STATUS : ushor const.

4.2.8 Status and configurations 1B31

This use case defines the status data, read-only, in the statusRegister : CS_ REDUNDANCY
[LENGTH__ STATUS]; and define the configuration data, read-write, in the configRegister :
CS_REDUNDANCY [LENGTH__CONFIG].

The configuration part uses the Reset Module Configuration, Set Module Configuration and
Write Module Configuration use cases of 1B45 package, while the system status uses the Get
Module Status only. The use cases are shown both in diagrams in figures 4.5 and 4.2. In chapter 6
there will be the technical implementation of every kind of communication and data handling for
these vectors. The described vectors and the use cases in 1B45_ Slave package are taken from an
external AraMiS project, with name coded as 1B45 (see section 4.4), a codename different from the
OBRF which is 1B31: this separation is made more clear by putting these use cases in a package
(the light-blue rectangle in the figure).

The structure of statusRegister : CS_ REDUNDANCY [LENGTH__STATUS]:

e Location 0

1B45_ Subsystem_ Serial _Data_ Bus reserved

o Location 1
(ushort)(MASK__CS_RX__STATUS : ushor const | MASK_CS_PA_STATUS :

ushort const)
The structure of configRegister : CS_ REDUNDANCY [LENGTH_ CONFIG]:

e Location 0
(ushort)(MASK__CS_BAUDRATE : ushort const | MASK__CS_FREQ : ushort
const | MASK__CS__MODULATION : ushort const)

o Location 1

(ushort)(MASK__CS__TX_POWER : ushort const)

The order of byte and bit transmission is 1B45 Subsystem Serial Data_Bus defined. Any
modification from the OBC should be applied to the HW if the status is RX__IDLE, in order
to prevent data corruption, since it changes the RF configuration. For this reason, if a modifi-

cation of the configRegister : CS_REDUNDANCY [LENGTH_ CONFIG] is detected,

60

4 — System constraints and use cases

the affected system (1B31 On-Board Radio Frequency Module) or sub-system (1B31A On-Board
Radio Frequency Module, 1B31B On-Board Radio Frequency Module) should be reinitialized in

the default RX mode. In order to modify, for any reason, in a dependable way the various masks,

any mask with name MASK__CS__ XXX is composed by:

o The absolute value of the mask LOCAL_MASK_ CS XXX

e The absolute value is shifted of SHIFT _CS_ XXX to the correct position, obtaining the

final mask

4.2.9 Packet Composition and protocols

Assemble the packet to be sent over the Antenna or disassemble it according to the defined protocol.
It handle the telecommunication at OSI Layer 2.

While in Transmit mode, generates only the data structure of protocol (overhead) and will
be encapsulated in a frame(destAddr, sourceAddr, N(R), N(S), info, crc) preparing it for the
transmission. When used by RF Beacon generation the behaviour is the same, because the higher
OSI layer capability is managed by RF Beacon itself.

While used by Get Received Packet, disassemble the received packet and prepare it for the
readCom(N(S), payload_len : ushort, payload) : bool (see section 3.4.1).

4.2.10 Backdoor

The 1B31 On-Board Radio Frequency Module can read the content of the received frame(destAddr,
sourceAddr, N(R), N(S), info, crc) (see section 3.4.1). This allows, when a Receive takes place, a
backdoor data recognition which is not addressed to the OBC’s Tile Processor, but redirected to a
set of pins which are directly connected to a proper connector. These are 6 digital signals, allowing
to modify portions of the programmable digital hardware, external to the 1B31 On-Board Radio
Frequency Module.

The 7 bits of data in received info field from frame(destAddr, sourceAddr, N(R), N(S), info,
cre), are redirected to backdoor connection, if the received OSI Layer 3 command Command-
Code : t_ OBRF_DEF_COMMAND_ CODES = CMD_ BACKDOOR. The backdoor
connection is made of 6 pins + 1 of reset, at BACKDOOR() group of pins in class diagrams (see
diagram in figure 5.15 in chapter 5). The structure of payload is provided here, since it is handled

at OSI Layer 3 by the system, and therefore should be known for the software implementation:
 payload [0][1] = CMD_BACKDOOR (16bits)
o payload [2] contains, from LSB to MSB, the:

61

4 — System constraints and use cases

— BACKDOOR_0
— BACKDOOR 1

BACKDOOR,_ 2

BACKDOOR _3
— BACKDOOR_4
— BACKDOOR _5

BACKDOOR_INT (reset signal)

The unused bits are 0.

4.2.11 RF Beacon

Send an auto-generated beacon. Is described in figures 4.3 and 4.4. This happens when OBC do
not issue the commands CMD_ GET_STATUS, CMD TRANSMIT, or GET PACKAGE to the
system after an OBC__ TIMEOUT : byte const time. In sequence diagram The content of the
beacon is put in a packet through the Packet Composition and Protocols handling the OSI Layer 2
which is sent containing in the payload the CommandCode : t_ OBRF_DEF_ COMMAND
__CODES = RF__BEACON with the housekeeping : HK_ REDUNDANCY [LENGTH__
HOUSEKEEPING] and statistics in statusRegister : CS_ REDUNDANCY [LENGTH__
STATUS] all together. The CommandCode : t_ OBRF_DEF__COMMAND__ CODES
is contained in the payload of sendMessage(N(R), payload len : wushort, payload, address) (see
section 3.4.1), therefore it is a Layer 3 command in the OSI stack and so the content is described

here for the software implementation.

62

(1va = 2lp ' LLHOHS

= u:mg&..*._ouu 106 ;|

o e e s T e

oo0—=1d

{ss8uppe ' 1vQ 'ep0 viva WOV =

("= w2 'NODVIE DEO = o ‘000 = (HIN 'SIHvH
= Jppyaunos 9 XHS| = IPPYISApIBWEY | F'g

OHD jIayn __‘._‘..v.m__“

DHI YT LTS

L

[T1a ¥ = (SMLvLS ¥u 5D % smes)]

v 1vad
= pegjded 'epoo wlvd MO add) abgssaw
] ‘000 = (Hin)ebessayy E.Lw T
|

(i

1

(%Llwd = Elep ‘NOOW3E D80
= ﬂcm.,z_,___oo:_o_._myum 9
T

[sidwane N souy]

| (ue
T

_
:an = BIEp ‘| LHIOHS

3 t:m&Eo&tc_._m#_._n .

|
|
3
ossE00 40U
wlaajasno
“dH

pi

pioA © (R1IOYST T UJUB] SIEIS = FUGUSN BIBP SMNLYLS 139 DEUHJ_@EECSESEE £

I
I
_
|
_
:
|
Pyewwoojelegpesy (|9
I
|

I
I
I
I
|
I
|
I
|
_ I
| |
" :
| |
| _
_ E Plioion ; (guoysn : ybual ‘smes = FUQUSN | Bep 'SNLYLS 139 aW I _
_ I I .. I _
| | (paum =19 | | o | |
| | _ : _ |
T
_ D_ _“___ A (guoysn | wbue) smes = mtc_ﬁz L EIEp 'SMLVLS 199,70N0 5 PUBWwweo)eleapesy (|5 _ _
- 2
_ _ i . _ — _ _
_ _ (MR B e ; [UoYsT | YyIBUB) ‘SIEIS = RUQUSN | BIER 'SMLYLS 439 dua’s ppewwooleled peay i _
_ _ I it I I _
| | | |
_ i “ | | i
| | . Js g | | | |
| | | | |
_ I I I _
| | | | |
_ I I I _
| | | | |
[_ I I I _
| | | | | |
_ _ I I I _
| | | | | |
_ _ i i i _
Aiowap| Jalur| aynpoy Asuenbaiy JBAIBSUCHESPUNCIS)
¢ AousRL L Iewg JOSSE00IPUBLLOOARBWH] | DL w1 sewi oIPEY PUEOE-UQ LEE) | JHEO tuogEispunosf. | | JUSHIDIONUODUOESI : olied.

Sequence diagram of the RF Beacon, part 1/2

Figure 4.3.

DD LR

_ 1

! _

| |

i |

! _

_ _

_ "

| |

| |

i |

| |

| |

! _

_ I {wlva

| | T DL ed '8poo vLvO WOV = odAl afessew
_ _ oo = Euzuu@nﬂuzuzﬁum.i_r
| I [inoaug]
_ _ (= WD ‘NODVIA M = 0 ‘000 = (WIN Sy !
| I = Jppy 80UN0S IDX0S -_nuqﬁ%_aaﬁ__ LLL < e
| ! L | e
I | m I _
I |] I [
| | | oY | | |
I | I I I _
| _] _ | |
I _ Lu I _
! | _ 0L ‘pajled usaq JaAsU SABY |
! _ ; su_sz_. 1] m__mu dum_H::ﬂ N hmﬁm SpJOM JaUlo _
_ | E noswi :m>_m uey} ajow Joj PIOA T (% N Buyjes sdoys _
_ _ pue yans s18b uuwuuuﬂm_ﬂnmEEduh_ﬁEu—mH m_.__naﬂm EnE_.s sawn Y E_.EmE_ sl memE lsw syl |
| I T T T T |
I | _ _ I I _
_ | | | _ 6 vﬂ_ _ |
o | | | o | |
_ _ _ | _ g '_u _ |

Sequence diagram of the RF Beacon, part 2/2

Figure 4.4.

4 — System constraints and use cases

Content of payload

In sendMessage(N(R), payload_len : wushort, payload, address) (described in section 3.4.1) the
N(R) = 0 and address is the destination one of type addressGround : uchar[7], while the

content of the payload is structured as follow, where each location of payload is 8-bit wide:

 payload[0][1] contains the 16bits CommandCode : t_ OBRF_DEF__ COMMAND__
CODES.

 payload[2] the housekeeping : HK__ REDUNDANCY [LENGTH__ HOUSEKEEP-
ING] length of words LENGTH_HOUSEKEEPING

o payload[3] to [3+2*LENGTH HOUSEKEEPING]| contains the housekeeping : HK__ RE-
DUNDANCY [LENGTH__HOUSEKEEPING]

o payload[3 + 2 * LENGTH _ HOUSEKEEPING] the statusRegister : CS_ REDUN-
DANCY [LENGTH __STATUS] length of words LENGTH__STATUS

o payload[4+2*LENGTH_HOUSEKEEPING] to [44+2* LENGTH_HOUSEKEEPING + 2*
LENGTH _ STATUS] contains the statusRegister : CS_ REDUNDANCY [LENGTH
_STATUS]

Therefore the payload_len = 4+2*LENGTH_HOUSEKEEPING+2*LENGTH_STATUS, in
bytes.

4.3 Housekeeping and module configuration

In figure 4.5 are shown the interactions between the OBC, various sensors, the configuration and
status registers, which are used to parse informations from/to the OBC. For what concerns the
sensors, here are not described the sensors hardware and software routines (which is done in next
chapters), but rather the representation of the logical data when the actors are interfacing with

the OBRF in order to read the sensor’s value.

4.3.1 Channel selection

The OBC can choose the channel of 1B31 On-Board Radio Frequency Module among some pre-
defined frequencies defined at compile-time among a Frequencies list. This selected channel is
present in configRegister : CS_ REDUNDANCY [LENGTH__CONFIG], at location 1, in
MASK_ CS_ FREQ field.

Values and associated frequencies are listed below:

65

4 — System constraints and use cases

Visual Paradigm Standard Edition{Politecnico di Toring, Dip. Elettronica)

Figure 4.5. Use cases of the On-Board Radio Frequency Module 437TMHz, housekeeping
and configuration management

66

4 — System constraints and use cases

e FREQ1 : ulong const = 0;
e FREQ2 : ulong const = 1;
« FREQ3 : ulong const = 2;
e FREQ4 : ulong const = 3;

This use case is supported by Status and configuration 1B31, where provides the structure of

registers.

4.3.2 Get Power Amplifier Status

Provide to OBC the status of the power amplifier, usually needed for diagnosis purposes. This
value is present in statusRegister : CS_ REDUNDANCY [LENGTH_ STATUS], location
1, at field MASK_CS_PA__STATUS. The corresponding values are boolean, PA off = 0; PA on
= 1. This use case is supported by Status and configuration 1B31.

4.3.3 Set/Get Transmission Power

The OBC can set different RF power levels of the transceiver. These values are only qualitative,
because are used to range from the minimum to the maximum allowable settings of the transceiver,
so the absolute value is hardware dependent. Their physical meaning is therefore hardware de-
pendent. The absolute outputted power must be considered multiplied by the gain of the power
amplifier, if present.

This value is present in configRegister : CS_ REDUNDANCY [LENGTH_ CONFIG],
at location 1, at field masked by MASK_CS__TX_POWER. This use case is supported by
Status and configuration 1B31.

4.3.4 Set/Get Modulation

The modulation of the RF channel can be changed by the OBC among FSK or GFSK. This value
is present in configRegister : CS_ REDUNDANCY [LENGTH__ CONFIG], location 1, at
field MASK__CS__MODULATION. The association of the value with the meaning is FSK =
0; GFSK = 1. This use case is supported by Status and configuration 1B31.

4.3.5 Set/Get baudrate

The OBC can specify the baudrate (kBaud per second, kbps) of the RF channel, expressed in
bits per second if NRZ Coding, or it is the double of bits per second, if Manchester coded.

67

4 — System constraints and use cases

This use case allow to use the tile with different specifications with respect to the current us-
age, since are possible different values than 9600 baud per second. Its baudrate value is mapped
in the configRegister : CS_ REDUNDANCY [LENGTH__ CONFIG], location 1, at field
MASK__CS_BAUDRATE.

Despite this, it is not advised to change the baudrate, because it will change the channel SNR
as long as a different need of passive components, leading to a not well configured hardware and
different sensitivity of the system. For this reason it cannot be changed at run-time, but only at
compile time, modifying the baud : ulong variable.

Values and meanings are listed below:

o 2.4 kbps = 0;
e 4.8 kbps = 1;
e 9.6 kbps = 2;

e 19.2 kbps = 3;

e 38.4 kbps = 4;

e 76.8 kbps = 5;

e 153.6 kbps = 6;

o Setting not allowed = 7

This use case is supported by Status and configuration 1B31 at section 4.2.8.

4.3.6 Standby

The system can be put in standby by OBC, with command CMD_STANDBY where internal
processor is in sleep mode but is able to listen from the bus; housekeeping sensors are either
disabled or shutdown RF hardware is disabled. When in Standby mode, the System can listen
any command coming from the OBC. The OBRF can not receive data from Antenna, therefore
should be awaken by OBC automatically after some time. It uses the Module Standby use case of

1B45_ Subsystem_ Serial Data_ Bus.

4.3.7 Wakeup

The system can be awaken from OBC with command CMD_WAKEUP and internal proces-
sor start running normally; housekeeping sensors are enabled; RF RX/TX hardware is enabled
along with the modules that are put in standby before. It uses the Module WakeUp use case of
1B45_ Subsystem_ Serial Data_ Bus.

68

4 — System constraints and use cases

4.3.8 OBRF enabling

The 1B31 On-Board Radio Frequency Module, can be enabled by the OBC, by the enable signal,
active high, present in Bk1B481W_ Module_Slot, here named MODULE_OBC(). In order to
provide selectivity,should be present at least one connector with this signal per sub-module of the
1B31 On-Board Radio Frequency Module. It is equivalent to physically connect the power to the

selected sub-module.

4.3.9 OBRF disabling

The 1B31 On-Board Radio Frequency Module, can be disabled by the OBC, by the enable signal,
active high, present in Bk1B481W_ Module Slot, here named MODULE_OBC(). In order to
provide selectivity, should be present at least one connector with this signal per sub-module of the
1B31 On-Board Radio Frequency Module. It is equivalent to physically disconnect the power from

the selected sub-module.

4.3.10 Get PA Current

Get the last acquired value of total current consumption of the board, mainly related to the power
amplifier, recording it in housekeeping : HK_REDUNDANCY [LENGTH__ HOUSE-
KEEPING] at HK_ CURRENT field, providing it to the OBC. It is supported by the Get Module

Housekeeping.

4.3.11 Get PA Temperature

Gets the last acquired value of the board temperature, recording it in housekeeping : HK__
REDUNDANCY [LENGTH__HOUSEKEEPING] at HK_ TEMPERATURE field, and pro-
vides it to the OBC. It is supported by the Get Module Housekeeping. The value is related to the
component which can generate more heat than others, which is the power amplifier; to provide this
value, the sensor should be placed as near as possible to the component. After production, some
tests can be performed to determine what is the relation between the temperature of the sensor

and the actual one present on the PA.

4.3.12 Get Voltage

There are few voltages present on board. These can vary a lot between each others, and more

different voltage rails should be monitored; for this reason different sensors are required.

69

4 — System constraints and use cases

Get PDB Voltage

Gets the last acquired value of power distribution bus (PDB) voltage, recording it in housekeeping
: HK._ REDUNDANCY [LENGTH_HOUSEKEEPING] at HK_PDB_ VOLTAGE field.
The value is provided to OBC upon request. It is supported by the Get Module Housekeeping.
The PDB voltage is the power distribution bus voltage, which can be quite high (up to 20V), and
the board can absorb a lot of energy from these power rails. It is ideal of using it for the RF

transmitter.

Get PA Voltage

Gets the last acquired value of 3V power line voltage, recording it in housekeeping : HK__ RE-
DUNDANCY [LENGTH__HOUSEKEEPING] at HK_VPA_VOLTAGE field. The value
is provided to OBC upon request. It is supported by the Get Module Housekeeping.

Get Reference Voltage

Gets the last acquired value of reference voltage, recording it in housekeeping : HK__ RE-
DUNDANCY [LENGTH__ HOUSEKEEPING] at HK_REF_VOLTAGE field. The value
is provided to OBC upon request. It is supported by the Get Module Housekeeping.

Get Reg 2V8

Gets the last acquired value of regulation voltage of the power amplifier, recording it in housekeep-
ing : HK_REDUNDANCY [LENGTH_HOUSEKEEPING] at HK 2V8 VOLTAGE
field. The value is provided to OBC upon request. It is supported by the Get Module House-
keeping.

Get Reg 3V3

Gets the last acquired value of 3V3 voltage, recording it in housekeeping : HK__ REDUN-
DANCY [LENGTH_ HOUSEKEEPING] at HK_3V3_VOLTAGE field. The value is pro-
vided to OBC upon request. It is supported by the Get Module Housekeeping.A

4.3.13 Set AX.25 Destination Address

The OBC can chose the destination address of the radio link at run-time. Once it has been set, all
transmissions are sent with that address upon next change. If not set, a default address is used.
It uses a Write Slave Data, with WriteData(command, length : ushort &, data : ushort &) : void
(see section 3.4.1) when command = CMD_ SET ADDR. The data parameter contains only the

70

4 — System constraints and use cases

destination address as described in AX.25 protocol. A default address is used if not set. This
address could be different from the source address of an incoming packet from Ground Segment.

The left-shift, to comply the AX.25 protocol, is performed by the OBRF automatically.

4.3.14 Configurator actor

The person in charge of configuring HW/SW parameters according to spacecraft architecture and

mission requirements. In figure 4.6 are described the interactions between the module and the

configurator in charge of configuring HW/SW parameters according to spacecraft architecture and

mission requirements.

JTAG communication Configurator

Figure 4.6. Roles of the technician configurator

4.3.15 Frequencies

Here are listed the possible frequencies to be used when designing the satellite, according to the
available band, 437MHz nominal. Configures at compile-time the frequencies of up to four channels
associated with the satellite (from AllowedFrequencies class, which include a set of usable values),
named FREQ1 : ulong const, FREQ2 : ulong const, FREQ3 : ulong const, FREQ4 :

ulong const.

4.3.16 Manage Addresses

The Configurator at compile time manages the spacecraft addresses. When sending to Ground Seg-

ment an auto-generated frame, the destination address used can be a default one AX_DEFAULT__

71

4 — System constraints and use cases

DEST ADDR : char const*, while the satellite address AX_ SAT ADDR : char const™ cannot be

modified once are set. The OBC can change the default destination address.

4.3.17 Firmware storing and JTAG

Is provided the possibility, by means of the configurator in charge, of uploading the firmware to

the OBRF board. This is done by equipping the system of a JTAG test/debug interface.

4.4 On-Board communication protocol 1B45 Subsystem Se-

rial Data Bus

This section regards to a serial data exchange organization which follow the same rules for all the
AraMiS satellites, therefore it is an external project. It can be applied to various bus protocols,

but in the OBRF the 12C is used.

4.4.1 Overview of the 1B45 system protocol

In figure 4.7 are shown functions and flavors of Basic Communication Protocol of the 1B45 Subsys-
tem Serial Data Bus subsystem for the AraMiS architecture. The Basic Communication Protocol
supports communication between one Master (usually, either the OBC or the Tile Processor ex-
ternal to the OBRF) and one or more Slave(s) (here the OBRF itself). For the system design it
has been used as much as possible the support from this protocol and its support for his specific
modules.

As shown, the Basic Communication Protocol provides several basic functions for the AraMiS
architecture, which are grouped in at least four groups, which are detailed in the corresponding

diagrams and used in digrams in figures 4.5 and 4.2:
o Configuration and Status Management
o Housekeeping Management
e User Defined Messages and Commands
e Supervision and Emergency Recovery

The Basic Communication Protocol has five different options of use: Command Only, Read Data,
Write Data, Broadcast Command Only and Broadcast Write Data which differ for the direction
of data transfer and the number of Slaves involved. Those are mentioned in section 3.4.1. This

communication protocol is here implemented in I12C, but there is support for a lot of other bus

72

4 — System constraints and use cases

protocols, like: SPI, RS232, IrDA protocol, OBDB, Wireless and IntraBoard protocols, which differ
for the details of the physical support and data rate.

73

4 — System constraints and use cases

Edicm P oiecnica ds Torna, Dy EkSonic)

Wsual Pamibgrn St dasd

Figure 4.7. The use case diagram of communication protocol adopted in the OBRF

74

4 — System constraints and use cases

I2C protocol in the 1B45 Basic Communication

This Basic Communication Protocol is implemented using the standard 12C serial protocol for
communication. The Tile Processor (here the OBC) actor is the 12C master, while an AraModule
(here the OBRF) is a slave. The I2C protocol supports all the non-broadcasting actions of the
Basic Communication Protocol, namely: Write Data, Read Data and Command Only. The broad-
casting actions (namely, Broadcast Write Data and Broadcast Command Only) are implemented
by sending the same message to ALL Slaves in sequence.

12C protocol complies with the Basic Communication Protocol with:

o START Indicator is implemented by lowering the SDA() signal when SCK() signal is high
(I2C START sequence);

o STOP Indicator is implemented by rising the SDA() signal when SCK() signal is high (I12C
STOP sequence).

The I2C protocol uses RZ signaling, open-collector TTL logic level, I2C timing, with variable baud
rate. Max rate is defined by BAUD__RATE parameter.

1B45 Basic Communication Protocol

Are supported various type of commands, sent in half-duplex mode, between slaves (the OBRF
here) and only one master (the OBC, which initiates communication). This communication Pro-
tocol supports the following different actions, depending on the command issued. Here are listed

only the modes supported by the actual version of the OBRF:
e Write Data mode - when a Master wants to transfer up to 256B of data to a Slave;
¢ Read Data mode - when a Master wants to read up to 256B of data from a Slave;

e Command Only mode - when a Master issue a command without any other data nor slave

response.
Each data transfer follow this protocol, where these four points are common to each mode:
e The master set an appropriate START Indicator; in 12C is a start condition

o (i) Master sends an 8-bit Slave address to address a specific Slave, including the read/write

bit;
e (ii) Then master send an 8-bit Master address, which is used by the slave for checking reasons;

o (iii) Master send an additional 16-bits command;

75

4 — System constraints and use cases

Then, if it is a Write Data mode, the transfer is always from Master to Slave:
o (iv) The master sends again an 8-bit data, indicating the field length in bytes;
o (v) Payload data, 1B to 256B.

If it is Command Only mode, previous two points (iv) and (v) should not considered and only the

following two ones are used, which are common to Write Data mode:

o (vi) A 16-bit CRC variable with classic (which means reversed) bit order. CRC algorithm is
a CRC-16 of all bytes (including command/ID and, only if Write Data mode, length fields)

o (vii) an appropriate STOP Indicator; in I2C is a stop condition

Or alternatively to the Write Data and Command Only mode, there is Read Data mode which
trigger this actions after the 16-bit command, where the transfer is from Slave to Master. Therefore

point (iv), (v), (vi) and (vii) are not considered, replaced by the following ones:
o (viii) slave send an 8-bit SlaveID to identify the Slave type;
o (ix) an 8-bit data, indicating the field length in bytes
o (x) Payload data, 1B to 256B

o (xi) a 16-bit CRC check. CRC algorithm is a CRC-16 of all bytes (including command/ID
and length fields)

If an error occurs (either wrong CRC or wrong length or no memory available, etc.) the Slave
internally sets an ErrorFlag : bool and does not send any answer. A particular use case is
provided, Get Module Status in section 4.4.2, allowing Slave to read details on the last error and
clear the ErrorFlag : bool.

The 1B45 Subsystem Serial Data Bus support the whole housekeeping, status and configuration
vectors management. In pictures 4.2 and 4.5 is present a light blue folder named Bk1B45_ Slave.
This folder is picked from the 1B45 Subsystem Serial Data Bus, in parts relative to the slave be-
havior. The AraMiS hierarchy (see section 1.3.7) has brought the possibility to reuse this protocol,
already defined, by adapting it to the current 1B31 OBRF project.

4.4.2 Basic functions supported by the 1B45 Slave

As can be seen in pictures 4.2 and 4.5, various use cases are relying on other use cases present in this
folder named Bk1B45_Slave (also called package), which are briefly listed here. Are supporting
the Configuration and Status Management, namely for the exchange of status, configuration and

housekeeping bits to/from the central OBC and one or more Tiles (here the OBRF). Due to

76

4 — System constraints and use cases

modularity, despite this is not the case, for small systems the OBC can coincide with one specific

Tile Processor.

Get Module Housekeeping

This use case provides to return the last measured housekeeping data. This data is organized
in the following way: the Get Module Housekeeping use case returns the last acquired house-
keeping : HK_REDUNDANCY [LENGTH__HOUSEKEEPING] vector. The Master
shall operate in Read Data mode (see section 4.4) by issuing the command = CMD__GET__
HOUSEKEEPING. The Slave shall assemble ALL last saved housekeeping data into the response
message and return them to the Master. No consistency is guaranteed between sampling time of
different housekeeping data; it may therefore happen that some values have been just sampled,
while others may be several seconds old, depending on sampling rate of the Module Housekeeping.
Here is provided the constant LENGTH__HOUSEKEEPING used also in previous chapters,
which namely is the number of elements (different sensors, measurements, other data) that will be
stored into the housekeeping : HK__REDUNDANCY [LENGTH__HOUSEKEEPING]

vector.

Write Module Configuration

Overwrites all bits of the internal configuration word (configRegister : CS_ REDUNDANCY
[LENGTH__CONFIG]). The OBC shall send to the Tile (or the sub-module) as many bits
as are in its configuration word configRegister : CS_REDUNDANCY [LENGTH_CONFIG].
Each bit will overwrite the corresponding bit in the Tile configuration word. This use case
sends configuration bits by communicating in the Write Data mode, by issuing the command
= CMD_WRITE CONFIGURATION with the address of the OBRF. All bits are over-
written. Since this payload formatting is not considered in this project because it rely to external
code (in 1B45, instead of the 1B31 core code), it is not specified here. A part from these consider-
ations, the structure of the vectors is important because, in one way or another, the final content
of the vectors must be the examined by the code present in 1B31 OBRF and therefore should be
documented here. Part of it is already described in section 4.2.8. configRegister[0] can be written,
as this contains the Designer-defined HW/SW version.

Note that can be used also command = CMD__SET_CONFIGURATION and command
= CMD__RESET_CONFIGURATION: it does not matters what bit exactly the OBC had
modified, what is important is that upon these three commands the OBRF check the configuration

and eventually update the system accordingly.

7

4 — System constraints and use cases

Get Module Status

It returns to the OBC the status information (statusRegister : CS_ REDUNDANCY
[LENGTH_STATUS]) of OBRF. This use case works using only the Read Data mode on
the bus, by issuing the command = CMD__ GET__STATUS with the address of the desired
Tile, which returns its statusRegister : CS_REDUNDANCY [LENGTH__STATUS] to

the Master. Using this use case also clears the Error Indicator signal (if present).

78

Chapter 5

Hardware

In this chapter is shown the new revision of the designed hardware of the On-Board Radio Fre-
geuncy Module at 437MHz. Will be provided the hardware description at UML level, in order to
keep coherency and modularity with the whole project; to accomplish this, will be provided the
sequence and class diagrams that are related to hardware. These diagrams are closely connected
with the chapter 6 and 3, since the hardware is dependent on the constraints, use cases and software
requirements.

In UML are therefore defined the external interfaces, the relations of the hardware with the
other modules and its internal sub-modules. The actual hardware design is then obtained using
Mentor Graphics Expedition Enterprise suite. In this work the final hardware design is limited to

the PCB, which in AraMiS is considered also a tile of the satellite.

5.1 Hardware organization

The class diagram of the final module implementation which forms the tile is shown in figure
5.2, is called Bk1B31A2M where are instantiated the hardware classes, including the top-level
wire schematic, called Bk1B31A2W, shown in figure 5.1. At the Bk1B31A2M level are contained
also the interfacing function described in section 3.4.1, for the highest level of logical behaviour,
which will be implemented by the complete system. Moreover, the Bk1B31A2M contains also the
mechanical connectors and the PCB placement. While the Bk1B31A2W module implementation
simply contains the hardware without of external mechanical connectors and with no PCB layout
placed in a tile, so that can be reused in different projects. In appendix B is reported the complete
BOM contained in this design. The hardware design begins using the UML tool. As stated in
previous chapters, the concept of object programming is used also in hardware, where an object of

a class is now a physical object.

79

5 — Hardware

This hardware revision consist of a complete reorganization of classes in UML, the complete
re-organization of components which were already defined in previous thesis works, using Mentor
Graphics; therefore is check and eventually re-designed, for each component, the cell and updating
the new part numbers. Moreover, all the axternal connectors were revised. Then maximum
effort is put towards the schematic reuse, by means of creating the reusable blocks in the central
library. In chapter 7 is performed a complete new PCB placement, in order to stay inside the
space constraints of the AraMiS-C1 tile, where the tile’s space is used also by the 2.4GHz module,
named 1B31B-OBRF.

Each class is a main hardware block, referred as a Reusable Block in Mentor Graphics. In
figure 5.1, the hardware classes are yellow, in orange the components and in green the soft-
ware classes and defines. In fact, some hardware is directly dependent in software and in UML
this dependence is easily noticeable. Going in the lower layers of the design, the top-level is
represented by the Bk1B31A2W _OBRF _J37MHz class, which contains four objects inside, the
Bk1B4221W__Tile Processor_4M, the Bk1B31A2 Power Supply, the Bk1B31A2 Sensors and
the Bk1B31A2 Transceiver 437MHz. In figure 5.1 are shown arrows going towards the Tile Pro-
cessor’s class and the CC1020 class components. These are the connections with the software class
diagrams, shown in figure 6.3 and also present here, named 1B31A2S software class. Therefore,
the union between hardware and software is made through the software objects instantiations, that

are driving the Tile Processor and the CC1020 chip transceiver.

5.2 Design of OBRF at wire level Bk1B31A2W and the top-
level module Bk1B31A2M

The class Bk1B31A2W _OBRFE _437MHz is also a reusable block in Mentor Graphics, allowing
the utilization in more projects with different modules (for example integrating the OBRF with
other systems and in various missions). The sign W in the name represents the Wire level of the
schematics.

The Bk1B31A2M OBRF }37MHz carries the connectors for control and power interface, in-
cluded in MODULE OBC(), which is connected to an external I2C master (handled by the central
OBC of the satellite). The tile can be programmed and debugged with the JTAGPINS() and is
connected to an external antenna through the ANTENNA() connector. The BACKDOOR() is
used to provide the parallel data received from the ground station to a proper system which needs
a backdoor interface, where the backdoor connections are shown in figure 5.15. Finally there is an
ANTENNA CONNECTOR() which is used to control the antenna deployment and its telemetry

control.

80

5 — Hardware

The sub-modules are instantiated in UML as class’ objects, and are the Tile Processor (OBCRF),
power supply unit (OBCSupply), the transceiver and the sensor unit. Here each of them is reported.

5.2.1 Schematics

In figure 5.8 is shown the schematic of the OBRF top-level Bk1B31A2M that will be placed in
tile, comprehensive of connectors. At this level are visible 4 connectors, 3 of them are a reusable
block. The connector on the left is the referred to JTAG() pins in the class in figure 5.1, of type
Molex J8 PicoBlade, and it is connected to a MODULE__JTAG bus, that will be used to program
and debug the microcontroller using the OBRF power system as a power supply for the debugger’s
signals. The BACKDOOR() in the class diagram in figure 5.1, is implemented with a type Molex
J15 PicoBlade (figure 5.4), where the JTAG one is of same type but with 8 pins. On the right of the
schematic, there is a 9 pin connector, the Omnetics A29100-009 (figure 5.3), with 2 redundant 12C
buses used to control the antenna deployment, and it is related to ANTENNA_CONNECTOR()
in class diagram. The antenna is fed from the coaxial cable coming from the connector SSMCX
female type shown in figure 5.5 (in UML named ANTENNA() connector, figure 5.1), both for
transmitting and receiving, in half-duplex. All of these blocks, except for the Omnetics connector
J3, are packed in a reusable block since can be used for other modules. The connection with the
OBC it is of type FFC/FPC Molex connector to save space on PCB (figure 5.6), and in class
diagram is named MODULE__ OBC().

81

TT

= {Joaps
(hnodu+
Nuidg+
< 85T Cag.'
B i ZHNLEY ¥
020120 d Zviearig
.Wwﬂws << 88N> it W
<<juBuoduIog >> = un sy ﬁ
vousn : anva| X
Guoj paBBRTR 4y 1| 0438 A
ssER ! xuo._._.o._m_ (Ao gads (lanND s
SSE[3 3120 LOTS, N (lanovs
SSEP C 0I0 LOTS| {wabasps (hwd Baipe
sSER | W10d LOTS! (vl llzms” Al
ssEp: 00d LO7S o] (HLnS ™A
SSE3 1 10d 1018 (lanays %ﬂ% aasne
. SSE[2 TI5d 1075 TIOM NG 4T A Av_m.wcwwf HH_MHMMMH”
JIE=ER (1Losuasy) i
{lenenis (Jengasuas] sk NO#
(N3 HuE0+ (lvdpasuass] :”%...v
(v Barns, (laadasuass o x.,umH
(Idar nzasuass e
UEAELNOH| {)4Teinesuass e
(v Basp NI+ JosuBS BBEHOA OLE LEINE | 80 dIojuoi- =
 (wdA NI+ E.m;%ME:«EE_.,E._ Bas oy uous-| e
(lg3HOLINOW 8ad+| Josuag abelop IELEINE | vd AoTucuL = =
{1378 EILN B0 d 105U85~0BEION | £LELHE | EATIOHUC NIEméi(mlNa;_.mwt..m ..._mmanr__._x__sﬁ.
:ﬂ_ y_arma% B e YOIME Y ZHINLER - 48 rgﬁme_.ww.mﬂ”_“ﬁmh”
NS Josuas mimeaduia | gEeLg14g | dwa- i EHo
(lans+ 10SUBSTIUBLNG HZE LELYE | JUBLIND- JOENDS0 [BISAD - GFZEX04 | 250
Riddng Jemod ZvicEINE SI0SUBS ZVIEEIE THWLEY Joaedsuell ZyiEging
<<¥NY=> coyYes W <<y W
x 4
st HL A
X_swnce YIRS
(A0YAHI LN YNNILN Y+
(JSMIdDwLrs| BusDsuER-
 {Hooaxoveas
&5 ()oa0 Tnaow+
hw (IMNALN Y+
AR SIOSUBS g LEEIAE | SI0SUDs
ZHWLER bank 1L EVLEE L8 | InacsuR-
Aiddng im0 d Zw i EEME : Addngoan-
Wy 105590004 B MIZEREINE | JHDE0-
ZHNLEP 4480 MZViEEE
<<WNY>> e

Class diagi@s of the OBRF hardware

Figure 5.1.

5 — Hardware

isual Paenethgrn Standamd Eion P ot icn of Tornn, Dy Eksg

Figure 5.2. Class diagram of the top-level OBRF system

Figure 5.3. A female Omnetics connector

83

5 — Hardware

Sl
u—lpllll““u

Figure 5.4. Molex PicoBlade, male

Figure 5.5. Molex SSMCX antenna connector, female, straight mounting, SMD

Figure 5.6. Flat OBC Molex connector

84

5 — Hardware

The MODULE_OBC() mapping with the connector is shown in table 5.7. This provides the
connection with the bus named in the same way, Module Obc, which is used to wire the OBC’s

satellite bus with the OBRF, using the physical slot.

Signal Pin Syvmbol Lo Description
o Power Dismribution bus to supply 12-18V
g?;: B Dnstitanion 19,20 PDB o unregulated power supply. This power bus
is shared to all AraMiS avionics
+5V 16 5V 0 Positive 3V £35% power supply
+3.3V] S 0 Positive 3.3V £5% power supply
Reference Voltage 8§ REF 0 3V=1% reference voltage
Digital Input/Output. Any of these pins can
Digital I'O 1-5,7.9-12 D0-D9 L'o be used as general purpose digital I'O if not
configured for other purposes.
Analog I 10,12 AD-Al I Analog Input
- A standard TART serial line receive. used
EEACI:iE;IDA 11 BX I in R5232 mode and DA mode. This is
connected to the BX pin of MSP430 UART.
; A standard UART senal line receive, used
= 9 TX O in RS232 and DA mode This is
B connected to the RX pin of MSP430 UART.
SPI SOMI I Slave Out Master In Used in SPI Bus
SIMO 0 Slave In Master Out Used in SPI Bus
CLE 0 SPI Clock
C SCL 0 Serial Clock.
SDA 'O Serial Data_
. . _ To be connected with 1 wire memory for
e % 0 L module identification.
Exteinal Signals 13.15 EXTIEXT? 1O Extelma.l general purpose connectors for
routing purposes
Bt o WOE g5 PWMPWM2 O Pulse Width Modulation
Modulation
Ground 17.18 GND = Common Ground Pin
Analog Ground 14 AGND - Analog Ground
Enable 5 EN Each connected module is enabled by

activating this signal.

Figure 5.7. Signals contained in the Bk1B4811_Module__ Interface_ Plug V2

In figures 5.9 and 5.10 are shown the complete top level schematic of the Bk1B31A2W only
implementation of the OBRF 1B31A, mentioned before in figure 5.1 and being without connectors,
because it is not the top level MODULE, will be interfaced with the external world with hierarchical
connectors. In the following section will be described each of these blocks, its schematic and its

utilization.

85

5 — Hardware

VMNNILNY

Ll Ll I ol B o

= o
CZU|._IZ¢. (] (]
OOA-LNY 2 =
YOSTLLNY o O

FOSTOLNY
IS TLMNY
IS T O0OLMNY

QYL 3T000KW
H00DOM2vY8 JEOT3ITN00KW
YHNNILNY

000X IYE " 3TNO0N

JEO-3ITNO0HK

Y Lr-3ananu

IVLrT3TINT0W

QA
O

JBEOT 31N

ES
o
=
o
4]

i

N2

=

Top-level schematic of the OBRF Module

Figure 5.8.

5 — Hardware

- EXE]
= VP A
m | . .
v | ¥rea_Ph . L Transceiver Unit
N W-wa_Pa wDoo_wpa m
_DO0_A¥_50MT _Sui -
= (=1
B_D1-TH_SLHO YT 2
A_Dafra
PC **Fge TS _2uN Bt
Eps 05
R n1n - AGND
ToRET =
ANTEKNA -
ANTEHKNA w
(I
I = 0GHD
3 o |)
AZp3 sz
Al Jo|5Fa W oo AX-SOMT, . a
cax
A_be_ I Lok —
A T _[EN VH [LILITS
A _EYT1] =11
AT NG AGND 0GHD
A_0E_h0 = B_FD
[y]
A_DT _hi | R
NODULE J& o —TE
4 —T ¥
e AGND DGND f 3
= e
= =
ERDE [N H =
1 H =1 = (=1 o
= = = = = 1
w = M = prd - =
1 w wn = 1 w w
\ o = 1 T A - 1 w1 1 (=1
VCC-CFU (= - = » 1 = = - (- -
I (=] = — = L = -1
- - (== wm L3 il (=1
Tile Processor Unit = . ot = -
[=1 £ [=1 ™ a NCLI
| 1] | =] wl =}
m| o m| 1 [=] =]
NODULE-A |—u = 4 v
MODULE_E RIOTTUELE ¥ R4,
MODULE_C - ~
MODULE_D (=48]
MODULE_D b
WOODULE_JTAs "
MODULE_-JTAG | <
I = AN Tl _&C
WODULE _JT4E el =
=g 1
'\j | | :
- - 1| "
DGND AGHND ANTO_5CL e) =
=l - =
(=1
% Ll
b ——
DGND
N D
- N
NG c_¢ i
3 T3 i
T h e iy
C_0%] e
T o W 4 ANT_GND
= 'y g I 0GKD
g =] =al m|
o
1
= -
: HOODULE_BACKDOLDR
[o
= s
a

END

Figure 5.9.

DGHND

A =]
TEVZE 1L Shart_Cirguit_Y1

Wire level implementation of the OBRF, part

87

BACKD

1/2

R46
ROR

ANTI_5DaA
L

5 — Hardware

B_TP3
CHAFEN_TS

TP

DBC_DS_EN_T¥HNZ

B_TF1
EN-nagPA_TS5T

1P

1altas

ODEC -REF
OHET -3V1 T
Power Supply Unit
TEC_FOER g_TPS
= (' m
H w =
1 - m
m - =
[=3 H
JBRF _EN =
FOE_INTEARHUFPTIHL
POE_MONITORED
Eh_f-us_?ﬁ Vreg_FAf
El_vea VE A

YREF_C0
GEND

pUT3IV2

HTEOLLED
a kD

a

ACTST

NODULE _ORC

()
i

NODULE_DBC

Figure 5.10.

88

Wire level implementation of the OBRF, part 2/2

avi
AEGUOUT - Taft
Sensors Unit
O Pt b gk POB_OUT
L by P 4 nonm=¥REF
REF senas=3¥ 3
C L2¥3 lipn3vzs menantP4l
%-FDB_IN sensaZ B
p— TR
T ormreeT]
¥ amaned]
#
AEND

5 — Hardware

5.3 Processor unit Bk1B4221W_ Tile Processor 4M

This class contains the tile processor. Consists in an MSP430F5437A microcontroller, with its pins
connected directly to modules MODULE__A, MODULE_ B, MODULE_ C, MODULE_D. It uses
a system primary clock based on 4MHz quarts. There is also a secondary low power 32768kHz
quartz, which can be not mounted if not needed by the application. The complete firmware will
be loaded in this microcontroller through the MODULE__JTAG() connector. When programmed
and debugged, should be used the power from the tile. Every switch, sensor or any description of
a connection with a MODULE_ x, or pin DO, D1 of a certain module, will end up in this hardware
block, connecting the wire to the MSP430. This class holds the object cpu which represents the
MCU, opportunely configured with template CPU_DESCRIPTOR. The objects named module_z
: SLOT X are instantiations of the proper software defines used to drive the pins in the module

with the same name. See figure 5.11.

Figure 5.11. Class diagram of the tile processor

89

5 — Hardware

5.3.1 Schematics

The schematic in figure 5.12 contains the hardware object, instantiated as cpu in figure 5.11, with
the required module organization and components for the MCU. Are just present few decoupling
capacitors and the jtag bus take the supply from the 3V3 line. The connections with the external
hardware are grouped in logical connectors on the left, called from MODULE__A to MODULE_ D.
The pin usage described in all sequence diagrams and all the buses in the schematic (except for

the JTAG), follows the table 6.1 in chapter 6, which organize the logical module connections.

90

WOOULE_JTAG

0

DGHD
- -
H

=1
s
fe
=1

n J—
1

£fo

[ik_ $95-3525—6—ND

VEC_CPU
<

i

_um 5345730
21T

1
-

can
c4an

R47K
RE_504-7363

{Cu_.__.ml....D

L

it

L

&

)

P12y TADCLR LK
Frofran

LIET, 1]

LY TR
Pa/TOD
LEY
PHA/SCLY

Py

LT TR T
PLY/THD
FLATHL
PLITH 2
PRI

X

PRLE/MCLE

LT GGG

P2 SCEDFEACAIOLE
P38, /UCE0S I, LCR0E0N
PN] MR
PRRACEOLLC UTAYE
P38 AT LT S
P28 ST, UTATS e
P8 FEACANILE
P2.7UCH S0 R 500

Pag/Teng
LIS, SN
Peg/maz
P43/TROS
BaA/ TS
[TeY, Y
Po4/TBOE
[y A T

WGE DVGR VR Dend Wk

ue

MSP430F5437
Dk_296—-23766—1-ND
MEP430F5437_BOLQFP

L=t 3

P08, VSEF-+, Ve +
PFE1 YR i
Puz

FEEATOIT

P4 LCREOM AEDI S
B UESIELE UK HTE
R T AT S
.7] R A S
Foon

1m0

P

PR

P

LI

FLB

P IET

PR

PR T

ET 2 TR H ST
Lys ok

FrLafang

rrafans

Lt

PLgAne

Ll
AP A
Mo
P3O
PRATRA
7Y, 2
AT

I
DK_{311=108 41—

woamee _ | CTER

DK_300-8526-2-NI1 .,

=]

|1
I
DK_311-1084—1-ND
C1Bp

AZ_TILE_C1

DK_445—1270-4=ND
L &oe

o
X_32676B 1 |10 8 raes
-

ed-B1-ra_sTar
P]

_Bi_Ta_sINE

!

a3

Tl b1

o
=
& g

u—nlwmwn.mn._#zc o
|

Schematic of the tile processor

Figure 5.12.

91

5 — Hardware

5.4 Power supply unit Bk1B31A2 Power__Supply

This class, used as a reusable block in Mentor Graphics, represents the power supply unit of
the Bk1B31A2W__OBRF_437MHz class and provides the power to the tile, opportunely con-
trolled. The connections of grounds are always not interruptible, while the power supply of the
Bk1B31A2W__OBRF_437MHz is composed of more types of voltages. It is represented in UML
as in figure 5.13. The tile takes directly the regulated 3.3V and 3V; the power bus, PDB, is less
accurate and provides high power and a voltage from 17V to 20V. Moreover, with respect to the
previous revision, it is removed the anti latch-up module. This will introduce more space on the
board and to countermeasure this change, are modified the supply connections. Now the OBC can
directly identify a latch-up on all the power rails, since they are directly connected to the OBC
plug, and all of them can be interrupted by a single signal, insulating electrically as much time as
required by the module from the rest of the satellite. From this assumption is designed the power
supply unit.
The output voltages provided by the unit are:

o PDB_INTERRUPTIBLE(), Imax = 1.3A: Provides the interruptible PDB voltage used to
fed the Bk1B31A2 Sensors’ PDB_IN() pin.

e« OUT3V3, Imax = 500mA: provides the interruptible 3V3 voltage from the OBC. The
OBRF__EN() pin, which is taken directly from MODULE_OBC() connection, interrupt this

voltage. This voltage will supply the transceiver, the tile processor and any other 3V3 system.

e VPA(), Imax = 5A: voltage designed to supplt the Power Amplifier. It is controlled by
EN_VPA() pin. This regulator is powered from the interruptible PDB _ MONITORED().
This VPA() pin is connected to Bk1B31A2_ Transceiver_437MHz VDD__ VPA() pin.

e Vreg_ PA(), Imax = 100mA: voltage generated from input PDB_IN() and controlled by
EN_ Vreg PA(). This Vreg VPA() pin is connected to Bk1B31A2 Transceiver _ 437 MHz
Vreg PA() pin.

o VREF_CONTROLLED(): provides the reference voltage coming from the OBC, used for
sensors, and it is interruptible from the OBC through the OBRF__EN() pin.

All of these aforementioned voltages can be disabled through the MODULE_OBC() by means
of an OBRF enable pin connected to the OBRF_EN() of the unit, even the ones that can be
controlled directly by the OBRF tile, therefore the priority is given to enable signal of the OBC.

The input voltages of the unit are:

o PDB_IN(), max 15W: Uninterrupted, must be connected to the PDB voltage from the
MODULE_ OBC().

92

5 — Hardware

fisual Paradigm Standard Edition{ Politgsgi@ 3@mno. Dip: Eetironica)
Bk1B31A2_Power_Supply <<Electronic Module>>
-OBCEN_SW_PDB : Bk1B121D_Load_Switch_High_Voltage |y el <<ANA>>
-VregPA : Bk1B31A2 VregPA_437MHz 1B1255E_XX_5A_Switching_Regulator
_SW_VregPA: Bk1B121D_Load_Switch_High Voltage -V PA WVAL()
-V _PA : 1B1255E XX 5A Switching Regulator +EN_BV()
-OBCEN_SW_3V3 : Bk1B121C_Load_Switch +VCC_6V()
-OBCEN_SW_VREF : Bk1B121C Load_Switch +DGND()
+GND() +SET()
+AGND()

e S
+PDBﬂi:() .. V—— }SLOT : chan :
+PDB_INTERRUPTIBLE() = _SWV_ DCHAN : byte |
+PDB_MONITORED() K> T === et
+EN_VPA i
+EN Vi OPA() <<Electronic Module=>
+OUT3V3() -OBCEN SW_VREE e E:::121C Load_Swich
+VPA
+VregOPA() <<pin>> +OUT()
+OBRF_EN() <<pin>> +EN(val : bool)
+IN3V3() <<pin>> +GNDY()
+VREF()
+VREF_CONTROLLED()

XK
-VregPA
reg -SW_VregPA -OBCEN_SW _PDB
Vi nmo e
<<ANA>> |SLOT :class
Bk1B31A2 VregPA 437MHz ILDCHAN z byteJ
EeRinas f i) <<Electronic Module>>
<<p!n>> +Vout() <<ANAS> - S
<<pin>> +GND() Bk1B121D_Load Switch_High Voltage T ATOOP: Nilca
<<pin>> +IN()
<<pin>> +OUT() — ——
<<Component>> <<pin>> +EN(val : bool) - ANpoRe
<<Voltage <<pin>> +GND() <<MOS>>
Regulator>> IRLML6402 Power PMOS
LM317L Adjustable
Voltage Regulator

Figure 5.13. Class diagram of the power supply

o PDB_MONITORED(): takes back the PDB voltage from Bk1B31A2_ Sensors’ PDB_OUT(),
which is now monitored. This voltage should be used to connect every on-board system which

needs a PDB voltage.
o IN3V3(), max 1W: Uninterrupted voltage taken directly from the MODULE__ OBC().
e VREF(): Uninterrupted, reference voltage from the OBC.
The control signals of the unit and voltages are:

o EN_VPA(): Enables the V_PA voltage to VPA() pin.

93

5 — Hardware

o EN_Vreg PA(): Enables the voltage VregPA, to Vreg PA() pin.

o OBRF_EN(): active high signal, if not used, a pull-up should be present to keep it high. If
low, it will disable all the voltage sources of the tile, therefore all the voltages provided by
this supply unit. It can be driven directly through the MODULE_ OBC().

The objects used in the Bk1B31A2 Power Supply class are instantiated from classes which are
described in the following sections.

The PDB_INTERRUPTIBLE() is designed to be provided only to a shunt current sensor, which
returns back the monitored voltage to the PDB. MONITORED() which will be used by the internal
components of this Bk1B31A2_ Power_Supply unit. If an external components to the unit requires
the PDB voltage, the PDB_ MONITORED() should be used as a voltage source. The connections
of this class are also described in figure 5.14 in which the arrows are indicating the output and
the input of the power supply unit. The interaction with the rest of the system is described in

sequence diagrams in figure 5.15, in figure 6.21 and 6.25.

PDB

System voltages, monitored, interruptible

Figure 5.14. Interactions between the sensors and poswer supply unit

94

5 — Hardware

(N3 34480 7L

-

1
on_mmo_._zozf&oa £

Odo

,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
;
I

—

:w._mﬁ%mxmhz, 8ad dmr
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Yy

I
|
|
I
|
I
|
|
|
.
W
|
|
|

(OaNoY ‘1L

()ang

0k

(EAENI :6

ONI"8ad '8

<
N

_A_EmemmcmE BETN)

d

oaMove :L°L

UMD 705
Oowig vas €a v

1

QEOqum\ma €

1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
T
|
[
T
|
}
|
t
|
T

X110z

Oowg

“INTHooanove

S1ise| 3y} pue G YOOOXOVd ©} cleODv_Uﬂm

woJy s| ‘woyog o3 doj wolj ‘Jsplo ayj|

L=
ONog Xy 0a:L

ZHNZEY Jd8
| 0 Mmeviealia

!

.

ES.._wmumSmm_.v.m“ : w._cw_._wmlmsnmc_m” HxEmaﬂu&m
1NO 9adsiosuss zviediyd | | NI 804 siosuss zyiediig O Mevieaig

T

|
|

I
+

0EvdSW O 1OTIS
: 0EPdSIN O LOTIS

1
fiddns™semod zvLedidg
: fiddngJemod zviediNg

1S eInpop

- T

Mmigraiig

{ZNMd NI BaUoR
8uuoy 9E0 FINAOW

e — — —— —— b e e

IS™eINPON” MLBFELE
1 10J0
8uuoy OHO-FINAOW

Sequence diagram of Hxkdoor and power supply connections

Figure 5.15.

5 — Hardware

5.4.1 Schematic

In figure 5.16 is shown the top-level of the power supply unit and its relative control signals. Each

of its block is described in the following sections.

96

5 — Hardware

anNDV 3
Ei
Q G,__j
9]
o
=
3 434A-HE-H3I8D
O3y =} |
ﬂﬂ‘.kac 7HJN=>
MgaTI0HLIND I~ 4T84
N
S onal? <
° _
o EhE-NS-Nadjmn zZ
[L
=5 1B« £ <
ELELE b d 4 U e il e &
7 e anag)
< 3 —r
ﬂm.. = (i) o
— oy}
801-G0S Sy ——— im0 _ 3
O ya-seqqf0 4 r 1
LOXEY > L 2 <
=) FIFEEN) LES _A h
AVAVAY. AT AVAY @
U R el i | l|_ W
O » Mo 'o
1 L o)
| X ~l(H 2 = ouoa
oo ,.\h m.H.G._ z 13g] naMuEd
&2 xR
_ ._HG il ik i NI = 804
— s, - A
)
i | | = w
i L
T o 0 NI“RO=Z o
= L _.ﬂ =z
¥dATNI @ e L
= 03HOLINGIN 80d

A9ULdNYHALNT 80

EEEN

Top-level schematic of the power supply
97

Figure 5.16.

5 — Hardware

5.4.2 Sub-schematic V_ PA block

In figure 5.18 is shown a DC to DC Buck switching regulator that converts VAL() Voltage to a
defined one, according to voltage reference at SET() pin. It is a high power regulator that can
drive loads up to 5A. It is designed using TPS5450 buck switching regulator. The voltage reference
system of the chip produces a precision reference signal by scaling the output of a temperature
stable band-gap circuit. The band-gap and scaling circuits are trimmed during production testing
to an output of 1.221 V at room temperature.

The output voltage of the TPS5450 is set by a resistor divider (R1 and R2) from the output to
the VSENSE pin. The TPS5450 Assuming starting value of R1 = 10k$2, R2 is given by:

R1-1.221V
R Vour — 1.221V (5:1)

To form the R2 value are used resistors with 1% of tolerance (E96 series), allowing to keep the
voltage error inside the 2%. Three resistors in series are used, with two of 3.01kQ and one of 4702
visible in figure 5.16 connected to V__PA block, obtaining a nominal 3.1V voltage for the PA.

The output capacitor suggested by the manufacturer was of tantalium type, 220uF at 16V. It
is changed to a ceramic one, for dependability reasons in a high vacuum environment. Due to the
extremely low requirements of capacitor’s ESR, the ceramic capacitor used keeps this value inside
the boundaries provided. The ceramic capacitors from temperatures below -10°C start almost
halving their capacitance, and the same happens when are kept polarized, here with the regulated
DC voltage, a phenomenon that is enhanced when the maximum voltage of capacitor is near to the
operating one (see figure 5.17). The actual ceramic implementation with high capacity provides not
so high voltages, and more than 330 pF are not available with voltages higher than 3V. Moreover,
implementing a lot of parallel components to achieve high capacitance with smaller capacitors at
higher voltage, lead to an unacceptable low ESR. Therefore two capacitors are used at 220uF each,
rated at 6.3V with quality dielectric X5R.

The minimum ESR advised by Texas Instruments is provided by:

1
Resr = Gr .0y (5.2)
where the C, is the output capacitor and f. must be higher than the main poles of the compensating
network used by the TPS5450, which are at 24kHz and 54kHz, but also not too far from them.
Starting with f, at 54kHz with capacitance of 300uF provide a minimum ESR boundary that can

be reasonably lower than the equivalent of the partitor, but further testing should be performed.

98

5 — Hardware

PaolvmerTa
— Polymer Al
— WMLCC=C0G=
— MLCC=X5R=
— WMLCC=YEY=

[w] 21e1abueyn mucﬂ_umﬂmu.

DC bias [Vdc]

Figure 5.17. Capacitance variation of ceramic capacitors with different dielectric

99

5 — Hardware

5
5436V

SET

&
Boot

vaenss |4

L]
FS*SSC
L]
0

REG_TPS5450DDA,

U1

PowerPAD _GHO
El
q

7| vin

EN

Cc2

VAL

A Iy

Figure 5.18. Switching regulator for the power amplifier, providing the VPA voltage

100

5 — Hardware

5.4.3 Sub-schematic Bk1B121D Load Switch High Voltage

This switch is designed to be compliant with PDB voltage, since the input of the regulator is the

PDB and should be interrupted. Its schematic is shown in figure 5.19.

|
| E RLMLALDZ

- % N ouT —
=
I
- 1
5]
AN AN
R100K R200K
RS 504-8940 RS_505-0151 .

! Q_KTATOGZNTIO
DK _NTATQOZNTIGOSCT-ND

GNE

Figure 5.19. A switch type used in the power suply unit, capable of interrupt up to 20V

101

5 — Hardware

5.4.4 Sub-schematic Bk1B121D Load Switch

Its schematic is shown in figure 5.20, where the voltage partition is different, so almost all the input
voltage is used to drive the IRLML6402 P-MOS, because the input will be always at maximum of
3.3V without the risk of exceeding the maximum allowable Vgs. The N-MOS NTA7002NT1G has
a threshold around 1.5V and can be driven by the 3.3V signal from the MCU.

IN 0 o
S QuT
> ml 4: e =
—
S A
R7 - =27 Ry
cate” u &
R10K RISR
RS_504—8934 RS_504-9684 s
EN | M5
| E
2
Q_NTATOOZNTIG
DK_NTATO02ZNT1GOSCT
DGND .

Figure 5.20. A switch type used to interrupt low voltages, up to 5V

102

5 — Hardware

5.4.5 Sub-schematic VregPA block

Takes the input from the PDB_ MONITORED() pin and can be interrupted by the SW_ VregPA.
Its output is at pin Vreg_ PA(). The input is taken at PDB level, because the other voltages avail-
able are not satisfying the minimum drop-out requirement, therefore obtaining the line regulation.

According to the thermal specifications of the voltage regulator LM317L, the spread power is

still under constraints even with PDB voltage at its input:

T; — T,
Ojq

Where the load current Ij.q < 3mA, voltage difference (Vi,, — Vour) < 17V, T; = 125 °C, the

(V; — Vout) “Tioaq < 200mW < (53)

maximum ambient is considered to be T, = 70 °C, thermal resistance junction to ambient 6;, =

165 °C/W. The output voltage of 2.8V is given by:

Ry

Vout = Vie 1 - A4
o= Vier (14 22) 54

In figure 5.21 is provided the schematic of the regulator, which uses 4 resistors to provide the

required output voltage.

103

5 — Hardware

V_0ouT
L

RS_461-2708

C2
Clu

[{e]
7
ol
[
|
L7
o (&'
023"
M~
— rﬂ—VN < L)
- - Y w
|
o 5=t
O O
by -
- v:; "-J|
— I5 3: M
| &
=| =
- g
(8
Ol & w0
Ll = |
0 o ==+
o4O
o Iy
=M
ol v o
[o
n
o
—’\/Q‘_)Alr—ﬁ
C}D
NO'bln
C M |
— o xv
o O n
My o —
0
| o
w & o
o— | | e - Lo P
© N g
[Fp]
[

M

“(

Figure 5.21. Schematic of regulator of reference voltage of power amplifier, the VregPA

104

5 — Hardware

5.5 Sensor unit Bk1B31A2 Sensors

This class is used as a reusable block in Mentor Graphics and contains all the system’s sensors. Its
schematic is provided in figure 5.23. The output range is defined in each sub-block which contains

the single sensor. The output analog values are:
o sense2V8(), provides the value of Vreg voltage
o sense3V3(), provides the 3V3 voltage
o sensel(), provides the value of current consumption of the PDB
o sensePDB(), provides the value of PDB voltage
o senseT(), provides the value of the module’s temperature
o senseVPA(), provides the value of power amplifier’s supply voltage
o senseVREF(), provides the value of reference voltage
The unit need a set of supplies, which are:

o« PDB_IN(): takes the interruptible PDB power bus from Bk1B31A2 Power Supply at
PDB__ INTERRUPTIBLE() pin.

e VREF(): receive the interruptible reference voltage from Bk1B31A2_Power_ Supply at VREF
_ CONTROLLED() pin, for reading it.

o VDD3V3(): Take the 3V3 voltage from OUT3V3() of Bk1B31A2_ Power_Supply for reading
it.

e VPA(): Takes the power amplifier voltage for reading it
o VregPA(): Takes the VregPA voltage for reading it

The objects used in the Bk1B31A2 Sensor Unit class are instantiated from classes which are
described in the following sections. Each of these input pins are connected to sources which are
interruptible. The PDB_OUT() is the output of a shunt current sensor of this unit, therefore
can be used to power up what needs a PDB voltage with a monitored current consumption. The
connection of this class is described also in figure 6.31. The connections of this class are also
described in figure 5.14 in which the arrows are indicating the output and the input of the power
supply unit.

The class diagram of the sensor unit is shown in figure 5.22. The objects instantiated in class

Bk1B31A2_Sensors are the sensors’ reusable blocks. These objects are containing a float type

105

5 — Hardware

SENS_ VOUT value used in software in order to achieve the real read value, so compensating the
signal conditioning of the sensor:

D- Smaz
SENS_VOUT -2t

Vineas = (5.5)

Where D is the corresponding digital output from the MCU’s ADC, S, is the maximum out-
put sensor voltage (which is the same for all sensors of every kind and magnitudes handled),
SENS_VOUT is the aforementioned compensating value and b are the ADC’s available bits. The
maximum supported analog voltage is 2.5V represented in 12 bits.

FEach of these objects refers to an higher level set of classes in UML, which represents the typology
of the sensor (voltage, current, temperature...) and are containing the software classes, in green
in the class diagram. These software classes are instantiated as objects in chapter 6 in figure 6.3,
using the appropriate templates parameters in the Bk1B31A2S class. The digital value is stored
and brought to OBC when required by the housekeeping functions: the OBC should therefore use
the SENS_ VOUT and other compensating values in order to read the correct analog value, while
the OBRF provides only the raw digital value. Now are provided the descriptions of the various

type of sensors used in this unit.

Voltage sensor

The generic voltage sensor mostly converts (through a voltage divider) the input voltage be-
tween input pin VIN() and analog ground AGND() to an output voltage between pin VOUT()
and analog ground AGND(). Input voltage shall range between 0 and a maximum value which
depends on the specific specialization of Bk1B131 Voltage Sensor (instantiated as object in
Bk1B31A2_Sensors), using a defined value INPUT__RANGE, while output voltage is in the range
0 to OUTPUT_RANGE. Output impedance is common for all implementations (namely, OUT-
PUT_IMPEDANCE). It also contains a first order low pass filter to flattening the output of the
sensor. It requires no supply voltage. Output impedance is high. This must be taken into account
during sample and hold phase. In next sections are shown the actual quantitative implementation

of the sensor.

Current sensor

The current sensor converts positive current flowing from pin I_IN() to pin I_OUT() into an
output voltage between pin CS_ VOUT() and analog ground AGND(). Input current shall be in a
range which depends on the specialization of Bk1B132_Current_ Sensor (instantiated as object in
Bk1B31A2_Sensors) using a defined value INPUT_RANGE, while output voltage is in the range 0
to OUTPUT_RANGE. Differential input impedance between pins I_IN() and I_OUT() depends

106

5 — Hardware

on the actual sensor used. Output impedance is common for all implementations (namely, OUT-
PUT_IMPEDANCE). It internally takes supply voltage from pin I _IN(), therefore input voltage
on this pin shall be in range SUPPLY_ VOLTAGE_ MIN to SUPPLY__ VOLTAGE_ MAX appropri-
ately defined. Supply current drawn from pin I_IN() is given by SUPPLY CURRENT NOMINAL
in sensor class. It also contains a first order low pass filter to flattening the output of the sensor.
In next sections are shown the actual quantitative implementation of the sensor.

Output voltage is given by:
Ves vour =11 in-SENS_CS_VOUT (5.6)

where Iy jy is the current entering from pin I IN() and exitingI OUT(), while SENS CS_VOUT

depends on the magnitude required by the sensor.

107

5 — Hardware

[1oysn :
[

[
|

[Hoysn : XIANI HI
Hﬁ ssep : MH W
I 814G : NYHOV |

I ssep : 107S|
e -

XIANIH]
ssepo : MH/!
9Ka : NvHOV |
ssep: 10718

|||||||| -

C.._-+ <<Uld>>
(JaNDV+ <<uid>>
()dNT L+ <<Uid>>

Ong 43u+ <<uid>>

.
(LNOA 8D+ <<uid>>
(JanDy+ <<uid>>
(0LnoTi+ Aé_mwv 70 =180} LNOA SO SN3S+
ONe =it JosUsS JUsLNg Jzelawia
J0sUas Jualing ZelaLiE Mty
S<RINPON NOLDDME > <<3(NPO DAUOIRB(T>>
<<\S>> e
<<VNv=>> <l
JusLno-

{1eusn : XIANI MH

I
|
I
|

ssep : yH !
31Aq : NVHOV |

ssep: LOTS |
|||||||| —

0 =]J8UC3 JEOl I NIN 1+

Josuag aumesadwa] geglLgpig

Josuag aimjesedwa] celaLg <<VNV>>
<<d|NPOJY JIUOIDS[T>> 1 <<BNPOW 2AU0NIB|I>> -
<<MS>> dwey 7
<<¥YNY>>
210 =15U00 7801 © IM1OA SNIS+
Josuag~abejop DLELELYE A0cioNuow
<<¥NY>>
<<MS>>
(aNOV+ <<uid>>| 1 e it il i
(1noA+ <<uids>
(INIA+ <<uid>> L1 - \
‘ T &0 = BUODTEOI - INOA SNISH|
osuag abejjon LELgLng Josuag abejjoA ViELELNE
<<MS>> <<YNv>>
<<BNPOJN JIUOI3|T>> << M\S=>
<<¥NV>> <<8INPO IU0LI8|T>>

(43dn+
(1no aad+
(NI aad+
(wdbaip+
(vdn+
(Jencaan+

(anov+
()1esusss+|

()Lesues+
(Jengesuss+
()wdAesuss+|
()aadesuess+|
()gngesuss+|

()43 esuss+

Josuas” sbelioA D1LE1Lg1E © B0dloNuowH
Josusgabejon vieLg1g : Baiplojuour
Josueg ™ eBRIOA VLELELNE | Vd/AJoNuoUH
Josuag afejop V1ELalNg | EASIONUOWH
JosuagafeljoA VLIELGLE | JTHAJCHUOUH
Josuag ainjeledwa] gee L giig : dwsy
JosUBS UBLND 4ZELALNE ! JuaLnD-

slosuag Zviealyg

{eoonag g ool pSRENFRRY pepung whipeied ens:

Class diagram of the sensor unit

Figure 5.22.

108

5 — Hardware

ay

[ARUES

yo=
B0gqa%ulEs

<J

Lno=aao

<

_

<

ydA®SUDS

<J

CheSETEs

i

Top-level schematic of the sensors unit

NITHOM

Wd

aJ
..‘n_m

<J

d34AeEUDE

J

]

Lxm;:nﬂﬂ===

.....ch

=]
* =
FEEREE]
aNay
rDy no-1
E0JdPBuUB S o, L, L inoa-=3 no-1H
T Ul ddnag
B0d403Tuvde
0NN
ot u SHISTNI-A0d
BAZoaSuas
NS T EAIDT e
aney WY
Yaiesoesw nan u
Wohd g8 L
b A EERLEL
ONDY
FARESSuRE o, .
SHNISTEAEDOA
CALIOE L
-
EEEE]
EENT L
ONEY
nos, u
7| aKNay Oansioniuai
lesuns L d W3l
AET43wH

mmmw

Figure 5.23.

109

WITEMP) (V)

5 — Hardware

Temperature sensor

It is a non-linear temperature sensor for an AraModule. It mostly converts temperature on a
transducer (at point T()) to an output voltage between pin TEMP() an analog ground AGND().
Temperature shall be in range T__MIN to T MAX. The range depends on the specific implemen-
tation of Bk1B133_Temperature_Sensor (instantiated as object in Bk1B31A2_Sensors), while
output voltage is in the range 0 to OUTPUT_RANGE. It requires a 3V reference voltage between
REF_3V() and AGND(). Output voltage is a non linear function of temperature at point T();

this is plotted (for each implementation) in a referenced plot in figure 5.24.

In next sections are shown the actual schematics of the sensors.

2.5 |
-040 -20 [} 20 40 =14] Blﬂ 100 120 140 160

Ti*Ch

Figure 5.24. Transfer function of the NTC sensor adopted

110

5 — Hardware

5.5.1 Sub-schematic Bk1B131A_ Voltage Sensor block

This schematic is istantiated four times because as many voltages in the range of this sensor are need
to be monitored. As mentioned before, this is a specific implementation of a Bk1B131_ Voltage Sensor
with the INPUT_RANGE=5V. The block provide a maximum voltage of 2.5V, therefore the OBC
divides input voltage by a compensating factor of SENS_VOUT = 0.5 (see eq. 5.5) to obtain a
maximum range of 5V. The sensor consist of a voltage divider with an high input impedance. In

figure 5.25 is provided a schematic of the sensor used and it can measure up to 5V.

Vin

Win

R200K
RS_505-0151 Vout
' —>

C10n
— R200K
RS._534-5730 RS_505-0151
V
AGND AGMND

Figure 5.25. 5V range voltage Sensor

5.5.2 Sub-schematic Bk1B131C__ Voltage_ Sensor block

This is a specific implementation of a Bk1B131_ Voltage Sensor with the INPUT_RANGE=20V.
The block provide a maximum voltage of 2.5V, therefore the OBC divides input voltage by a
compensating factor of SENS_VOUT = 0.1277 (see eq. 5.5) to obtain a maximum range of 20V.

There is only one instantiation of this class, named monitorPDB, measure the PDB__OUT()
and provide the analog read to sensePDB() pin. In figure 5.26 is provided a schematic of the sensor
used and it can measure up to 20V. The conditioning here means varying the resistor partition, in

order to keep the output inside the specifications.

111

5 — Hardware

Vin
Vin
R820K
RS_504-8546 Vout
au D
C10n
— R120K
RS 534-5730 RS_504-9224
ARIZJ AGND

Figure 5.26. 20V range voltage Sensor

112

5 — Hardware

5.5.3 Sub-schematic Bk1B132F Current Sensor

This is a specific implementation of a Bk1B132_ Current_ Sensor with the INPUT _RANGE=5.682A,
instantiated as a current, that will provide maximum analog voltage of 2.5V to maintain the
MCU’s ADC in its dynamic range. The OBC which reads the raw value should divide the voltage
read, which is proportional to input current, by factor SENS_CS_VOUT = 0.44, according to
the shunt resistor used, which represents the sensitivity of sensor in V/A. The sensitivity is known
given the transconductance, gm, of the TI INA138 device adopted to implement it, of 200 uA/V.

Therefore, according to schematic, the output voltage is:
VoUT = 1I;, - R2-gm - R1 (5.7)

Figure 5.27 provides the schematic of the current sensor.

5.5.4 Sub-schematic Bk1B133B__ Temperature__Sensor

In figure 5.28 is shown the schematic of the temperature sensor. This is a specific implementation
of a Bk1B133_Temperature_ Sensor with a range from -40 to +130 °C with a thermal constant
of 8 s. The circuit acts as a voltage divider with high input impedance, then the output voltage
depends on the resistance associated to the NTC, that is a function of temperature. It is placed

near the power amplifier, since it is the most critical elements in term of power consumption.

113

5 — Hardware

0+68-+05 SH
H00TH

[ONDY

IAN

AAN~

0ELS-PES SH

UDT3| |

8ETVNI VO
AN-LOVYNS8ETYNI Xd

1noA S2

AL'T NSE T S-£TLOS 8ETVYNI VO

ang

| »

8¢¥-5995-54
Zc0dod M

c

A

Figure 5.27. Current sensor

114

5 — Hardware

REF 3V
REF _3¥
R38
R22K
RS_505-0325
) TEMP
TEMP
TR173
R66
NTC_ 100K
R100K g g RS 684-1273
RS_504-8940
\/ \
AGKD AGND

Figure 5.28. Schematic of the temperature sensor

115

5 — Hardware

5.6 Transceiver unit Bk1B31A2 Transceiver

This unit implements the transceiver of the Bk1B31A2W__OBRF__437MHz. It contains the digital
interface for the data processing, the RF connections for the ANTENNA(), power supplies inputs

and control voltages.
The digital programmable interface is SPI compliant, where the Bk1B31A2W__OBRF_ 437MHz

is supposed to be the master:
o PCLK(): It is the clock signal for the SPI-interface.

o PDI(): Data-input pin for transceiver configuration. provides the serial bit-stream of the

SPI-interface. This pin is used to write setup information into the transceiver’s registers.

o PDO(): Data-output pin for transceiver configuration. The serial bit-stream of the SPI-

interface. This pin is used to read setup information from the transceiver’s registers.
o PSEL(): It is the slave select signal for the SPI-interface.
The digital pins for the digitalized synchronous RF data are:
o DCLK(): the interface clock, always provided by the transceiver
o DIO(): data pin of the stream, bidirectional
e LOCK(): PLL lock pin by default, its usage is programmable

TX/RX switch control voltages, used to control the RF switch, according to sequence diagram
in figure 6.21 and 6.25, named V_SWI1() and V_ SW2().

Transceiver supplies are:
e VDD_VPA(): the power supply of the power amplifier
e Vreg PA(): the regulation voltage of the power amplifier
o VDD3V3(): the power supply of the CC1020 chip.

Its connections are described also in figure 6.4.

116

5 — Hardware

0Z0L22
<<MS>>
<<juauodwo]s>

W Hoysn : n_:<m_”

jBuol paubisun : Ty1X| AdNeasU
| ssep:y007 LO1S!
| ssep 3100 LOTS,
| SSED: QI 10718
” SSE0 : v_i_Un_r._.O.._wW
, SSE - Oh_n_t._.O:_w,
W SSEP ! 1ad LOTS|
ﬁ

ssep ! Amwn_}._.O:_wL,

Joje|iasQ [Eysli) - gyzexod
<<juauodwo]>>

o
T es0-

P
[oUMS 48 ZHINZEY - JICIE-06ZE LIS | VST

<<juauodwo) s>

(Janoa+
()oopA+
(JInoge+
Ouide+

@ ()Baun+

(JaNody+
(Janov+
(wd Baip+
(zms A+
01ms A+
(OvdA aan+
(YNNI LN+
(encaans
(Jano+
Moo+
(ola+
Ox100+
(Joad+
(1ad+
(M710d+
(13sd+

ZHNLEY Yd Zviealid : seyduyimd-

0201 DD | 18AI80sUEl]-

Yowms o ZHINLEY - ATELE-0BZELANS © UOIMS -
J0jeIRsO [BISAD - 8rZ6X04 950~

P
Yd ZHNZEY - 98894 ZHWIEY Vd Zviegig | ayndwyimd-
<<Juauodwo]s> <<YNY>>

ZHINLEY JaAladsuel] ZviEdINE

<<¥NVY=>

Class diagram of the transceiver unit

Figure 5.29.

117

5 — Hardware

RF_IN =

RF_OUT =

’ \ DIGITAL
"/ DEMODULATOR
- Digital RSS1
- Gain Control
- Image Suppression
- Channel Filtering
’ \ S - Demodulation
)
_ B[¢ ¢ .
o 2h
3 {90 s =
2 O w| DIGITAL ™
E 0 5 ® FREQ Ko | mierFace | [lm ppg
- =0 TO pC
a0 SYNTH = [, W—
Q
H= PCLK
Power = PSEL
Control
. DIGITAL
Muillplexer MODULATOR
- Modulation
- Data shaping
BIAS Xosc - Power Control
I
| T i i | |
PA_EN LNA_EN R_BIAS XOSC_Q1 XOSC_Q2 VC CHP_OUT

Figure 5.30.

Internal block diagram of the transceiver CC1020

118

5 — Hardware

This transceiver unit uses a TT CC1020. Its functional block is shows in figure 5.30. In reception,
the signal is amplified by two LNAs, where the LNA2 has a variable gain, compensating the power
level variations of the input signal. Then it is down-converted at I and Q at IF frequency and
after the filtering, is digitized by the ADCs, using a frequency synthesizer shared by the TX
circuitry. Before the ADCs there is a variable gain amplfier, in order to stay in the full dynamic
range of the ADC, reducing the quantization noise. Automatic gain control, fine channel filtering,
demodulation and bit synchronization is performed digitally through the configuration registers.
The demodulated digital signal is brought to the DIO pin, and updated at every rising edge of
DCLK.

During the transmission, is transmitted the signal present at DIO pin, sampled at every falling
edge of DCLK. It is used the frequency synthesizer shared with the RX circuitry. The stream at
DIO is shift keyed (FSK) directly on the PA, with variable gain. Optionally can be used a gaussian
filter for the shift keying, obtaining a GFSK modulation.

The chip contains two set of configurations for the frequency synthesizer, and registers which
are configuring those parts are identified with letters A or B. When properly configured the A and
B parameters, is possible to switch very fast between one configuration to another. Could be used
for double configuration for either TX and RX, or used to switch rapidly between RX and TX, as
in the OBRF.

The frequency synthesizer includes a completely on-chip LC VCO and a 90°phase splitter for
generating the LO_I and LO__Q signals to the down-conversioncmixers in receive mode. The VCO
operates in the frequency range 1.608-1.880 GHz. The CHP_ OUT pin is the charge pump output
and VC is the control node of the on-chip VCO. The external loop filter is placed between these
pins. It used an oscillator which fed the CMOS output level to the XOSC__Q1 pin (see figure 5.30).
A lock signal is available from the PLL, and can be read on PLL pin or digitally from the PLL
register. Pin of PLL and enable signal for external LNA and PA are kept disabled and can be used
also as a general purpose pins.

A note on the schematics of the CC1020: few components are not the same for all the con-
figurations. According to the bandwidth adopted for the signal, the PLL loop filter components
must change accordingly. Moreover, according to the defined carrier frequency, the RF matching
components and filtering should change, too. This is accomplished by using the TT SmartRF Stu-
dio for devising the optimum values. The components adopted are then compatible with settings

provided at the end of section 6.3.5.

119

5 — Hardware

5.6.1 Top level schematic of transceiver

In this schematic in figure 5.31 is shown the CC1020 used with the advised reference schematic
from TT, except for components of PLL loop filter and matching network. The transceiver should
be capable of tracking the frequency variations, due to doppler and other influences (both of
transceiver and the ground station). For this reason the internal local oscillator (for the IF stage)
and the frequency synthesizer are needing a precise clock source, avoiding large channel bandwidth
and so avoid to reduce the sensitivity (see section 6.3.5 to see how sensitivity varies with the
bandwidth).

The clock signal is external and so it is not used any resonant crystal. It is used a clock generator
of 5ppm accuracy, the FOX924B, powered at 3.3V and providing a HCMOS compliant output. The
frequency chosen is 14.7456MHz, in order to use the advised frequency and improve the precision
of the chip settings. The interface with the antenna is made through an RF switch, insulating the
RX and TX networks. It is a solid state switch, therefore consumes low power, it is small and with
higher dependability. The timing for the control voltages are shown in figures 6.21 and 6.25. The
component used is a SKY13290 313LF pHEMT single pole double throw switch. In transmission
the signal pass through a power amplifier (see next paragraph) before entering in the switch, while
in reception the sensitivity is high enough to avoid an external LNA.

The proper decoupling capacitors and the antenna matching circuitry are compatible with the
reference schematic provided by TI. Therefore the output towards the PA or coming from the

switch are designed to have a 50€2 impedance matching.

5.6.2 Sub-schematic of power amplifier block

In transmission the signal must be amplified. For this purpose is used an RF6886 power amplifier.
The device is manufactured on an advanced InGaP HBT process and is provided in a 24-pin
leadless chip carrier with backside ground. External matching allows for use in standard bands
from 100MHz to 1000MHz, for this reason is followed the reference design for the 433-470MHz. The
matching circuits are designed to achieve a 5082 impedance matching, using the advised capacitors
due to a low DC leakage. The schematic is shown in figure 5.32. Components of the RF OUT and
IN sections were chosen accordingly to what was suggested by RFMD, as long as the decoupling

of the supply.

120

2o %

uged

(:18e]
EHEY
G4

anay

T

| v m v
D000
O
YR

T

0]

£
o LLLF]
=
§
3

T
o

ALLL

[t
T o
3 T| aee

5 — Hardware

dgan

62

noLy
eLp

HECH

¢

Ao
Vo
T

iRl

ugLo
Zla

e N_.:._
(ks

‘““rL—ihr—

4} dog
u % |

[31%)

-

dp

£
JL¥2ASO0LZ

il

JEE]

e

L3¢

—H

dggy —
20

-%

~~~~~~

121
Schematic of the transceiver unit

Figure 5.31.



5 — Hardware

SLGEE

[LEET

R

o
(&)

[aLLEL]

awad
zugT
ONSdy o__ ,_ _._ p ; 1
N ok k) N  —— “ “ “
- TY W
— "
Zhaun -] [
" He [
_ a..mlu«Ixma-ml,.nlom“ru“mmmulmmur e *
- LR
< aNod
om24d
y 4
L2 LAV EE )
' ¢L EEEFE
=1
1 H ons 1 OO
0zzy
-] 34
oM L0 -~
Bed ot
2 ] - v
anpau N9du anad
aM>4 OK2 44 PR ER J3UA
0 LD 510 P
anody
FLEFL
H4L2
Zy ]
g
& &1
& 2 2

Schematic of the power amplifier

Figure 5.32.

122



Chapter 6

Software

In this chapter is presented the firmware design of the On-Board Radio Frequency Module at 437
MHz, entirely written in C++. Will firstly be shown the complete class diagram, which contains
all the main classes of the firmware developed, describing its architecture. A brief description of
these classes is provided, but how the firmware will operate on the field is described with sequence
diagrams and state machines. The code is kept light without overhead even when using modular
and parametric functions and classes, by exploiting the templates of C++. A method can use a
particular template in the same way as a parameter, when called in an object instantiated with

such template, but therefore with no overhead.

6.1 Software organization

The software of the OBRF is written in C+4 and therefore is object oriented. To handle classes
and their relations, is used the UML environment in order to ease the development, by connecting
classes in a visual way. Each class’ object instantiated, is connected to the father class with an
arrow. This is shown in figure 6.3.

As shown in figure 6.3, the top-level class is the Bk1B31A2S main, since contains the main().
This class provides an object called OBRF which contains in turn the Bk1B31A2S class, the core
of the OBRF firmware. This contains all the methods developed for the tile and a brief description
of them is provided later.

There are other classes in this diagram, used in this firmware, developed by others AraMiS
projects, and are the MessageHandler, Housekeeping, the Bk1B4221 W __Tile Processor 4M and
the CC1020. Every class is explained during the chapter.

The Bk1B31A2S is interrupt driven, mostly from command generated interrupts from the Mes-
sageHandler and Housekeeping classes. The MessageHandler provides the capability of the tile

123



6 — Software

to always listening from the bus, which is I2C based, in order to get any command even when in
stand-by. After a command has been received, the intepret() function is called. Another periodic
interrupt source is coming from the Housekeeping, which calls the housekeeping() method every
fixed amount of time, based on Timer A0 of the tile processor. In this way all the housekeeping
functions of the sensor classes are executed as shown in figure 6.31 and the proper vectors are
updated, according to use cases related to the housekeeping vector, described in section 4.3.

The remaining interrupt sources are from the transceiver when receive or transmit, at the DCLK
pin signal; the last interrupt source is from the Timer A1 of the tile processor, which handles the
timing of beacon, TX and RX timeout, the decision of when search for an incoming message from
the antenna. In this chapter all of these mechanisms are going to be described.

Both in software and hardware are used the slots. A slot is an object which contains a well
defined group of pins of the MCU hardware, according to an AraMiS protocol defined in 1B48. In
classes are defined as operations the slots containing the pins called modules, where the modules
of these pins are driven by software objects called SLOT__A, SLOT_B etc. This organization is
reported also in chapter 5 since these classes are kept coherent with the hardware connections and
the objects are representing also the physical ones.

When it is called logical module, it is referred to a slot mapped with the MCU’s pins. When
called physical module, it is referred also to the physical connector, which bring the connections
to a mechanical slot. In figure 6.2 there is a class example of a logical module, with the relative
objects that are mapping the MCU pins at software level (DO, D1 and so on). Note that the
driver is used by the previous mentioned SLOT__A declared as object in the Tile Processor. An
example of the organization of the logical slots is provided in 6.1; while a physical connector used

for AraMiS module can be of any type containing 20 pins.

124



6 — Software

E Pin A B c D
O
DO/RX/SOMI 11 P7.3/TA12 PS.1/TAO.1
D1/TX/SIMO 9 PS.0/TA0.0 PS.2/TA0.2
D2/SCL/SOMI 7 P3.2/UCBOSCL | P3.2/UCBOSCL | PS5 4UCBISCL | P54 UCBISCL
D3/SDA/SIMO 5 P3.1'UCBOSDA | P3.1/UCBOSDA | P3.7/UCBISDA | P3.7/UCBISDA,
D4/CLK 3
D5/PWM 1 P4.0/TB0.0 P4.1/TBO.1 P42/TB0.2 P4.3/TBO0.3
D6/A0 12 P6.0/A0 P6.2/A2 P6.4/A4 P6.6/A6
D7/Al 10 P6.1/A1 P6.3/A3 P6.5/A5 P4_'g§£g%1&'
DS/ID/INT 4 e e P25 P17 P1.6/SMCLK
DY/EN/PWM2/INT 2 P1.1/TA0.0 P1.2/TA0.1 P1.5/TA0.4 P1.4/TA0.3

Figure 6.1.

125

Mapping of a logical slot




6 — Software

e T TR

cPU zdass}

Figure 6.2. Class diagram of a logical slot

126



6 — Software

@49 553MAaY IAYTS)
S1099104d 11 10001 0¥d |
Buoyn : 1no3niL|

ﬁu,po.m”

=
poysn: | epL|

5812 NdO!

Buomn : LNO3NIL
HousN < HLAIM 3STNd
Buoin 3 1veanval
29 54n8 WNN
sse <adh |meq ssep> apedwa) : ADNYANNOTY S
ssE0 <add [eieq sseps eedwal | ADNYANNOIY MHH
HOUST 1 51075 XYW,

SSED N

B140 : NOILYH B TYD HLONIT

S1q 1 NQILYHEMYD LSHId

40 1 AMOLSIH HLd3a

U9 | AHOLSIH HLONTT

2140 AOLSIH 1S4

aa: N3O WIS

214G WNN 3L

#49 SDILSILVIS HLONTT

oq: §DILSILYIS LSHId

aAq : OIANGD HLONT

g i SNLYLS HLONTT

219 : ONIdITHISNOH HLIONTT

i

vousn n:sm_
isun : Tyl
ssep i olal
ssep 9190

ssEp 1 10d)
sse2 | 04|
ssep  31d]
ssE2 T38|

127

Class diagram of the firmware running on the OBRF

Figure 6.3.



6 — Software

6.2 Algorithms and functions of Bk1B31A2S_ main class

When the OBRF tile is powered up, will start its execution from the BkI1B31A2S main. As
described from figure 6.5, this will initialize all the systems in order to enable the interrupts
and prepare the environment variables. In this section is provided a complete description of
the algorithms implemented in this class. All the methods involved in sequence diagrams are
documented individually at the end of each section, after a description of their interactions at

system level.

6.2.1 Algorithm of the main() routine

In figures from 6.5 to 6.7 is shown the behaviour of the tile main() function. The part related to
electrical connections is highlighted in figure 6.4, which is still part of the entire sequence diagram.
In these diagrams (from figure 6.4 to 6.7) is explained how are made the connections between the
OBC and the 1B31 On-Board Radio Frequency Module for what concerns the data bus 1B45 and
transceiver connections. The 12C protocol is implemented on the logical module B : SLOT B of
the Bk1B4221W__Tile_ Processor__4M class, connected to the 12C pins of the OBC’s module
physical connector, named MODULE _OBC().

Steps from 4 to 7 are showing the transceiver’s connections under the SPI protocol, even
though there will be used the bit banging, therefore the SPI hardware is not directly needed,
introducing a greater flexibility w.r.t. microcontroller’s port used. Those steps are needed to
connect the Bk1B31A2_Transceiver_ 437TMHz and the logical module_ A : SLOT A of the
Bk1B4221W__Tile_ Processor__4M.

In steps from 9 to 11 are used 2 GPIO pins, DIO() and DCLK(), which are respectively the data
pin in which the system processor should be able to read from and write to (so to be bidirectional),
and the pin that is the transceiver’s clock both in TX and RX, in which the system is programmed
to trigger an interrupt which executes the isr CC1020RzData() : bool at every rising edge, or the
isr_CC1020TxData() at every falling edge, if needed.

The execution of the main() is described in events starting from step 10 (from figure 6.5) and after
the proper initializations, the firmware loops forever. It is interrupted upon a transition on DCLK()
or upon interrupts from OBC, which can still issue commands but on a lower priority interrupt
w.r.t. to the one related to RF reception and transmission. The AX.25 Unpacking (shown in figure
6.15) is called as soon a raw packet, with the destination address equal to AX__SAT ADDR :
char const, is fully received. In this loop is also checked the SendBeacon : byte variable, in
order to see if it is the time to prepare the beacon packet. If this is the case, after beacon data has
been prepared, the variable is reset and the transmission begin, interrupt driven by the transceiver

(the TI CC1020).

128



6 — Software

Steps from 15 to the end (figure 6.7) are showing the possible ISRs that can be triggered. Here are
shown the interrupt driven functions housekeeping(index : ushort), interpret(command : ushort),

isr_CC1020RxData(), isr_CC1020TxzData() and isr_timerAl1().

129



6 — Software

| »l
_ | (boorivik
...... (Eviad NI 8O 1 |
145 WEjuea :\ (broa e
N 10U 0p E107S e s arsas
pasn ag fim a6pa aneba) 3pouw X U HEl i s '8 fola g

ay} 513660 uid Sy uo 26pa aspsod [BUbIS

“apoll ) Ul o _Hu_“
_
|
|
|

"SI . -

Sequence diagram showing the logical data connections

ﬁ Umasdie
00 w0 2
Th1od 18
il
- -
107 va e >
. e — load s
[ (Imos xy 0as
Ll had e
oIS XL 1w
OWIS vas €0 €

(lowis™vas ea izl

linos 108 zd

Owmos1os za

(loso™anaowm i1

Figufe 6.4.

N Y Y Y

[ L
ZHI PdSWY LOTS WiE J0ss0901d 1 I ZHRLEY W

OEFRdSW T E LOTS LEF JHBO MEY LEBINE OE oL MIzEREL ABISURELZY LERLAE

' OEpdSW 8 LOTS | BJEP UO[RAULCO DO pASW Y LOTS ; ud ojiL | Buideayesnol : Buidesyesnol | : ejnpoyy s L sajpuejabessay | Jejpueabessay | UBW SEYIERINE L .

130



6 — Software

oA {00 = 9140 | [PUURYD)ANEILBIGEUS (9L DL

2. S

prow ; (Jydnus

UMERE 5D 1]

Bryd X L

'_@—'—l_

FLO0E

[FEmoded = a34q ; Jamody] ‘USI§INPOW = UOKEINPOW ] | POW .vm: jn I b

7.

(lsEnBQIEnBIsuURl (T 0L _|“ﬁ ¥

pamaly : bayy ‘preq = Buon | JpnegiByusgeepdn (g0}

% »l
p

[

{Jurew g

PaIGESIP DOOHOLYM
N U} 4um pajie

(Yoo =IN0ON L

Sev LEHINE

sajpuepatiessayy | smpusHabessap c__m._ﬁmwimm_..u_m.misnmnq_.mm_&mi 7 i 552 (S 480

7 7 VIEFSH0EF dSW 7
| WAEPSHOEY dSH

Sequence diagram of the main firmware function, 1/3

Figure 6.5.

131



6 — Software

loop |
alt,
[RXstatus == RX_RAW]
10.2:
ref ]
A .25 Unpacking In
Here the received data is ready for the
OBC.
T

| | |
T 1 T
[SendBeacon==1] | | !_

ref ] M

1B31A Beacon Packet I
Ay

ref ]
1B31A TX plug
| | |
| | |
! { 14: SendBeacon = 0 !
Figure 6.6. Sequence diagram of the main firmware function, 2/3

132




6 — Software

15: housekeeping{index ! ushort)}

I

| raf |

Galeln

1B31A Housekee ping Conneclions

16: interpreticommand : usholt}

N [

1B31A Command |pterpreter

Referfo
FEMAYX FPREAMBLE

17:ist_CC1020RxDataf)

18 isr_CC1020TxData()

Refer to TRANSMITT] J

19: isr_timerdl()

-

if

1B31A TimerA1 Interpupt

Figure 6.7. Sequence diagram of the main firmware function, 3/3

133




6 — Software

Here below is shown the description and implementation of attributes and methods of class

Bk1B31A2S main, which are developed on the basis of the algorithm described before.

6.2.2 main()

This function initialize the Bk1B4221W __Tile Processor 4M according to defined templates.
Then initialize the Bk1B31A2S class calling its init().

In main loop are checked changes of the RxStatus : t_ RX__STATUS to control the packet
availability, and if the status is RX__RAW is called the az25unpack() to prepare the received RF
data. It is checked also if a RF Beacon must be sent. If so, it is prepared a proper beacon
buffer to be sent, through the beaconPack(), therefore the Bk1B31A2_Transceiver 437TMHz unit
is initialized for the transmission of the RF Beacon, calling the CC1020InitTX (baudr : ulong, freq
: AllowedFrequencies, mod : t_modulation, txpower : byte) and resetting the SendBeacon. The
system will transparently continue the beacon transmission using the interrupt coming from the
transceiver, upon the whole buffer has been sent.

Code:

#include "Bk1B31A2S main.h"
#include "Bk1B31A2S.h"
Bk1B31A2S OBRF;

main() {
OBRF.proc.cpu.init();
OBRF.init();

while(1){
if (OBRF.RxStatus == RX_RAW){
OBRF . ax25unpack () ;

}

if (OBRF.SendBeacon){

0BRF .beaconPack() ;

OBRF.CC1020initTX (OBRF.baud, OBRF.freq, OBRF.modulation, OBRF.paPower);
SendBeacon = 0;

}

}

}

6.3 Transceiver CC1020 class and algorithms

Here will be described how all the RF parameters which are applied to the transceiver were devised.
These values are going to be used in the system through the software class Bk1B31A2S.
The Bk1B31A2 Transceiver 437MHz unit contains at its core a CC1020 transceiver chip. The

134



6 — Software

comments on component selection are made in chapter 5. The transceiver can controls the commu-
nication channel in the Frequency range 402 MHz - 470 MHz. In UML is described the transceiver
unit with hardware and software classes together: in this way the internal class of the Bk1B31A2__
Transceiver  437MHz unit, called CC7020, contains both hardware characteristics and firmware
methods. For this reason this CC1020 class is instantiated as BkI1B31A2S’ object, called simply
transceiver : CC1020. These classes are shown in figure 6.3. The CC1020 class is instantiated
by using template parameters for the pin definitions, and other values like the baudrate and the

tranceiver’s crystal frequency.

6.3.1 The CC1020 digital interface

The CC1020 transceiver provide a digital interface, SPI-based, with the microcontroller. In classes
Bk1B31A2S and CC1020 are present all the methods which are supporting its correct behaviour.
Here will be described the configuration procedure adopted and the transceiver specific methods
developed after a description of its behaviour.

Through the programmable configuration registers the following key parameters can be pro-

grammed:
o Receive / transmit mode
e RF output power

e Frequency synthesizer key parameters: RF output frequency, FSK frequency separation,

crystal oscillator reference frequency
o Power-down / power-up mode
o Crystal oscillator power-up / powerdown
o Data rate and data format (NRZ, Manchester coded or UART interface)
e Synthesizer lock indicator mode
o Digital RSSI and carrier sense
o FSK / GFSK / OOK modulation [11]

The SPI implementation on class CC1020 is currently made with bit-banging, i.e. it is followed
the SPI protocol in software in order to make it available at any digital pin of the MCU. The class
Bk1B31A2S provides the object transceiver : CC1020 to talk to the transceiver CC1020 chip
and methods in CC1020 class.

135



6 — Software

CC1020 Serial Peripheral Interface description

CC1020 is configured via a SPI-compatible interface (PDI, PDO, PCLK and PSEL pins in figure
6.4) where CC1020 is the slave. There are 8-bit configuration registers, each addressed by a 7-bit
address. A Read/Write bit initiates a read or write operation. A full configuration of CC1020
requires sending 33 data frames of 16 bits each (7 address bits, R/W bit and 8 data bits). In
appendix A in figure A.1, are shown the accessible registers used by this software. All registers are
also readable.

The time needed for a full configuration depends on the PCLK frequency: this is set inside
the CC1020 class. During each write-cycle, 16 bits are sent on the PDI-line. The seven most
significant bits of each data frame (A6:0) are the address-bits. A6 is the MSB (Most Significant
Bit) of the address and is sent as the first bit. The next bit is the R/W bit (high for write, low
for read). The 8 databits are then transferred (D7:0). During address and data transfer the PSEL
(Program SELect) must be kept low. See figure 6.8. The method used to implement this protocol
is the SetReg(data : byte, register : byte).

TSS THS
— - — -
TCL.min TCH.min THD TSD
PoLK LUy uUuuy Uy
Address Write mode Data byte
PDI B 51 4 1 I:I' 0 /W ‘#I 706 B 432 ) I:I:I 0

PDO

PSEL

Figure 6.8. Configuration registers write operation

136



6 — Software

The clocking of the data on PDI is done on the positive edge of PCLK. Data should be set up on
the negative edge of PCLK by the microcontroller. When the last bit, DO, of the 8 data-bits has
been loaded, the data word is loaded into the internal configuration register. The configuration
data will be retained during a programmed power down mode, but not when the power supply
is turned off. The registers can be programmed in any order. To increase the dependability, at
every new transceiver’s configuration all the registers are rewritten even though there was no power
down.

The configuration registers can also be read by the microcontroller via the same configuration
interface. The seven address bits are sent first, then the R/W bit set low to initiate the data
read-back. CC1020 then returns the data from the addressed register. PDO is used as the data
output and must be configured as an input by the microcontroller. The PDO is set at the negative
edge of PCLK and should be sampled at the positive edge. The read operation is illustrated in
figure 6.9. PSEL must be set high between each read/write operation. [11] The method used to
implement this protocol is the ReadReg(register : byte) : byte.

Tss Tus

T T

CL, min CH,min

_."||<_ _.'||<_

PCLK | |

Address Read mode

3 X:ix 4 3)y2)1)o0 \Ji/
= 7 A VY | W I :
- Data byte —;—
PDO X 7¥efsafaf2Y1Yol
— |

PSEL

PDI

Figure 6.9. Configuration registers read operation

6.3.2 ReadReg() and SetReg()

In these methods of CC1020 class is implemented the bit-banged SPI read and write interface on
the MCU. This uses the 4 pins PSEL, PCLK, PDO and PDI. PSEL is reset (where the initial

137



6 — Software

value of the others don’t care) and the interface is active. At every bit sent or received, is toggled
the PCLK with a period define by the WAIT CYCLE(). This period must be in the SPI speed
bounds defined in the datasheet.

6.3.3 The CC1020 signal interface

The RF data is not redirected in the SPI interface, but on two pins, DCLK and DIO, used for an
NRZ synchronous communication with the MCU. The data on the RF side can be configured to
be NRZ or automatically transformed in Manchester coding. The data format is controlled by the
DATA_FORMAT]1:0] bits in the MODEM register.

C(C1020 is used for synchronous NRZ mode, this requires, in transmit mode, the presence of data
at DIO pin from the MCU, while the MCU itself will be synchronized on DCLK signal provided by
the transceiver. Data is clocked into CC1020 at the rising edge of DCLK. The data is modulated
at RF without encoding, if no manchester is used.

In receive mode CC1020 performs the synchronization and provides received data clock at DCLK
and data at DIO pins. The data should be clocked into the interfacing circuit at the rising edge of
DCLK. Figure 6.10 shows the behaviour. [11]

Transmitter side:

DCLK Clock provided by CC1020

DIO Data provided by microcontroller

“RE” FSK modulating signal (NRZ),
internal in CC1020

Receiver side:

I’.GRF'!'! j

pax | ||]]]

DIO

Demodulated signal (NRZ),
mternal in CC1020

Clock provided by CC1020

==
PEC
=

L Data provided by CC1020

Figure 6.10. Synchronous NRZ mode

Note that in case of Manchester mode, the baudrate of the RF transmission is half of the chosen

one, due to the doubled transition when transmitting a single bit. In fact Manchester code is

138



6 — Software

based on transitions; a “0” is encoded as a low-to-high transition, a “1” is encoded as a high-to-low

transition. See figure 6.11. This ensures that the signal has a constant DC component, which is

[a—

Tx
data

|

=

v

Time

Figure 6.11. Manchester encoding

necessary in some FSK demodulators. At this first progress of the project, the AX.25 protocol is

implemented without this coding, because the bit-stuffing already reduces this DC condition.
The data in reception on the MCU side is handled and synchronized on DCLK with the

isr_CC1020RxData(). In transmission is used the isr CC1020TxData(), synchronized on the

same signal.

6.3.4 Transceiver’s configuration

The configuration of the RF circuits and the various transceiver settings are devised also using
SmartRF Studio from TI. This chip contains two identical modules for setting up to two parallel
configurations, named A and B, for TX and RX modes, allow a fast switch between them without
reconfiguring the system. Here the configuration assign the settings A to RX, while B for TX
mode.

Here are derived the main parameters for an FM based radio-link. Generally speaking, a fre-
quency modulated carrier is made by a carrier frequency, called center frequency, which carries the
baseband signal. This signal is coded using a simple Binary Freqeuncy-Shift Keying modulation,
which consists of varying the carrier frequency between two extreme frequencies around the center
one. This variation can be instantaneous or smoothed by a gaussian filter, obtaining the Gaussian
BFSK, and defines the frequency deviation, representing the absolute difference between the carrier
and the modulated frequency, as shown in figure 6.12.

The occupied bandwidth is given by the sum of the doubled frequency deviation, which is called
the frequency separation and it is the bandwidth occupied by the baseband signal (see section

6.3.5). But the filter bandwidth that will need to be defined must be greater than this value,

139



6 — Software

including all the drifts due to errors and the doppler effect, see figure 6.12. In that picture is

shown how the filter is oversized w.r.t. the ideal bandwidth. This is done to cover the system

errors and deviation, and to obtain an efficient channel separation with high frequency drifts, a

channel should be reasonably outside the filter, a shown again in that figure, pointed out by the

Channel Spacing. According with these considerations, using SmartRF Studio and choosing a

channel spacing, the filter bandwidth is automatically chosen.

S Channel spacing ----=---==-=-------—-—-

~ 1 Y

0dB

fr £y fy

Figure 6.12. FM spectrum organization

140

B -3dB
Fr'pquency deviation
.~ "
1
1
1
1
i .
Frequencyiseparation

< L) .
i
]
1
: —
I

|



6 — Software

The SNR and the bandwidth are also dependent with the ratio of the frequency deviation and
the baseband signal frequency. It is expressed as a modulation index, here called h, as shown in

equation below:

_Af_Af
T 2

Where Af is the frequency deviation, f,, is the highest frequency of the digital signal, using T}

h (6.1)

as the symbol period [14]. This value is < 1 for narrowband systems. With transceivers of this
family, lowering the modulation index will increase (degrades) the level of sensitivity, and going
lower than 0.5 will increase very steeply the sensitivity level. The higher bound of the modulation
index is the increase of bandwidth if too high, because every doubling of the filter bandwidth
will halve the sensitivity. As a conclusion, a good (and common) design compromise is using
modulation index around 1. This is also suggested by SmartRF Studio.

The datarate, referred as baudrate in use case in figure 4.5, is chosen to be at 9600 baud per
second, which corresponds to the actual bits per second since the NRZ is used. Note that if
Manchester is used, the programmed baudrate corresponds to the one on RF side, therefore the
bitrate is half of the programmed baudrate. Capital letters of equations of this section refers to
digital register values of the CC1020. This is the formula from which the registers values were

devised:

fIOSC

Baudrate =
uarate = S REF DIV +1)- DIV1- DIV2

(6.2)

Where the f,,sc is passed to the class as a template. Texas Instruments advise to use a frequency
of 14.7456 MHz, therefore is used that due to the factory tests and guaranteed values are devised
with that frequency.

Then must be decided the carrier frequency to be generated by transceiver. This is based on
a reference frequency for which a timebase crystal of 14.7456 MHz will not introduce any error
because values of internal registers are always integer numbers. A dithering can be automatically
implemented by the transceiver, modifying the carrier according to DITHER parameter. The

formula for carrier frequency is:

B 3 FREQ+05-DITHER
fc*fref' (4+ 39768 > (63)
where frf:
. fl‘OSC
Jrei = REF DIV+1 (64)

141



6 — Software

The FSK modulation frequency can be set in DEVIATION register, setting the frequency spacing
from the carrier. An fge, is set, where fy = f. — fier When sending a ’0’ and f; = f. + fger When

sending '1’. Where in TX mode:
fdev = fref . TXDEViM ' 2TXDEV_X716 (65)

In RX mode is programmed the local oscillator in order to achieve fi, = f. — fiy, and from
datasheet the ideal intermediate frequency is designed to be f;y = 307.2kHz and a value as close

as possible to that should be used, according to:

fOSC
" 8. ADC_DIV - 2TXDEV_X-16

fir (6.6)

The further consideration is the bit and word synchronization. This is needed to devise a
correct number for the FLAG THR in reception and FLAG_THR_ TX in transmission. The
data slicer, to make the bit decision, uses an average value of both maximum and minimum
frequency deviations detected: the expected received frequency deviation is set using RXDEV__M
and RXDEV_ X in the same way as in eq. 6.5. The minimum bit transitions used to made the
average are set in AFC__CONTROL register. In this case is set the maximum, four, to achieve
better quality of decision.

The AX.25 protocol compatibility requires that between one packet and another is sent the
AX_ FLAG = 0x7E, this contains 2 transitions on RF side when coded with NRZ. For setting up
the AGC, synchronizer and data slicer, are recommended 3 bytes, including the four transitions
set in AFC__CONTROL, of values 0xAA or 0x55 coded on RF side (containing 7 transitions per
byte). Therefore, if the AX FLAG is sent, are needed at least 11 bytes for setting the receiver
correctly. The word synchronization is then performed on the basis of this flag, when adopting the

algorithm in figure 6.26.

6.3.5 Filter parameters selection

The overall signal bandwidth is needed to set accordingly the FILTER register. The signal band-
width SBW is defined using the Carson’s rule:

SBW =2 fm+2- f4e, = baudrate + freq separation (6.7)

where fm is the maximum frequency of modulating signal. In NRZ mode occurs when transmitting
a 0-1-0 sequence, therefore 2- fm is the programmed bitrate, because of transmitting two different

bits. With Manchester, occurs when transmitting a continuous 1’s or 0’s.

142



6 — Software

The filter bandwidth must include the crystal errors and other frequency deviations, like the

doppler effect. This bandwidth should be:
ChBW > baudrate + frequency separation +2(2- XTAL ppm - fe+ faoppler) (6.8)

At 9600 baud per second, the frequency separation suggested as a starting point is 9900 Hz. This
is also suggested by the TT SmartRF Studio software. With 11 kHz of doppler and a crystal of
14.7456 MHz +/- 2.5ppm and carrier frequency of 437MHz, the total minimum channel bandwidth
is

ChBW > 45.8kHz (6.9)

according to equation 6.8. If too less sensitivity is measured, the bandwidth can be reduced. The
filter bandwidth can be adjusted by tuning the bits [0-4] of FILTER register, at compile-time. The
channel bandwidth (ChBW) is set using the FILTER register by means of

307.2

where the intermediate frequency is 307.2 kHz.

Typical receiver sensitivity values are reported in figure 6.13. At 9.6 kBaud the advised deviation
is 9.9kHz with 25.6 kHz of filter BW. Widening to 51.2 kHz reduces sensitivity of 10 - log (%) =
3dB, as proven in figure. Due to the wideness of filter, the sensitivity can be still improved by
widening the frequency deviation, therefore obtaining a modulating index M grater than 1, so
becoming compliant with the sensitivity specifications. But the advised frequency deviation from
SmartRF studio is kept, since the configuration is still under the minimum sensitivity value.

It is important to remind that reducing the baudrate allows to reducing the filter, therefore
increasing the sensitivity. These are mission dependent values, and must be re-elaborated the
corresponding passive components for the transceiver, possibly using the SmartRF Studio from
TT, if the specifications will be changed.

Finally, the adopted characteristics of the channel are 9600bps data rate, fg4e, = 9.9kHz, BW =
51.2kH z, GFSK modulation and NRZ coding.

6.4 Algorithms and functions Bk1B31A2S class

This class behave mostly with interrupts, and it is an object of the BkI1B31A2 main. Except
for few functions called by the Bk1B31A2 main for the tile initialization, everything works upon

external or timer driven interrupts, which are:

143



6 — Software

Sensitivity [dBm]

Data rate Channel spacing | Deviation | Filter BW NRZ Manchester UART
[kBaud] [kHz] [kHz] [kHz] mode mode mode

2.4 optimized sensitivity 12.5 +2.025 9.6 -115 -118 -115

2.4 optimized selectivity 12.5 +2.025 12.288 -112 -114 -112

4.8 25 = 2475 19.2 -112 -112 -112

9.6 50 =4.95 256 -110 -111 -110

19.2 100 +9.9 51.2 -107 -108 -107

384 150 +19.8 102.4 -104 -104 -104

76.8 200 +36.0 153.6 -101 -101 -101

153.6 500 +72.0 307.2 -96 -97 -96

Figure 6.13. Typical receiver sensitivity as a function of data rate at 433 MHz, FSK modulation

e OBC requests
e Presence of carrier
o Internal timer

Here are implemented a lot of algorithms for as many functions, which are defined in the previous
use cases chapter. The diagram from figure 6.5, shows the firsts methods of the Bk1B31A2S that
are called. The complex ones should follow a proper algorithm, which are described in this section.

The algorithms have a C4++ implementation which is herein described individually.

6.4.1 init()

Called by the class Bk1B31A2_main, initialize the CPU, disabling the watchdog (see the templates
used for the proc : Bk1B4221W_ Tile_ Processor_ 4M). Then initialize the transceiver’s

parameters, which are:
e power amplifier set to maximum
e baudrate to default value for the AX.25 at 9600 bps
o modulation set to GFSK
o the carrier frequency of default channel chosen

Then the configuration is updated to configRegister with the updateConfig(baudr : ulong, freq :
AllowedFrequencies, mod : t_modulation, txpower : byte). Then the Bk1B31A2_ Transceiver 437MHz
is initialized with the CC1020InitRX (baudr : ulong, freq : AllowedFrequencies, mod : t_modulation,
tzpower : byte) called with the just set parameters, because the RX mode is a default one.

Finally, all the necessary interrupts are initialized:

144



6 — Software

e timer : TimerAO interrupt for housekeeping functions
e timerAl : TimerAl interrupt for system tick functions

o uartB0O : UARTBO for the I2C interrupts from MODULE _OBC(), handled by the Message-
Handler’s init()

o uartBl : UARTBI for the 12C external antenna deploy control, the bus is connected to both

of the redundant antenna device bus, see figure 6.14.

In this implementation the Bk1B31A2_Transceiver_437MHz uses bit-banging for the SPI in-
terface, therefore the SPI interrupt of uartA0 : UARTAUO is not initialized.

St AEANTENNA_INTERFAC | /[ SLOT_D_MSP430 ; Bk1B31A2_Power_Supply :
E 5LOT_D.MSP430 Bk1B31A2_Power_ Supply
T
I
|
L

Antenna

1.4: D2 SCL SOMI()

1.2. D3_SDA_SIMO[) REneE

Bus 1 of
antenna

1.5 du-rav:;n

1.3: D2_SCL_SOMI()
1.4 D3_SDA_SIMO[)

e
%

1.6:GND()
|

= 7

|
|
Figure 6.14. External antenna connections

Code:

Bk1B31A2S::init () {
proc.cpu.init();

//var inits

transceiverDefVals();

//init pins for RXmode, default

updateConfig(baud, freq, modulation, paPower);

// apply config

CC1020InitRX(baud, freq, modulation, paPower);

// Now if PSEL is toggled, the CC will search for an RSSI

bus.init(); //handler init
hk.init();

145



6 — Software

proc.cpu.uartBl.enable(I2C_MASTER_MODE, 9600);

//Main timerAl already initialized

//Leave A0 for housekeeping interrupt routine, use Al for another ovflw interrupt
//init what is needed for 1b45 etc but no for DCLK
proc.cpu.timerAl.clearInterrupt();

proc.cpu.timerAl.enableInterrupt(0x07); //ovflw mode

}

Bk1B31A2S: :transceiverDefVals() {
paPower = defPaPower;

baud = defBaud; //def vals

modulation = GFSK;

freq = FREQ1;

memcpy (addressTo, AX_DEFAULT_DEST_ADDR,
AX_ADX_LEN);

}

6.4.2 AX.25 Unpacking algorithm

This algorithm is represented in figure 6.15. It is used by the BkI1B31A2 main class when the
OBREF status become RX RAW. This status means that a received frame must be unpacked in
order to extract the AX.25 informations from it and this is what the AX.25 unpacking does. This
diagram is a visual structure of the az25unpack(). From step 1.1 on, is called the subfieldID (buffer
o char %, subBuff : char *, start : short €, mode : t_ID MODE) : bool one time for every field
present in the received AX.25 packet: the implementation of this subfield identification method
is described later. At the end of the unpacking, the main() will have all the useful data from
the frame, ready to be sent to the OBC according to use case Get Received Packet in section
4.2.4. In the AX.25 fields documentation are described all of the types of data which is handled
by the subfieldID() (read the AX.25 protocol use case). These fields are here implemented in
addressFrom : uchar[7], addressTo : uchar[7], nr : uchar, ns : uchar. The auxBuff :
uchar[BUFFLEN)] contains the payload, while the crc : ushort is the FCS of AX.25 protocol.

In step 1.6 if the subfieldID(buffer : char *, subBuff : char *, start : short &, mode : t_ID__
MODE) : bool returns TRUE, there is a problem with the packet composition, therefore the
RX_WRONG_ CRC is set already here, and it is a worst condition than in step 1.10 because
the packet can be not formatted right, showing a protocol mismatch. In step 1.8, the RxStatus
: t_ RX__STATUS is set to RX_IDLE if the packet fails the address check, invalidating all the
potential data resetting the receiver status. This is the same value which is set after a transmission
to the OBC occurs, since the packet now is transferred and should be no more present in the

OBRF. Always in step 1.8, the RxStatus : t_ RX__STATUS is reset because could also be a

146



6 — Software

CMD_ BACKDOOR, therefore should not be available to the OBC. If no error takes place, at the

end all the AX.25 parameters are extracted from the receiving buffer.

v St St P o RERBSTADS T BRIBSTAZS

T
I
1. ax25unpack() |

1.1: subfield|D{buffer ; char® = RxBlrﬂ‘_-aLbBuﬁ: char® = addressTo, start : short® = start, mode : t ID_MODE = ADDR) : bool

[addressTo == AX_SAT _ADDR]
1.2: subfield|D{buffer : char* = RxBuffer, subBuff: char® = addressFrom, start : short8 = start, mode : t_ I MODE = ADDR} : bool
1.3 subfiek|D{buffer : char® = RYBuffer, subBuff | char = auxBuff, start : shont& = start, mode ' t_|ID_MODE = CONTROL) : bool

] Then fill the nr - uchar

’ ‘and ns  uchar variables
1.4. Skip PID from RxBuffer 2

2 |accordingly to protocol

1.5: subfiekd| D(buffer | char® = RxBuffer, spbBuff : char® = auxBuff, start : shorté = start, mode @ t_ID_MCDE = DATA) : bool

alt.
[subfield| Df RxBuffer, auxBuff, start, DATAY]
=)-16: RxStatus = RX_WRONG |CRC
[ ; e
If set here, data is wrong and not
recognizabie inside the buffar.
" Trnis distiction is useful when
ait] making error anatysis or code
[(getCommandCode(auxBuff) == CMD_BACKDOOR & &{RxStatus 1= RX_WRONG_CRC] debuaging. The order of CRC
. check Is fundamental because the
1.7 executeBackdoor buffer | uchar® = auxB uff) CRC var]ahiessraady only aﬂ{_ﬁr
[ the e;ﬁbﬁeﬂ]t:ah.
]
]
1.8: RxStatus = RX_IDLE !
i
1.8; Retum; !
]
]
]
]
]
]
|

Figure 6.15. Sequence diagram of the AX.25 Unpacking procedure, 1/2

6.4.3 ax25unpack()

This section provides the function implementation of the algorithm in section 6.4.2. This function
takes RxBuffer : uchar[ BUFFLEN)] in which a complete AX.25 frame is present, not necessarily
CRC correct. The packet is assumed to be fulfilled with the ending AX_FLAG : byte const,

147



6 — Software

[att]
['checkCRC{ard)] T. 10 Fx Status ,Z_RJ'(__E'EI'_RONG_CRC
k If set here, data is wrong but
confined and recognizable inside
the buffer.
ED

[RxStatus 1= RX_WRONG_CRC]
F-‘ 1.11: RuStatus = RX_OK

~| 1.12: paylcadlen = ByteCount - 4 - 14;

The payload is s long as the total received bytes, excluding the
last AX_FIAG - byte const which is stored in

the ExButfer : uchar[BUFFLEN] (1 byte), the gre (2 bytes), the PID
(1 byte) and the two 7 bytes each addresses (14 bytes).

Figure 6.16. Sequence diagram of the AX.25 Unpacking procedure, 2/2

because the starting one was needed only for the synchronization.

Then the callsign of the destination of the packet is checked, by reading the addressTo :
uchar[7], generated by the call of subfieldID(buffer : char *, subBuff : char *, start : short &,
mode : t ID _MODE) : bool. The next step is to find the sender address, in the same way, but
storing it in addressFrom : uchar[7].

The CONTROL byte is checked to achieve the sequence numbers that are needed by the OBC
and copying them in nr : uchar and ns : uchar. Note that the PID byte has been trashed since
it is not used any layer 3 protocol. See the AX.25 protocol conventions used.

The checkCRC(crc : ushort), if needed, will set a flag RxStatus : t_RX__STATUS =
RX_WRONG__CRC, otherwise will be RX__OK. It is also checked if it is a backdoor command,
but for dependability reasons it is executed only if the packet is correct. On the other hand, if
it is a normal command that will be sent to OBC, it is the master (OBC itself) responsibility to
deny its execution, for this reason the elaboration continues even if there is a RX_ WRONG__ CRC

148



6 — Software

condition.

The OBREF status is updated and the payloadLen : uchar will be equal to the ByteCount
: short (the total length of received data) minus the data that will not be needed by the OBC,
which is the FCS, PID, the flag and the addresses.

A note on addresses from/to the satellite: the OBC is not interested in the destination address
(which should be of the AraMiS satellite) when there is incoming data, it is a task for the OBRF,
because will automatically check if the address received matches the AX__SAT ADDR : char
const*. In the opposite way, the sender address (identified with the ground segment) does not need
to be checked by the OBC itself because the OBRF uses a AX_DEFAULT_ DEST__ADDR :
char const® or a particular addressGround : uchar[7] previously set by the OBC.

Code:

Bk1B31A2S: :ax25unpack () {
subfieldID(RxBuffer, addressTo, start, ADDR);

if (addressTo == AX_SAT_ADDR) {

subfieldID (RxBuffer, addressFrom, start, ADDR); // static vect
subfieldID(RxBuffer, auxBuff, start, CONTROL);

ns = (auxBuff[0] >> 1) && 0x07;

nr = (auxBuff[0] >> 5);

(*start)++; //PID trashing

if (subfieldID(RxBuffer, auxBuff, start, DATA)) { //crc updated

RxStatus = RX_WRONG_CRC; // something bad happened, wrong data in rxbuffer
}

else if (!checkCRC(crc)) {

RxStatus = RX_WRONG_CRC; // check not passed, writing data in rxbuffer

}

if ((getCommandCode (auxBuff) == CMD_BACKDOOR)&& (RxStatus != RX_WRONG_CRC)){
executeBackdoor (auxBuff) ;

RxStatus = RX_IDLE;

return;

}

if (RxStatus != RX_WRONG_CRC) {

RxStatus = RX_0K;

}

updateStatus (RxStatus, paStatus);

payloadLen = ByteCount - 4/*%FCS, PID, final FLAG*/ - 14 /*addresses from/to*/;
// In cmd interpret all data is put in 1B45 buffer

CC1020InitRX(baud, freq, modulation, paPower);

}

}

149



6 — Software

6.4.4 getCommandCode()

Used to return the type of command from the AX.25 packet. It is used to check if the command
should be interpreted by the OBRF, as described in section 6.4.3. The command is related to
the OSI Layer 3, therefore is contained inside the received RF frame(destAddr, sourceAddr, N(R),
N(S), info, crc) at info field. According to AraMiS protocol, it is designed to retrieve 16-bit wide

commands.

Bk1B31A2W_0BRF_437MHz: : t_OBRF_DEF_COMMAND_CODES Bk1B31A2S::getCommandCode (uchar*
return ((t_OBRF_DEF_COMMAND_CODES) (auxBuff[0] | auxBuff[1]<<8))
}

6.4.5 executeBackdoor()

Executes the backdoor command from the referred vector. Simply apply the bit of a vector location

to the assigned digital ports.

Bk1B31A2S: :executeBackdoor (uchar* buffer) {
SLOT_C: :DO.write(buffer[2]&0x1);

SLOT_C: :D1.write((buffer[2]>>1)&0x1);
SLOT_C: :D2.write((buffer[2]>>2)&0x1) ;
SLOT_C::D3.write((buffer[2]>>3)&0x1) ;
SLOT_C: :D4.write((buffer[2]>>4)&0x1);

SLOT_C: :D5.write((buffer[2]>>5)&0x1) ;
SLOT_C: :D8.write((buffer[2]>>6)&0x1);

}

6.4.6 subfieldID()

This is the description of the implementation of subfieldID() used in section 6.4.3. This function
is mode-driven and its purpose is to identify and store separately all kind of data present in the
AX.25 protocol frame. This frame is stored in a main buffer while the subBuff buffer is used to
store temporarily the searched parameters. A word synchronization is assumed to be present. The
subBuff vector will contain always only the last data of the last mode used. Every subsequent call
will overwrite the addressed buffer subBuff from the beginning, while the main buffer continues
from the last position pointed from start.

If mode = ADDR, 7 bytes are copied from buffer to subBuff according to the AX.25 address
format, start reading from the start pointer, which is used for indexing the main buffer. As
required by the AX.25, the last bit of the field of packet tells if that field is finished. That bit is

returned by the function to allow the caller the decision of continue reading or not. A If mode

150

buffer) {



6 — Software

= CONTROL is copied 1 byte because it should be the control byte of the AX.25, from buffer to
subBuff.

If mode = DATA, all the bytes until the end of the main buffer are stored in subBuff. The CRC
(FCS of AX.25) is stored in the crc : ushort variable, reversed as described in AX.25 protocol.
Since in this mode the data is retrieved until a final AX FLAG is found in the main buffer, a
length control is implemented to prevent loops in case if flag missing, signalling an error, returning
a true boolean value. The final retrieved content is purged from the flag and FCS. This function
can be improved to achieve compatibility with other standards out of the AX.25, by adding others
modes of type t_ID_ MODE.

Code:

bool Bk1B31A2S::subfieldID(char* buffer, char* subBuff, short& start,
Bk1B31A2W_OBRF_437MHz::t_ID_MODE mode) {

switch (mode) {

case ADDR:

memcpy (subBuff, buffer, 7xsizeof(char));

bool _keepGoing = (buffer[(start) + 6] & O0x1); // 1LSB copied
of the last byte SSID, bool conversion

start += 7; //next subfield

return (_keepGoing);

break;

case CONTROL:
subBuff [0]
_keepGoing
start++;
return(_keepGoing) ;
break;

buffer([start];
buffer([start]; //11sb bitwise

case DATA:

short i = start;

short k = 0;

while (buffer[i]!=AX_FLAG && i < 255){

subBuff [k++] = buffer[i++];

}

if (i>=255)

return 1;

subBuff [k-3] = "\0"; // trunc out the FCS and flag, not needed here
start = start + i-3; // final point of the buffer, with no FCS and no flag
crc = (subBuff [k-2]<<8)&0xFF00;

crc |=subBuff [k-1]&0x00FF; // saves the crc, reverse order, see use case
ax.25 protocol

break;

}

return O;

3

151



6 — Software

6.4.7 Beacon packing

When looping, the main() polls the SendBeacon variable. This is set accordingly to the sequence
diagram in figure 6.17. In this sequence diagram is presented the algorithm of a beacon preparation
procedure. Are shown two types of beacons: the OBC beacon (in steps from 6.2 to 6.4) and RF
beacon (in steps from 7 to 11). The former has the content completely transparent to the OBRF
and it is handled by the On-Board Computer, happens when it is not found any command from
ground after a predefined and mission dependent N attempts. What it is interested to the On-
Board Radio Frequency system is the RF beacon. This is activated when no command is received
from OBC (the kind of commands is defined in the RF Beacon section in chapter 4), letting a
control variable to increment without any reset by a mission dependent K times. When reached
a certain value, this variable triggers the auto-generation of the content to be transmitted, as
described better here below, therefore the OBRF must support the OSI Layer 3 for this use case.

As a consequence, in order to keep trace of the OBC’s calls, the OBRF resets a variable every
time a request form the OBC takes place and increment it at every system tick of 65ms. When the
value BEACON_ TIMEOUT is reached, the SendBeacon is set and the beacon packing starts.
Then it is initialized the transmission procedure like every other normal transmission, described
later. The beacon use case described in section 4.2.11 is the guideline for the BeaconPack() method.

In figure 6.18 is simply prepared a generic buffer, called beaconBuff : uchar[BUFFLEN],
that will be copied in TxBuffer : uchar[ BUFFLEN] when packing the AX.25 data, as described
later, when calling the az25pack(). The first step of the beaconPack() is therefore the assignment of
the command code RF__BEACON that will be read by the receiving station, which is an OSI Layer
3 command type. Then all the values are copied in the beacon buffer following the order defined
in the use case RF Beacon. After this preparation, is called the initialization of the transmitter

(described in section 6.4.22) and only there is prepared the TxBuffer.

6.4.8 beaconPack()

This method implements the algorithm in section 6.4.7. According to the use case RF Beacon,
this method generates the beacon data and put it in the beaconBuff : uchar[BUFFLEN]. This
method is visually described in figure 6.18 and its timing is handled by a system tick provided by
the isr_timerAl1().

Firstly is generated the cose CommandCode : t_ OBRF_DEF__COMMAND_ CODES
= RF BEACON and then is put in the beaconBuff : uchar[BUFFLEN]. The same is for the

other parameters described by use case. A note on the two loop cycles: since the beaconBuff :

152



6 — Software

uchar[BUFFLEN] has 8-bit locations, the vectors copied inside that are 16-bit wide are split in
two by checking if the index is odd or even, providing the capability to recognize if the previous
copy was the most significant byte or not of the 16-bit vectors, and read the half word accordingly.
Code:

Bk1B31A2S: :beaconPack() {

CommandCode = RF_BEACON;

beaconBuff [0] (byte) (CommandCode & OxFF);

beaconBuff [1] (byte) ((CommandCode>>8) & OxFF);
beaconBuff [2] LENGTH_HOUSEKEEPING;

byte index = O;

for (index = 0; index < 2*LENGTH_HOUSEKEEPING; index++){

if ((index%2)==0){

beaconBuff [3 + index] = (byte) (housekeeping[index/2] & OxFF);
}

else {

beaconBuff [3 + index]
}

}

(byte) ((housekeepingl[index/2]>>8) & OxFF);

beaconBuff [3+2+«LENGTH_HOUSEKEEPING] = LENGTH_STATUS;

for (index = 0; index < 2*LENGTH_STATUS; index++){
if ((index%2)==0){

beaconBuff [4 + 2*LENGTH_HOUSEKEEPING + index] = (byte)
(statusRegister [index/2] & OxFF);

3

else {

beaconBuff [4 + 2*LENGTH_HOUSEKEEPING + index] = (byte)

((statusRegister[index/2]>>8) & OxFF);

+
¥
}

153



OHD WA LT L

(vLlvd
JHO YD LT L

=19 'NOOVAE 4Y = OJu1 ‘000 = ()N 'SINVHY
= Jppye0IN0s “IOX0S| = JPPYISApjowEY 1} |

3

= pegjfed 'apos WivQ MOV = adAlabessaw
‘000 = (MIN]abessapypuas . 2°| L

>

[inoawn]

o

be— |

(Y1vd = BIEp 'L LHOHS
= puBikuos)ab o

“P3{IED U324 J2A3U SABY PIOA

[% HO4sM | EJEp 7§ JOUSH | (D03 PUELDI)EIE QR M, UMUM Ul Sl

TISW} J5] N Jaye splom 1ayjo ul ‘thostun usalB uey) aiow 1o0] PIOA . (5 HOUSH - EJep 8 HoUsn . Ujoua] pUelmod | ElEg=un Bules)
. sdojs pue ¥ams s3eb 1055330 dpUEIUCOATE W] - Buiddois inowym sawn 3 idnuaiu sy 12660 jswn ay L

A

E

QD WP LT L P

Wivad

DHD IR L L FS |

(ssaippe ‘yLyQ 'Bpqo Y1YD OV = peopied

]

e

|
23 'NODYIE D80 = ou ‘000 = (M) ‘SN vy ”
|

= peojied ‘opoo”yLYQ WOV = adf abessew
‘000 = {d)njebessapypuss 2 L v'9
[Tar e = (SnLvLs Xy 80 ¥ smes)]

e

(¥1va = E18p '| LYOHS
= puewAoa)uoysInd g

7551_.“&1_.7 7 E_Un___.-mni 7.5%;&9_}0*&51_&17

OIPEH PIEOF-UQ £ | SHA0

‘- = poysn ; ua| peoiied ‘poo = (diN)ebesseppues v PP DX0S| = PP plawey 1| 'F'g e
N
0
m ]| —
_”1 fos : (BUousn @ pBua| SMEIS = FUOUEN | BIER 'SMLYLS 139 QWD = DPEWALCSEIEQPESY €9
| (vLya = eiep ‘NODJY3E 080 [sidwane N sauy]
W = puewwdjuoysiel zg %
|
| V],
_”; 104 T (RUOUSN [ BB 'STBIS = FUOUREN | BIBP 'SMLYLS 139D QWD = PPRUWCHEIBqQDEa 119
| "
{uawn s 9 | %
| M1
ﬁ on  (gpoysn ; wbug) 'smiEs = guoubn  BER 'SNLYLS 139 WD .“rv_._._._méeawﬁmnumoz s
(houn 51 g L : } } — P )
0A (guoysn : bua) 'SMIEls = PUOYSN { BIEP 'SNLYLS 139 QW = _.._._._uc.s.a,auw.ﬂmn PESY
R
{uewnst g
E
f oS ucﬁuﬂbsﬁaai
ajnpow Aouenbard
Auowsp)  Aouwsur JauLy| Bl IDSSI0I4PUBLRIODANMUHS] & D] B e 18 :

Sequence diagram of the beacon system organization

Figure 6.17.



6 — Software

ol e ool 12 b BonP k] Bk1B31A25 ;: BK1B31AZ5

I

|
|

|
AL

1.1: Cofr ||.d||ju{'>d0 = RF_BEACON

1

2. beaconByffll] = CommandCeode & OxFF

3! beaconBufff1f= lL.Tmm;lndCodan]&ﬂxFF

4: beaconBuff[d] = LENGTH_HOUSEKEEPING

]

ffor {index = 0 index < Z'LENGTH HOUSEKEEPING. index++}]
alt]

loop

[Ninde x%2)]

.

5: beaconBufffd + index]{d housekeepinglindex'2] & OxFF

.

6: beaconBufif3 + index]d {housekeepingfindex/2]==8) & OxFF

7! beaconBufff3+2 "L ENGTH_HOUSEKEEPING] = LENGTH_STATUS

]

[for (index =0, index < ZLENGTH_STATUS, indax++]]
alt]

loop

[index%2)]

8. beaconByffl4 + 2'LENGTH_HOUSEKEE;T:_|+ indax] = status Registerdindex/2] & 0xFF

9 beaconByfflg + 2'LENGTH_HOUSEKEEM_E|+ index] = (statusRegisterfindex 3]>8) & 0xFF

Figure 6.18. Sequence diagram of the beacon preparation

155



6 — Software

6.4.9 OBRF status and configuration updater concepts

The configuration and status registers of the OBRF are system registers that are containing a
defined informations, devised by use cases in section 4.2.8. Here are developed few functions
in order to update the statusRegister : CS__REDUNDANCY and the configRegister :
CS_REDUNDANCY. Moreover, the configRegister can be also modified to keep coherence
with Bk1B31A2S’s global variables. After every modification of the configRegister, the OBRF
will be reset to the RX mode with the new configurations.

The update is performed by the updateStatus(rastatus : t RX STATUS, pa : byte) for the
statusRegister and updateConfig(baudr : ulong, freq : AllowedFrequencies, mod : t_modulation,
tzpower : byte) for the configRegister. When called, these methods will put the parameters in the
respective register’s position, according to the defined use cases in section 4.2.8. These functions
are moving the information from a global variable, passed as a parameter in order to achieve more
flexibility, to the appropriate register. It is assumed that the value of the variable reflects the
actual setting. Therefore, with any modification which touch the register’s value, a variable must
be updated accordingly to what is inside the register using these methods. In the same way, if a
variable is modified, with the appropriate methods the registers must be updated.

According to use cases and the possible OBC’s commands, the configRegister can be modified
by the OBC. When any modification takes place (by checking the last received command), must be
called the writeConfig(baudr : ulong *, freq : AllowedFrequencies *, mod : t _modulation *, tzpower
s ushort *) in order to update the system variables and apply their settings to the system. This
function takes the data from the register and store it to the addressed parameters. The sequence
which actually implements this is shown in figure 6.19 and if followed, a system coherence is

guaranteed. Are shown the steps to follow when:
o OBC modify the register (STEP 3)
o The OBRF itself need to modify configuration in registers (STEPS 1-2)

e The OBRF itself need to modify status in registers (STEP 4)

156



6 — Software

Wil P et en 5 twiciag £ ebien P abteesiien di T

3+ writeConfig{baudr : ulong®, : MlowedFrequencies®, rml:‘l‘i‘t_rmdl.laﬂun‘.
.

S

[Update statusRegister] :
4: updateStatus(rdtatus : t_RX_STATUS, pa ! byte) |eo

Figure 6.19. The management of status and configuration updating methods

157



6 — Software

6.4.10 updateStatus()

It implements the algorithms in section 6.4.9. Updates the statusRegister : CS_ REDUNDANCY
[LENGTH_ STATUS] register from the passed parameters. These parameters are correspond-
ing to use cases in diagram in figure 4.5. How to use this function is described in figure 6.19. Should

be called after every modification of a variable in which its value is present in statusRegister :
CS_REDUNDANCY [LENGTH_ STATUS].

Code:

Bk1B31A2S: :updateStatus (Bk1B31A2W_OBRF_437MHz: :t_RX_STATUS rxstatus,

byte pa) {

HK: :statusRegister[1] = ((ushort) (rxstatus & MASK_CS_RX_STATUS) |
(ushort) (pa & MASK_CS_PA_STATUS));

}

6.4.11 updateConfig()

It implements the algorithms in section 6.4.9. Updates the configRegister : CS_ REDUNDANCY
[LENGTH_ CONFIG] register from the passed parameters, and do not modifies them. The pa-
rameters are corresponding to use cases in diagram in figure 4.5. Should be called after every mod-
ification of a variable in which its value is present in configRegister : CS_ REDUNDANCY
[LENGTH__CONFIG]. It will NOT updates the OBRF settings, use instead writeConfig(baudr

*

:ulong *, freq : AllowedFrequencies *, mod : t_modulation *, tzpower : ushort *). How to use

this function is described in figure 6.19.

Code:

Bk1B31A2S: :updateConfig(ulong baudr, Use_Cases::AllowedFrequencies freq,
Bk1B31A2W_0BRF_437MHz: :t_modulation mod, byte txpower) {
HK::configRegister[1] = 0;

switch (baudr) {

case 2400:

HK::configRegister[1] |= (ushort) (0 & MASK_CS_BAUDRATE) ;

break;

case 4800:
HK::configRegister[1] |= (ushort) (1 & MASK_CS_BAUDRATE) ;
break;

case 9600:
HK::configRegister[1] |= (ushort) (2 & MASK_CS_BAUDRATE) ;
break;

case 19200:
HK::configRegister[1] |= (ushort) (3 & MASK_CS_BAUDRATE) ;

158



6 — Software

break;

case 38400:
HK::configRegister[1] |= (ushort) (4 & MASK_CS_BAUDRATE) ;
break;

case 76800:
HK::configRegister[1] |= (ushort) (5 & MASK_CS_BAUDRATE);
break;

case 153600:
HK::configRegister[1] |= (ushort) (6 & MASK_CS_BAUDRATE) ;
break;

default:
HK::configRegister[1] |= (ushort) (7 & MASK_CS_BAUDRATE) ;
break;

3

switch (freq) {

case carrierFreq.FREQ1:

HK::configRegister[1] |= (ushort) (0 & MASK_CS_FREQ);
break;

case carrierFreq.FREQ2:
HK::configRegister[1] |= (ushort) (1 & MASK_CS_FREQ);
break;

case carrierFreq.FREQ3:
HK::configRegister[1] |= (ushort) (2 & MASK_CS_FREQ);
break;

case carrierFreq.FREQ4:
HK::configRegister[1] |= (ushort) (3 & MASK_CS_FREQ);
break;

default:
HK: :configRegister[1] |= (ushort) (0 & MASK_CS_FREQ);
break;

}

switch (mod) {

case modulation.FSK:

HK: :configRegister[1] |= (ushort) (0O & MASK_CS_MODULATION);
break;

case modulation.GFSK:

HK: :configRegister[1] |= (ushort) (1 & MASK_CS_MODULATION);
break;

159



6 — Software

default:

HK::configRegister[1] |= (ushort) (1 & MASK_CS_MODULATION);
break;

}

HK::configRegister[2] = (ushort) (txpower & MASK_CS_TX_POWER);
}

6.4.12 writeConfig()

It implements the algorithms in section 6.4.9. Updates the OBRF configuration from the content
of the configRegister : CS_REDUNDANCY [LENGTH__CONFIG], so it will read it
only, updating the system variables which are buffered in this vector. The updated variables are
described in use cases in figure 4.5. This function take as argument the parameters and modifies
them accordingly. How to use this function is described in figure 6.19.

Code:

Bk1B31A2S: :writeConfig(ulong* baudr, Use_Cases::AllowedFrequencies* freq,
Bk1B31A2W_0BRF_437MHz: :t_modulation* mod, ushort* txpower) {

switch (HK::configRegister[1] & MASK_CS_BAUDRATE) {
case O:

*baudr = 2400;
break;

case 1:

*baudr = 4800;
break;

case 2:

*baudr = 9600;
break;

case 3:

*baudr = 19200;
break;

case 4:

*baudr = 38400;
break;

case b:

*baudr = 76800;
break;

case 6:

*baudr = 153600;
break;

default:

*baudr = 2400;
break;

3

160



6 — Software

switch (HK::configRegister[1] & MASK_CS_FREQ) {
case O:

*freq = FREQ1;
break;

case 1:

*freq = FREQ2;
break;

case 2:

*freq = FREQ3;
break;

case 3:

*freq = FREQ4;
break;
default:

*freq = FREQ1;
break;

}

switch (HK::configRegister[1] & MASK_CS_MODULATION) {
case O:

*mod = FSK;
break;

case 1:

*mod = GFSK;
break;
default:

*mod = GFSK;
break;

}

// retrieve

xtxpower = (uchar) (HK::configRegister[2] & MASK_CS_TX_POWER) ;
//apply

transceiver.SetReg(CC1020_PA_POWER, *txpower) ;

// configure

CC1020InitRX (*¥baudr, *freq, *mod, *txpower);

}

6.4.13 Initialization of radio-frequency reception mode

As shown in figure 6.5, the Tile will start automatically in RX mode. Here is therefore provided
a description of this initialization procedure and methods used. This starts with the update of
configRegister : CS_ REDUNDANCY [LENGTH__CONFIG] at step 10.1.3, which act as
a report of the configuration of the tile that needs to be updated every time the status is modified.
Then the system will start the RX configuration procedure, which starts with sequence diagram

in figure 6.20.

161



6 — Software

BBl 2 it ofs T i

2: ANTENNA(}

I
b 1 Restore ﬂ'haptavk+5 status of RxStatus

3: CC1020InitRX (baudr ! ulong
- COTE it Riheydr: tiong

— ]

|
T
, freq | AllowedFrequencies, !'I'I:N:l 1 t_meodulation, txpower

|- byte}

[PrevRxStatus == RECEIVING]

" | § DoLK_enablelnteriuptiedge ; bool = RISING

Figure 6.20. The sequence for the transceiver’s configuration in RX mode

162



6 — Software

In step 2 of this diagram is highlighted that the transceiver is connected to the Antenna Con-
nector through an RF switch, described in chapter 5, at pin J1. This switch will put the antenna
in communication with the RX pin of the transceiver, which is connected to the J2 of the switch.
Then from step 3 basically it describes the structure of the CC1020InitRX (baud, freq, mod). In
this function firstly all the interrupts related to the transceiver are disabled and it is initialized
the CRC calculation hardware. Then is called the driver function CC1020Auto Wake UpMode(baud,
freq, mod), which actually configure the transceiver in a particular mode called Auto WakeUp
mode, described better in section 6.3. This mode puts the transceiver in power down and when
toggling the SPI bus slave select pin called PSEL, will initialize it automatically in RX mode,
searching for an RSSI signal and return in power down if no carrier is detected. The baud is
the desired baudrate chosen among the available ones as shown in use case in figure 4.5 and
described from section 4.2.8. It is provided also the available carrier frequency freq to be search
and modulation mod for the incoming RF symbols.

Then before the step 4 is shown what variables are prepared for the RX part, needed for keeping
the receiving bus aligned with the transceiver’s data. All the checks and assignment about the
RxStatus and PrevRxStatus (steps 4-6) are devised from the FSM which describes the RX
mode, shown in figure 6.26, from section 6.4.24. The switch to RX is important, because the
switch and power amplifier are needing a proper order of activation. This order is shown in figure
6.21, which is important to avoid dangerous RF reflections, connecting the RX pin of the transceiver
through RF switch (path J1 -> J2). Since the power amplifier is now disabled, it is updated the
status register accordingly in step 8. The last step calls the DCLK__enableInterrupt(RISING), to
trigger the interrupt on the transceiver’s clock on the rising edge, how these interrupt signals are
generated from the transceiver will be described in section 6.3. The FSM in figure 6.26, which is
the backbone of this initialization, will start with state PREAMBLE and continue its execution
on every rising edge of DCLK pin, according to values of RxStatus : t_ RX__STATUS in the
secondary FSM called RX Flag handle, in figure 6.27.

Now are going to be described methods used in diagram in figure 6.20, except for the functions
already described and the CC1020Auto WakeUpMode() which will be introduced in transceiver’s
section 6.4.43.

163



6 — Software

0

1: SWtoRX()

4.1: EN_VPA|

4

()

2.1:V_swi

4.1.1: VDD_VPA

9_PAl)

6.1: EN_Vre,

The sequence for the connection of antenna to the transceiver RX pin

Figure 6.21.

164



6 — Software

6.4.14 CC1020InitRX()

It is used to implement the algorithm in section 6.4.13. Set up the transceiver to RX mode,
according to the passed parameters. When in this function, the transceiver’s interrupts are tem-
porary disabled. Initialize the CRC hardware with hwCRC init(crc : ushort) and initialize the
Bk1B31A2_Transceiver_ 437MHz unit for the reception using CC1020Auto Wake UpMode(baudr :
ulong, freq : AllowedFrequencies, mod : t_modulation, tzpower : wushort). Then the proper at-

tributes for the RxBuffer : uchar[BUFFLEN] are set:
e CurrState : t_ AX_STATE is the OBRF FSM receiving status
o flagCount : byte is the AX.25 flags counter
e BitCount : byte the counter of received bits
¢ ByteCount : short the counter of received not dummy bytes
¢ TmrRXTimeOut : ushort is reset to prevent the receiver’s timeout condition

The PrevRxStatus : t_ RX_STATUS contains the last status of the system, and is con-
trolled to check if a useful reception was broken and therefore resets the receiver status to RX_IDLE;,
if necessary. Otherwise the system’s status is kept unchanged.

With SWtoRX() the RF hardware is put correctly in the appropriate configuration. After
updating the status with updateStatus(rastatus : t RX STATUS, pa : byte), the transceiver’s
interrupts are enabled on RISING edge on transceiver’s signal pin DCLK.

Code:

Bk1B31A2S::CC1020InitRX(ulong baudr, Use_Cases::AllowedFrequencies freq,
Bk1B31A2W_0OBRF_437MHz: :t_modulation mod, byte txpower) {
DCLK_disableInterrupt();

hwCRC_init (crcSeed) ;

// transceiver init in automatic sequencing

CC1020AutoWakeUpMode (baud, freq, modulation, txpower);

// Variables init

CurrState = PREAMBLE;

FlagCount = 0;

BitCount = 0;

ByteCount = 0;

TmrRXTimeOut = O;

if (PrevRxStatus == RECEIVING){ // reset if a reception was interrupted
RxStatus = RX_IDLE;

PrevRxStatus = RX_IDLE; // because this if() should not be executed
again if there was no tx

165



6 — Software

updateStatus (RxStatus, paStatus);
}

// init pins for RX mode

SWtoRX() ;

paStatus = O;

updateStatus (RxStatus, paStatus);
DCLK_enableInterrupt (RISING); // rising
¥

6.4.15 PAEnable()

Enable the power amplifier, according to figure 6.24.

Bk1B31A2S: :PAEnable() {
SLOT_B::D5.set();
SLOT_B::D8.set();

}

6.4.16 PADisable()

Disable the power amplifier, according to figure 6.20.

Bk1B31A2S: :PADisable() {
SLOT_B::D5.reset(); // PA
SLOT_B::D8.reset();

}

6.4.17 SWtoTX()

Switch the RF hardware in the TX mode, according to figure 6.24.

Bk1B31A2S: :SWtoTX() {
PAEnable();
SLOT_B::DO.reset(); // Switch
SLOT_B::D1.set();

}

6.4.18 SWtoRX()

Switch the RF hardware in the RX mode, according to figure 6.20

Bk1B31A2S::SWtoTX() {
PAEnable();
SLOT_B::DO.reset(); // Switch
SLOT_B::D1.set();

}

166



6 — Software

6.4.19 DCLK_ disableInterrupt() and DCLK__enableInterrupt()

Are used to implement part of the algorithm in section 6.4.13. The DCLK__enableInterrupt(edge
: bool) enables the interrupt on DCLK() pin changes of the Bk1B31A2_ Transceiver 437MHz
unit. The edge parameter is RISING when interrupt occurs on RISING edge of the signal on pin.
Viceversa when FALLING.

The DCLK _disableInterrupt() disables all the interrupt related to DCLK pin of the Bk1B31A2
Transceiver 437MHz unit.

6.4.20 AX.25 Packing algorithm

In figure 6.24 at step 1.3 there is the call to the ax25pack(). The algorithm of that method is
described here, shown in figure 6.22, with the description of its implementation. This packing
algorithm consists of creating a complete AX.25 buffer to be sent, auto-generating the needed
auxiliary data. Because this method is called also for the beacon, it is checked the SendBeacon
variable, therefore supports two modes of packing: one for the OBC transmitting commands and
one for the RF beacon.

After a CRC initialization, the step 1.2 or 1.3 adapts the length of the packet to the total of the
Beacon length or to the one decided by the OBC data. From step 1.5 up to 1.13 are generated the
addresses, the AX.25 sequence numbers and the PID byte: for RF beacon the sequence numbers
are always zero because it is designed to be sent in a single frame. From step 1.15 it is copied
the payload to the TxBuffer, which can be taken from the MessageHandler’s buffer or from the
beaconBuff BUFFLEN].

Every byte copied in the TxBuffer is succeeded by an updating of the CRC. This value is calcu-
lated bit reversed as well as the byte order, and it is copied in the transmission buffer taking care
of keeping the data reversed (steps 1.20 and 1.21). Here there is no modification of the RxStatus
because this packing algorithm should be called only when the OBRF is in TRANSMITTING

status.

167



6 — Software

/"L

1: ax25pack()

1.1: hwCRC_initicre : ushort = creSeed)
L

alt

[SendBeacon == 0]

:F.Z: payloadlLen = bus length -1

| ,.3: payloadlen = 442°LENGTH_HOUSEKEEPING+2°LEN

BTH_STATUS+1

1.4 index =0,

addressGround: uchar(7].

‘epare the source address%

loop e
[index < 7] 1.5 TxBufferfindax] = eddrfz;sGmund[index]

. 1.6: hwCRC(source | uchar = TxBuffer[index])

loop ] +° _ 1.7 TxBuFeifindex] = AX_SAT_ADDR[index]

i

:L.B: hwCRC(source : uchar = TxBuffer [index])

Control byte. Here
contains the NiR),
while N{S) =0

D)

[SendBeacon==0}----""
1.9: TxBuffer[14] = bus bufferWrite[D]

. 1.1 hwCRC(s

wie ; uchar = TxBuffer [14])

Figure 6.22.

<__l|.13: hwCRC{source | uchar = TxBuffer [15])

i 1.14: index =0,

168

Sequence diagram of the AX.25 Packing procedure, 1/2



6 — Software

.l
\
alt "
\
{SendBeacon == 0} %
\
'
loop ] "
'
[index < payloadLen] % This is the
% payload
1.15; TxEHf Fer[16+inde x] = bus bufferWrite[1+ind ex}
1.16: hwCRC(source : uchar = TxBuffer[16+index])
loop
[index < payladl en] :I 1.17: TxBuffer[16+index] = beaconBufflindex]
1.18; hwCRC(source : uchar = TxBuffer16+index]}
1.1%: hwCRC_resutticrc : ushort® = crc)
1.18.1: TxBuffer{17 +index] = (byte){crc==8)
The CRC is calculated in the
classic reverse order. The

last byte contains the lower

byte (MSByte) of the

(reversed) CRC.

.20 TxBuffer[18+index] = {byte)crc)

1.21: packetLen = index+19

Figure 6.23.

Sequence diagram of the AX.25 Packing procedure, 1/2

169



6 — Software

6.4.21 ax25pack()

It is used to implement the algorithm in section 6.4.20. This function prepare the TxBuffer
: uchar[BUFFLEN] in which a complete AX.25 frame will be stored. It is made a distinction
between the a normal packet composition (if SendBeacon : bool == false) and the beacon packet (if
SendBeacon : bool == true), due to the difference of the information sources.

The TxBuffer is filled with:
o the AX_SAT_ADDR : char const* (bytes 0 to 6);
o addressGround : uchar[7] (byte 7 to 13);

e then with the rest of the AX.25 components. The payload is taken from the remaining OBC
data or from beaconBuff : uchar[BUFFLEN], depending if it is a normal packet or a
beacon one. Then the CRC is calculated and stored as a FCS field. The PacketLen : uchar

is updated.

Here there is no modification of the RxStatus : t_ RX_ STATUS because should be called
only when it is TRANSMITTING.
Code:

Bk1B31A2S: :ax25pack () {
byte index = 0, buflndex = O;

hwCRC_init (crcSeed) ;

if (!SendBeacon)

payloadlLen = bus.length - 1;

else

payloadLen = 4+2*LENGTH_HOUSEKEEPING+2*LENGTH_STATUS+1;

while (index<7){

TxBuffer[index] = addressGround[index];
hwCRC ((ushort) TxBuffer[index]) ;
index++;

}

while (index<14){

TxBuffer [index] = AX_SAT_ADDR[index];
hwCRC ((ushort) TxBuffer [index]) ;
index++;

}

if (!SendBeacon)
TxBuffer[index] = bus.bufferWrite[0];

170



6 — Software

else
TxBuffer[index] = 0; //index = 14

hwCRC (TxBuffer [index]&0x00ff) ;
index++;

TxBuffer[index] = PID; //index = 15
hwCRC (TxBuffer [index]&0x00ff) ;

bufIndex++;

if (!SendBeacon){

while(bufIndex < payloadLen){
TxBuffer[index] = bus.bufferWrite[bufIndex];
hwCRC(TxBuffer [index]&0x00ff) ;
bufIndex++;

index++;

}

}

else {

bufIndex = 0;

while(bufIndex < payloadLen){
TxBuffer[index] = beaconBuff [buflIndex];
hwCRC(TxBuffer [index]&0x00ff) ;
bufIndex++;

index++;

}

}

hwCRC_result(&crc); // pass by pointer

TxBuffer [index++]
TxBuffer [index++]

(byte) (crc>>8);
(byte) (crc);

packetLen = index;

3

6.4.22 Initialization of radio-frequency transmission mode

Here is provided the description of the initialization procedure for the transmission mode. Here is

therefore provided a description of the initialization algorithm and the methods used to implement

it. This happens only after the need of a beacon (procedure in figure 6.17 and section 6.4.7) or

after a transmitting command from the OBC, described later in the intepret(command : ushort)

method. When this happens the OBRF will initialize the transceiver for the TX mode. This is

described by sequence diagram in figure 6.24.

171



6 — Software

In step 2 of this diagram is highlighted that the transceiver is connected to the Antenna Con-
nector through an RF switch, described in chapter 5, at pin J1. This switch will put the antenna
in communication with the TX pin of the transceiver, which connected to the J3 of the switch.

Then from step 1 basically it describes the structure of the CC1020InitTX (baud, freq, mod). In
this function firstly all the interrupts related to the transceiver are disabled and the CRC system
is initialized for the subsequent elaboration. Then is called the az25pack() which prepares the
transmitting buffer with the content received from the OBC or autogenerated (if it was a beacon).
All the checks and assignment about the RxStatus and PrevRxStatus are devised from the
FSM which describes the TX mode, shown in figure 6.29, in section 6.4.24.

The switch to TX is made in step 3 and is important, because the switch and power amplifier are
needing a proper order of activation. This order is shown in figure 6.25, which is important to avoid
dangerous RF reflections, connecting the TX pin of the transceiver through RF switch (path J1 ->
J3). Then the RF hardware is configured properly and the driver function CC1020TxMode(baud,
freq, mod, tzpower), which actually configures the transceiver in transmission mode. How this
is made will be described in section 6.3. The baud is the desired baudrate chosen among the
available ones as shown in figure 4.5 and described from section 4.2.8. Are also provided the
available carrier frequency freq and modulation mod that can be chosen.

Since now the power amplifier is enabled, it is updated the status register accordingly, in step
5. The last step calls the DCLK enableInterrupt(FALLING), to trigger the interrupt on the
transceiver’s clock on the falling edge, and how the transceiver generates this interrupt is described
in section 6.3. The FSM in figure 6.29 will start with state TX PREAMBLE and continue its
execution on every falling edge of DCLK pin, until the values of RxStatus : t_ RX__STATUS
in the secondary FSM (shown in figure 6.27), is kept in TRANSMITTING, or when the whole
TxBuffer is sent.

Now are going to be described methods used in diagram in figure 6.24, except for functions

already described and the CC1020TxzMode(), which will be introduced in transceiver’s section 6.3.

172



6 — Software

Visual Paradigm Standard Edil di Torino, Dip.

|
1: CC1020lnitTX(baudr : ulong, freq : AllowedF: ies, mod : t_modulati ,!x;#uwer:byte)
|

TS ——

1.2: ax25pack()

1B31A AX.25 Packing”

RSN ——

L 1

| 1

i :

I

| 1431;\ Switch to TX
! :

' i

| I

| I
4: CC1020TxMode(baud : ulong, freq :AIIuWedFreqL'encies, modulation : t_modulation, txpower : ushort)

I
|
5: updateStatus(rxstatus : t RX_STATUS 5 RxStatus, pa : byte = paStatus)

: 6: DCLK_enablelnterrupt(edge : bool = FALLING)

PR - SN WS —— T— —— p——

Figure 6.24. The sequence for the transceiver’s configuration in TX mode

173



6 — Software

g_PA()

()

5.1: EN_Vre

4.1: EN_VPA

.................. 2 e U S S W—

0

2.1:V_sSw1

4.1.1: VDD_VPA|
5.1.1: Vreg_PA()

.................. LA AN o

The sequence for the connection of antenna to the transceiver TX pin

Figure 6.25.

174



6 — Software

6.4.23 CC1020InitTX()

It is used in the initialization sequence in section 6.4.22. Set up the transceiver to TX mode,
starting from a reset instead of power down assumption, in order to prevent bad configurations
that can arise with these COTS components. This is made according to the passed parameters.
Calls the az25pack() in order to prepare the TxBuffer : uchar[BUFFLEN]. Then are prepared

the following parameters:
e CurrState : t_ AX__STATE is the OBRF FSM initial transmitting status
o flagCount : byte is the AX.25 flags counter
¢ BitCount : byte the counter of transmitted bits
e ByteCount : short the counter of transmitted bytes

e TmrRXTimeOut : ushort is reset to prevent the transmitter’s timeout condition

The PrevRxStatus : t_ RX_ STATUS is used to buffer the current RxStatus : t_ RX__
STATUS and updating it with TRANSMITTING value. The PrevRxStatus: t_ RX__STATUS
will be used after the transmission to restore the interrupted status of the receiver FSM. With
SWtoTX() the RF hardware is put correctly in the appropriate configuration. Now the Bk1B31A2
Transceiver _437MHz unit is put in TX mode by calling the CC1020TzMode(baud : ulong, freq :
AllowedFrequencies, modulation : ¢ _modulation, trpower : ushort). Since now the power amplifier
is activated, the paStatus : ushort is updated accordingly and its value is written inside the
status register by using the updateStatus(rzstatus : t RX_STATUS, pa : byte). The transceiver’s
interrupts are now enabled on FALLING edge on transceiver’s signal DCLK().

Code:

Bk1B31A2S::CC1020InitTX (ulong baudr, Use_Cases::AllowedFrequencies freq,
Bk1B31A2W_0BRF_437MHz: :t_modulation mod, byte txpower) {
DCLK_disableInterrupt();

ax2bpack(); // implement following s.d.

CurrState = TX_PREAMBLE;
FlagCount = 0;

BitCount = 0;
ByteCount = 0;
TmrRXTimeOut

0;

PrevRxStatus = RxStatus;
RxStatus = TRANSMITTIG;

175



6 — Software

SWtoTX(); //vedi se mettere prima
CC1020TxMode (baudr, freq, mod, txpower); // with config registers

paStatus=1;
updateStatus (RxStatus, paStatus);

DCLK_enableInterrupt (FALLING);
}

6.4.24 Data handling of RF data

Until now it has been described the various initialization procedures and the behaviour at boot.
Here is now described the algorithm on how the radio data is handled on the OBRF, both in
transmission and reception, once the transceiver is correctly initialized. The classes Bk1B31A2S
and Bk1B31A2S _main are developed in order to implement the algorithms herein described.

The default condition of the OBRF is the RX mode, so the description starts with this one. At
every clock cycle of the transceiver a bit is brought on the DIO pin from the RF hardware. For
this reason the data organization is devised in an FSM where its clock is the DCLK signal, for
both RX and TX modes. At the beginning, there is no synchronization of the transceiver with
the modulated signal, therefore in order to understand the FSM behaviour, is needed to start with
FSM shown in figure 6.26.

At the very first call of the transceiver’s interrupt, the isr_ CC1020RzData(), we are in the
RX__ PREAMBLE state, in which every bit is shifted in and it is check continuously the eventual
presence of the AX_FLAG (its description is in section 3.3). If this is the case, we are in a
condition in which the slicer of the transceiver is synchronized with the carrier, what is missing is
the synchronization with the word. Here the SYNCW state could be activated by mistake, so there
is the ERROR__CHANCE, where it is controlled if the next byte it is not a flag when it should be:
if so, was an error due to the limited BER and the word searching continue. Since the transceiver’s
slicer need a certain amount of transitions for the synchronization (see section 6.3), it is set a fixed
minimum amount of flag that must be received correctly before assuming the transmission to be
reliable, stored in variable FLAG__THR : byte const.

When the current state is SYNCW, after every 8 bits received is checked if it is part of the flag
or it is the first payload data. Because the transceiver is configured to wakeup only in presence of
a carrier, and since it can be lost, it is possible to lock the FSM in this state. So it is implemented
an automatic reset of the RX status using the ISR of the Timer Al. For this reason, at every call

of the isr_ CC1020RxzData(), when in SYNCW or PAYLOAD, the timeout variable must be reset

176



6 — Software

Save The final defimiting flag [([BitCount == B} &&
(RuByte == AX_FLAG) 8& (sluffed == 0) 8& (ByleCount
>0t

ByteCount+ +,RxBuffer[Pas
PacketMum++

Num][ByteCount]=RxByte;

_ body = ReByte = shiftin(),

[RByte == AX_FLAG]/
FlagCount=0; BitCount=0;

[{BItCptint == &) 8& (RxByte 1= AX_FLAG]]

((BitCount == 8) 88 (RxByte == AX_FLAG)
&4 (stuffed == 0} &4 (FlagCount >=
FLAG_THR)]/ BitCount = 0; throw
eRECEIVING;

[(BitCount == &) 8& (RxByte ==
AX_FLAG) && (stuffed == 0]] /
FlagCount++: BitCount = 0;

'ERROR_CHANGE. ™

do/

[(BitCoynt == B} 88 (RxByte ==

body = AX_FLAG) & (stuffed == 0)
RxByte = shiftin(RxByte, CurBit); RiByte = shiftin{RuByte, CurrBit), ount < FLAG_THR] /

s e ' St ; = ‘ﬁ. FlagCoginte+; BitCount = 0,

‘StuffByte = StuffStatus(StufByte, CurBit);

[(BitCount == 8) 8& (RxByte I= AX_FLAG)
8& (FlagCount< FLAG_THR]]

FLAG_THR] / ByteCount
RxBuffer[PacketNum][By
RuByte; BitCount = 0;

[(BitCount == B} && [RxByte == AX_FLAG)
&& (stuffed == 0) && (Byte Count == 0]/
BitCount = 0,
hwCRC_init{CRC_COMST_RX});

[(ByteCount > AX_BYTE_THR} | (address I= AX_SA

: PAYLOAD B
[[BitCount == B) && I{{RuByte == dof
AX_FLAG) && (stuffed ==0))} / ShiftAndDestuff
ByteCount++RxBuffer[PacketNun][ByteCo b“d_!”_ : -
untj=RxByte; BitGount = 0; RxByte = shifiin(RxByte, CurBit); :
hwCRC{RuByte}; = rsmﬁﬁy.h = StuffStatus(StuffByte, CurBit);
b -
Update Timeout

N psatTime0 SR,

Figure 6.26. FSM for the received data

to avoid to set the default value of the RX status flag.

The subsequent state PAYLOAD is activated if the last byte is not a flag, assuming that a
minimum number of flags has been received. But due to the presence of a certain amount of the
BER, the transition could be a false result, therefore if a flag is detected, we may come back to the
SYNCW state. If more than one byte is different from the flag is received, then the new condition
is to keep saving the incoming data, while searching for a closing flag of the same type of one used
during the preamble. When in PAYLOAD, is checked in run-time if the destination address match
theAX_SAT__ADDR : char const, and if not, FSM restart from PREAMBLE state.

177



6 — Software

When in SYNCW it is possible to take the branch where, after the first data byte, there is the
throw eRECEIVING. This is useful for a logical parallel FSM which handles the flag RxStatus.
This is used to coordinate and synchronize all the satellite data handling. Basically, in figure
6.27, it is shown this FSM which in turn contains other 2 FSMs, called RX Flag Handle and
TRANSMITTING. This layering is useful to split the complexity, which is not trivial when the
dependability is a priority. When the system boot, this FSM starts with the RX Flag Handle and
from there decide the next state upon the OBC’s command or beacon necessity. These commands
can be a standby or a transmitting request, and this FSM is needed to recognize when the data
is no more consistent, because these commands are capable to interrupt the normal execution of

receiving process.

TRANSMITTING : mmmj

[Transmit Req] /

[Tx Compiete] /
Restore prev. RX RxStatus = RX_(QFF,
status CCA020InitTX( ),

FlagCC1020InitRX();

G0 to STANDBY

RX Flag handie - Statobachine

e

[ ]

o to STANDBY

Figure 6.27. FSM for the flag handling

6.4.25 RX Flag Handle State Machine

It is a state machine used to implement the system flags handling, introduced in section 6.4.24. In
this FSM are present all the possible values of the RxStatus flag. From RX_IDLE to RECEIVING
is present the eRECEIVING on the arrow. This transition occur when in figure 6.27 is taken the
arrow with the “throw eRECEIVING” from the SYNCW state. By doing so, can be recognizable

178



6 — Software

when the reception should not be interrupted because of the potentially useful data received. This
FSM is the backbone of the OBRF status synchronization.

When the reception is terminated is set the RX_ RAW to indicate that the data need a proper
elaboration, as described in figures 6.6 and 6.15. Here will be set the RX_ WRONG__CRC if the
packet’s CRC is wrong or viceversa if RX__OK: in any case the packet is sent to OBC, which is able
to read the RxStatus flag from the statusRegister and decide if keep the packet or thrashing
it away. Should be quite clear the purpose of the note, which highlight that when coming from
TRANSMITTING, the FSM will continue from the last RxStatus: there is only one state which
is not kept and is the RECEIVING. When here, any interruption from the receiving process will

introduce data loss from the medium and a reset is needed.

e Lubiabon pi el liwﬁmm@_ iy from TRANSMITTING,
@""""""‘"""'W‘S@E.ﬁelﬂdﬂt&.which'mhe
interrupted by a transmit request).

Ready to Transmit

Transmission Requested / Save RX Status Flag

end of transfer to OBC

Buffer is readable

8RX_END

transmission requested / Save RX Status Flag

transmission requested [ Save RX Status Flag

Figure 6.28. FSM for the flag handling

179



6 — Software

6.4.26 isr_ CC1020RxData()

Implements the FSM of the received data sequence in section 6.4.24. Interrupt used to synchronize
bits from the transceiver and when there is valid data store it in RxBuffer : uchar[BUFFLEN].
This function is state driven and act as an FSM which change at every rising edge of the DCLK()
and acting based on the CurrState : t__AX__STATE and the value of DIO(). The behavior of
states is described by the FSM which starts from RX_PREAMBLE.

The incoming bit is read at SLOT__A::D0 and buffered in CurrBit : bool. Then the FSM
interpret this bit, by reading the current CurrState : t__AX_STATE. If CurrState :
t__AX__STATE = PREAMBLE the CPU keep to shift in by shiftIn(data : uchar, _bit : uchar)
: byte the bit from the transceiver whenever an AX_FLAG : byte const is found. If so,
CurrState: t_ AX_ STATE = SYNCW, TmrRXTimeOut : ushort = 0 because the receiver
is not blocked, and initialize to 0 all the other counting variables BitCount : byte, ByteCount
: short, flagCount : byte.

If CurrState : t_ AX_STATE = SYNCW is updated the RxByte : byte with shiftIn(data
o uchar, __bit : uchar) : byte, along as the stuffing analysis with StuffByte : byte = StuffSta-
tus(data : uchar, _bit : uchar). In every condition is controlled if the CurrBit : bool is the
8th with BitCount : byte == 8. Then if FLAG__THR : byte const is not reached and data
is different from AX_FLAG : byte const, there is something wrong and ERROR__ CHANCE
is set for the next cycle. The second condition controls if received byte is a correct AX__FLAG
: byte const but FLAG__THR : byte const is not reached: the flag counter is incremented.
The third condition controls if it is a valid data different from AX__FLAG : byte const, if
the FLAG__THR : byte const is reached: if so RxBuffer : uchar[ BUFFLEN] = RxByte

byte and the CRC is updated with hwCRC(source : wuchar). The next state now must be
PAYLOAD. Since the data should be correct, there is an active reception and RxStatus :
t_ RX_STATUS = RECEIVING. The OBRF status is updated accordingly with updateSta-
tus(rzstatus : t_RX_STATUS, pa : byte). The last fourth condition cover the case in which more
correct flags are received. The TmrRXTimeOut : ushort is kept reset.

If CurrState : t_ AX_STATE = ERROR__CHANCE the RxByte : byte and StuffByte
: byte are updated as described previously. Then if RxByte is not a flag, according to FSM in
figure 6.26 it is an error and state is reset to PREAMBLE. The last condition handles the case
if it is a real AX_ FLAG without stuffing executed (so it is not data, with stuffed : bool = 0):
here the state can be brought again in SYNCW and TmrRXTimeOut : ushort is kept reset.

If CurrState : t_ AX_STATE = PAYLOAD the RxByte and StuffByte are updated as

180



6 — Software

described previously. Then if it is the 7th byte (the first AX.25 address is received now) is controlled
at run-time if the reception is addressed correctly: if not, then the state begin with PREAMBLE.
The second condition limits the received bytes to AX_BYTE__THR : byte const. The third
condition is checked if it is data and not a flag, with the string !(RxByte == AX_FLAG &&
stuffed == 0), because given A and B boolean values, apply the rule !(A and B) = (!A or IB). In
this case the ByteCount : short is incremented, the RxBuffer[ByteCount]A = RxByte and CRC
is updated. After 8 increments, the BitCount is always 0. The last fourth condition checks if a real
AX_FLAG is received. The RxBuffer update is done as in previous if condition, but now RxStatus
= RX_RAW (with the consequent system updating updateStatus(rastatus : t_RX_STATUS, pa
: byte), and the receiver begin from PREAMBLE state. The TmrRXTimeOut is kept reset.
Code:

public: static isr_CC1020RxData() {

if (SLOT_A::DO.read()){ // this ISR is triggered by a
transition on a different pin, e.g. D1

CurrBit = 1;

}

elseq{

CurrBit = 0;

}

switch (CurrState) {
case PREAMBLE: //Bit synch made here. Could not happen at first time

RxByte = shiftIn(RxByte, CurrBit);
if (RxByte == AX_FLAG){

CurrState = SYNCW;

TmrRXTimeOut = 0;

FlagCount = 0;

BitCount = 0;

ByteCount = 0;

}

break;
case SYNCW: // word synch made here

RxByte = shiftIn(RxByte, CurrBit);
StuffByte = StuffStatus(StuffByte, CurrBit);

// state branches

if (BitCount == 8 && RxByte != AX_FLAG && FlagCount < FLAG_THR){
CurrState = ERROR_CHANCE;

¥

else if (BitCount == 8 && RxByte == AX_FLAG && stuffed == 0 &&

181



6 — Software

FlagCount < FLAG_THR){

FlagCount++;

BitCount = 0;

}

else if (BitCount == 8 && RxByte != AX_FLAG && FlagCount >= FLAG_THR){
ByteCount = 0;

BitCount = 0;

RxBuffer [ByteCount] = RxByte; //it’s the first byte

hwCRC ( (RxByte&0x00FF) ) ;

RxStatus = RECEIVING;

updateStatus (RxStatus, paStatus);

CurrState = PAYLOAD;

}

else if (BitCount == 8 && RxByte == AX_FLAG && stuffed == 0 &&
FlagCount >= FLAG_THR){

BitCount = 0;

RxStatus = RECEIVING;
updateStatus (RxStatus, paStatus);
}

TmrRXTimeOut = 0;
break;

case ERROR_CHANCE:
RxByte = shiftIn(RxByte, CurrBit);
StuffByte = StuffStatus(StuffByte, CurrBit);

if (BitCount == 8 && RxByte != AX_FLAG){

CurrState = PREAMBLE;

hwCRC_init (crcSeed) ;

}

else if (BitCount == 8 && RxByte == AX_FLAG && stuffed == 0){
FlagCount++;

BitCount = 0;

CurrState = SYNCW;

TmrRXTimeOut = O;

}

break;

case PAYLOAD:
RxByte = shiftIn(RxByte, CurrBit);
StuffByte = StuffStatus(StuffByte, CurrBit);

if (ByteCount == 7) { // to avoid the check everytime bitcount is 0
if (BitCount == 0){
if (strncmp(AX_SAT_ADDR, RxBuffer[PacketNum], 7)!=0){
CurrState = PREAMBLE;
}
}

182



6 — Software

}

else if (ByteCount > AX_BYTE_THR){

CurrState = PREAMBLE;

}

else if (BitCount == 8 && ~(RxByte == AX_FLAG && stuffed == 0)) {
ByteCount++;

RxBuffer [ByteCount]=RxByte;

BitCount = O0;

hwCRC ( (RxByte&0x00FF) ) ;

}

else if (BitCount == 8 && RxByte == AX_FLAG && stuffed == 0 && ByteCount > 0) {
ByteCount++; // mi salvo il flag

RxBuffer [ByteCount]=RxByte;

RxStatus = RX_RAW; // refer to fsm

updateStatus (RxStatus, paStatus);

CurrState = PREAMBLE;

}

TmrRXTimeOut = O;
break;

}

return;

3

183



6 — Software

6.4.27 Transmitting State Machine

When a transmission is requested, the TRANSMITTING state is activated, from the FSM in figure
6.27. This will activate the lower level FSM depicted in figure 6.29. The principle is very similar
to the one in reception, but the opposite: every bit is shifted out from the last updated TxByte
through the shiftOut(data : uchar). When start with the TX PREAMBLE this byte is updated
with a AX__FLAG, and sent FLAG__ THR_ TX times to allow the receiver the bit and word
synchronization.

Then the TxByte is updated with the first value of the TxBuffer : uchar[BUFFLEN] which
was prepared during when the OBC requested a transmission with a command, or upon beaconing.
When the whole buffer is sent to the transceiver, a new state called TX_ POSTAMBLE is activated,
allowing the receiver to know that such transmission has been finished. The principle is the same
as TX_PREAMBLE. Then the FSM in figure 6.28 starts again from the last state. This algorithm
is implemented in the isr  CC1020TxData().

6.4.28 isr_ CC1020TxData()

This method is used to implement the algorithm in section 6.4.27. It is an interrupt routine used to
send to the transceiver the content of the TxBuffer : uchar[BUFFLEN]. This function simply
put on DIO() the single LSB of the TxByte : byte, taken from the LSByte of the TxBuffer. This
interrupt is triggered on every falling edge of the signal on DCLK(). At the end of the transmission,
the RxStatus : t RX STATUS = PrevRxStatus : t RX_ STATUS which was stored
during the initialization of transmission. This is described by the relation between FSM RX Flag
handle and TRANSMITTING. The BitCount : byte and ByteCount : short are shared with
isr_CC1020RxData(). The behavior is described in FSM in figure 6.29.

When CurrState : t_ AX STATE = TX PREAMBLE is shifted out the AX_FLAG :
byte const value with SLOT _A::D0.write(shiftOut(data : uchar) : bool), the bit counter Bit-
Count : byte is incremented if the sent number of AX_FLAG bytes is still under the FLAG_THR
_ TX number and the flagCount : byte is incremented. When a proper FLAG_THR, TX num-
ber of flags are sent, the TxByte is updated with the first byte of TxBuffer : uchar[ BUFFLEN].
Controlling if BitCount = 0 allow to update every time the TxByte : byte with AX_ FLAG value.

If the CurrState : t_ AX_STATE = TRANSMIT_ DATA, then a certain number of flags
are sent and the payload data is going to be sent. Here is shifted out the content of the TxBuffer :
uchar[BUFFLEN] with with SLOT _A::D0.write(shiftOut(data : uchar) : bool), the bit counter
BitCount is incremented. It is also performed the stuffing with StuffStatus(data : uchar, _ bit

184



6 — Software

iaudl Pasntigrn Stmnda e Ediien P obeen ien di Torne, Dpn, Elfonics)

[BitCount==8 && FlagCount <
FLAG_THR_TX]/ FlagCount++,
BitCount = 0; TimeoutlSR{on);

[BitCount == 8 && ByteCount < packetlie
i BitCount = 0; T«Byle =
TxBuffer[++ByteCount];

[ByteCount == packetLen
&& BitCount == 8] /
BitCount=0; FlagGount=0;

[ FlagCount >= [FLAG_THR_TX]

[MagCeunt >= FLAG_THR_TX]

Tx Complete
[BitCount==8 && FlagCount =
FLAG_THR_TX]/ FlagCounts+,
BitCount=0

[flagCount < FLAG_THR_TX] /
TmrRXTimeOut = 0

Figure 6.29. FSM for the flag handling

: uchar), and based on its outcome, will be decided if sending a 0 or the actual payload. Then
is controlled if a PacketLen bytes are sent: if not, the ByteCount continue to index the next
value of TxBuffer : uchar[BUFFLEN]. But when the PacketLen bytes are transmitted, the
TX_POSTAMBLE state is activated and the counters BitCount : byte and flagCount : byte
are reset for the postamble. The ByteCount : short value is not used anymore.

If theCurrState : t_ AX_ STATE = TX POSTAMBLE, the behaviour is the same as the
TX_PREAMBLE state, but the difference is when exiting: it is restored the PrevRxStatus :
t_ RX__STATUS, updating the system with updateStatus(rzstatus : t_RX STATUS, pa : byte)
and reinitialize everything in default mode with CC1020InitRX (baudr : ulong, freq : AllowedFre-

quencies, mod : t_modulation, tzpower : byte). The TmrRXTimeOut : ushort is kept reset.

185



6 — Software

Code:

public: static isr_CC1020TxData() {
if (RxStatus == TRANSMITTING){
switch (CurrState) {

case TX_PREAMBLE:

if (BitCount == 0){

TxByte = AX_FLAG;

}

SLOT_A::DO.write(shiftOut (TxByte));
BitCount++;

if (BitCount == 8 && FlagCount < FLAG_THR_TX) {
FlagCount++;

BitCount=0;

¥

else {

CurrState = TRANSMIT_DATA;

BitCount = 0;

ByteCount = 0;

TxByte = TxBuffer [ByteCount];

}

break;
case TRANSMIT_DATA:

StuffByte = StuffStatus(StuffByte, CurrBit);
if (stuffed == 0){
SLOT_A::DO.write(shiftOut(TxByte)); // send first bit
of TxByte with no added zeros

BitCount++;

}

else {

SLOT_A::DO.reset(); // send O

}

if (BitCount == 8 && ByteCount < PacketLen){

BitCount = 0;

ByteCount++;
TxByte = TxBuffer[ByteCount];
}

else if (BitCount == 8 && ByteCount == PacketLen){
CurrState = TX_POSTAMBLE;

BitCount = O;

FlagCount = 0;

}

case TX_POSTAMBLE:

if (BitCount == 0){

TxByte = AX_FLAG;

186



6 — Software

}

SLOT_A::DO.write(shiftOut (TxByte));

BitCount++;

if (BitCount == 8 && FlagCount < FLAG_THR_TX) {
FlagCount++;

BitCount=0;

}

else {

RxStatus = PrevRxStatus; // and shutdown the tx_isr triggering
updateStatus (RxStatus, paStatus);
CC1020InitRX(baud, freq, modulation, paPower);
}

break;

}

}

TmrRXTimeOut = 0;

return;

3

187



6 — Software

6.4.29 Bit storing and bit stuffing

Until now is described the process of handling the data in RX and TX mode, but in this section
is introduced how bits are stored and how are implemented the techniques required by the AX.25
protocol. The sequence of the initialization in RX mode is described in section 6.4.13 or in 6.4.22
the TX mode. These will setup the MCU in order to trigger the isr CC1020RxzData() on rising
edge of signal at transceiver’s DCLK pin connected to the MCU, or the isr_ CC1020TxzData() on
falling. At every call of these ISRs it is executed an algorithm described from 6.4.24. Now are
going to be described the main sub-algorithms inside the TX and RX interrupt routines (namely

isr_CC1020TzData() and isr CC1020RzData()).

In reception

The FSM in figure 6.26, over the various controls to keep aligned bits and bytes received, uses two
fundamental functions, the shiftIn(RzByte, CurrBit) and StuffStatus(StuffByte, CurrBit). When
the ISR is called, the digital value present at the DIO pin is immediately stored in the CurrBit
variable. Then a buffer byte RxByte is filled with CurrBit values, by using the ShiftIn() function.

The AX.25 require that the flag must be not present in payload, but the data contained could
assume any kind of value, even equal to the flag. For this reason, and fully transparently with
respect to the data present in buffers (therefore at OSI Layer 2), is adopted the bit stuffing. It is
made by the StuffStatus() in which check the sequence of the stream. The adopted AX.25 flag is
0b01111110, therefore must be controlled if an incoming transmission has more than 5 ones (which
are 6 minus 1 bit for the difference from flag), if so it is a flag or an invalid data (invalid if more
than 6 ones are present). The StuffStatus() function reuses the ShiftIn() to make this control,
where the parameters now are not the RxByte, but the StuffByte w.r.t. the actual CurrBit.
With this row in StuffStatus():

data = (shiftIn(data, _bit) & (STUFFED+1));

where STUFFED = 0b00111110, and STUFFED+1 is a mask which covers 6 LSB bits and it is
checked if data contains the value STUFFED, that is equivalent from the transmitter point of
view to put a 0 value after 5 high bits to avoid equalities with the flag, therefore this bit it is a value
that need to be discarded, being part of the stuffing procedure when the stream was transmitted.
The “destuffing” (discarding procedure of the current low bit) is made using the destuff(data :

uchar), present in StuffStatus(), which bring the actual data window back by one time-slot:

return(data >>= 1);

188



6 — Software

These controls are executed if the RxStatus is different from TRANSMITTING, otherwise the
StuffStatus() will do the opposite task, implementing the stuffing instead of removing it, because

in this case is called by the transmitting procedures.

In transmission

As mentioned, the StuffStatus() can be used in RX or TX modes, according to the RxStatus. In
this case is shifted a _bit : bool, taken from the actual TxByte : byte, into the StuffByte
(the same global variable used in reception). But here is made a check on the stream that will

need to be transmitted, with a different mask, named TOSTUFF = 0b00011111:
data = (shiftIn(data, (bool) (TxByte & 0x1)) & TOSTUFF;

If data contains 5 ones from the LSB position it is marked the need to implement the stuffing.
Since this StuffStatus() is called by the isr_ CC1020TxzData(), this ISR is the function which should
check the global variable stuffed : byte modified by the StuffStatus(), in order to understand if
(when stuffed = 1) should transmit a 0 (stuffing) or, viceversa, to use the ShiftOut(TzByte : byte)
and put on the transceiver the first LSB available for the transmission (no stuffing). The meaning

of every byte (therefore the data handling at higher level) is described in section 6.4.24.

6.4.30 destuff()

Undo the stuffing procedure, i.e. shifting out the last bit from data, which need to be discarded
to compensate the bit stuffing implemented when transmitting the AX.25 packet. It is called by

the StuffStatus(data : uchar, _bit : uchar).
Code:

Bk1B31A2S: :destuff (uchar data) {
return(data >>= 1);

}

6.4.31 StuffStatus()

It is used to implement the algorithm in section 6.4.29. Here is performed a shift in of the _ bit
and masked with a value that covers the presence of 6 bits, here STUFFED : byte const+1
(0x3F or 0b0011 1111). So 3 events can occur:

o if the sequence has 6 ones (i.e. STUFFED : byte const+1) then is the same as the mask
so the incoming packet, except for errors, is an AX__FLAG : byte const.

189



6 — Software

o the sequence has a 0 stuffed inside, so the incoming data (analyzed on an 8-bit window by the
shiftIn(data : uchar, __bit : uchar) : byte) is, in binary, 0011 1110, or 0x3E (STUFFED :
byte const). In this case the bit is destuffed using the destuff(data : uchar) to the RxByte
: byte and is not taken into account by BitCount : byte, ignoring the last received bit,

which was a 0 stuffed.

e any other different sequence will mismatch the byte from the previous two cases, so the data

will be shifted in to the RxByte : byte.

The variable stuffed : bool is needed to know when an AX_FLAG inside the RxByte is really
a flag. When TRUE, the caller of this function must ignore the last received bit. This function is
also used when in TRANSMITTING. The __bit parameter is not used, but instead is directly check
if the TxByte will contains five consecutive ones, i.e. 0x1F (TOSTUFF : byte const). If it is
the case, stuffed = TRUE and a 0 value must be sent by the caller of this function, implementing
the bit-stuffing in transmission.

Code:

public:

#pragma inline = forced

StuffStatus(uchar data, uchar _bit) {

if (RxStatus != TRANSMITTING){

data = (shiftIn(data, _bit) & (STUFFED+1)); // STUFFED+1 = Ox3F
if (data == STUFFED){

RxByte = destuff (RxByte);

stuffed = 1; // to know when an AX_FLAG inside the RxByte is
really a flag. If 1, the RxByte contains data which is not
}

elseq{

BitCount++;

stuffed = 0;

¥

}

else {

data = (shiftIn(data, (bool)(TxByte & 0x1)) & TOSTUFF; //5 ones, TOSTUFF = Ox1f
if (data == TOSTUFF){
//stuff ) ;

stuffed = 1;

}

else {

BitCount++;

stuffed = 0;

}

3

return data;

190



6 — Software

6.4.32 shiftIn()

Writes the __bit value on the LSB (rightmost) position of data. Returns the updated data.
Code:

byte Bk1B31A2S::shiftIn(uchar data, uchar _bit) {
return((data << 1) | _bit);
}

6.4.33 shiftOut()

Will return the LSB shifted out from data. The LSB is at right position. data is modified.
Code:

bool Bk1B31A2S::shift0Out(uchar data) {
bool _bit = O;
_bit = (data | ((bool) 0));

data >>= 1;
return (_bit);
}

6.4.34 hwCRC__init()

Initialize the CRC hardware of the MSP_ 430F5437A. The initial value (seed) is in crcSeed :
ushort const, 16-bit wide and it is applied to the MPU’s internal register.

public:

#pragma inline = forced

hwCRC_init (ushort crc) {

proc.cpu.crc.init(crc);

}

6.4.35 hwCRC_ result()

Retrieve the 16bit value of the CRC from the internal registers of the processor MSP_ 430F5437A,

in reversed order.

Bk1B31A2S: :hwCRC_result (ushort* crc) {
(*crc) = proc.cpu.crc.crc_result_in_reversed();

}

191



6 — Software

6.4.36 hwCRC()

Generates the parameter’s CRC using the hardware of the MSP__430F5437A, obtaining the FCS
of the AX.25. Receives in input the source data 16bit wide, but the function should be called
with the higher byte always 0x00 due to the byte nature of the AX.25 protocol. The CRC is kept
in the processor register ready for any further update or check.

If a 16 bit data is processed, the lower byte at the even address is used at the first clock cycle.
During the second clock cycle, the higher byte is processed. Thus, it takes two clock cycles to
process 16bit data, while it takes only one clock cycle to process byte data. Here are going to be
used a byte sized data, in order to keep the AX.25 compatibility.

Bk1B31A2S: :hwCRC(uchar source) {

proc.cpu.crc.add_data_in_reversed(source);

3

6.4.37 checkCRC()

Checks if the AX.25 CRC corresponds to the actual content of the packet. The FCS compari-
son should be performed after the last call of the subfieldID(buffer : char *, subBuff : char *,
start : short €, mode : t_ID_MODE) : bool in DATA mode. In this way the crc : ushort
variable has been updated, and then can be compared with the processor’s calculation using the
hwCRC _result(cre : ushort *) called by this method.

Bk1B31A2S: : checkCRC(ushort crc) {

ushort crc_temp = O;

hwCRC_result(crc_temp) ;

if (crc_temp == crc) return 1;

else return O;

}

6.4.38 System Timer

The class Bk1B31A2S contains a timer, named Timer A1 for the actual MPU adopted. It used as
a system tick, which allow to define a time base interval in this class. This timer is based, in turn,
on another class named TimerA1. The methods contained here are called by the Bk1B31A2S,
which initialize the timer on generating interrupt on its overflow. In figure 6.30 is shown when the
interrupt flag TAIFG is set, when configured in up-mode.

The system clock is chosen to be 8MHz and divider used on the timer is 8, obtaining, when

counting up to OxFFFF, a system tick which is around 65ms.

192



6 — Software

Timer x FFFEh X FFFFh I 0h X 1h x:: X FFFER X FFFFh oh

\
Set TAXCTL TAIFG | e |
| L |

- g

Figure 6.30. Interrupt flag setting of timer in up-mode

6.4.39 isr_ TimerAl()

It is a method used to implement the timer handling described in section 6.4.38. This is an ISR
which is called when the TimerAl will overflow. The provided overflow period is around 65ms,
therefore this is the system tick for its variables updating.

Every system tick are incremented the:

o TmrBeacon : ushor and a missing reset of this variable for 65*BEACON _ TIMEOUT

: byte const milliseconds the auto-generating beacon will take place

e TmrRXCheckCarrier : ushort, which triggers the search of a RF carrier after 65*RSST__
CHECK_TIMEOUT : byte const milliseconds. This search mode is made by calling
the TogglePSEL().

e TmrRXTimeOut : ushort where a missing reset of this variable lead to a reset of the
receiving state machine after 65*RX__ TIMEOUT : byte const milliseconds.
Code:

public: static _isr_timerA1() {
//Every system tick 65ms

if (RxStatus !'= RECEIVING){
TmrRXTimeOut = 0;

}
else if (TmrRXTimeOut++ >= RX_TIMEOUT && (CurrState == SYNCW || CurrState == PAYLOAD)){
if (RxStatus == RX_OFF ) { // ripristina valore precedente se eri in trasmissione,

quindi con RX spento
RxStatus = PrevRxStatus;
} else {
RxStatus
}

}

RX_IDLE;

if (TmrBeacon++ >= BEACON_TIMEQOUT) {
SendBeacon = 1;
TmrBeacon = O;

193



6 — Software

if (RxStatus == RX_IDLE && TmrRXCheckCarrier++ >= RSSI_CHECK_TIMEQUT) {
transceiver.CC1020.TogglePSEL() ;

TmrRXCheckCarrier = 0;

}

cpu.timerAl.clearInterrupt();

}

194



6 — Software

6.4.40 Methods based on external classes

In figure 6.3 are shown two classes which are necessary for the functioning of the main class
Bk1B31A2S. These are the Housekeeping (from the external package 1B45) and the MessageHan-
dler (from the same 1B45 package).

Housekeeping

This class support various methods and template configurations in order to keep updated the house-
keeping register housekeeping : HK_ REDUNDANCY [LENGTH__HOUSEKEEPING].
The housekeeping vector is triple redundant hardened and can store LENGTH_HOUSEKEEPING
different values of different sensors. This class provide just the last read of sensors data, with no
other particular statistics. The description of the vector is provided from section 4.3.

This class contains also the configRegister : CS_ REDUNDANCY [LENGTH__CONFIG].
Its template parameter LENGTH CONFIG defines the maximum number of configuration words
which are available. The last vector provided is the statusRegister : CS_ REDUNDANCY
[LENGTH__STATUS]. Its template parameter LENGTH__STATUS defines the maximum num-
ber of status words which are available. The description of the content of these last two vectors is
provided before, in section 4.2.8. All the data is triple hardened using the HK_ REDUNDANCY
template as “tripleData”.

The connection of the housekeeping sensors is provided in figure 6.31, in which it is highlighted
also the relative functions called when this class requires the periodic update. In fact, each system
sensor contain a software class, which is used by this housekeeping to trigger the handling of the
sensors: in other words the housekeeping class calls the housekeeping() functions of the sensors’
classes. The connections are useful for the chapter 5, while the index names in figure 6.31 are
described in section 4.3. It is configured by the Bk1B31A2 class through the object hk, which
provides the required templates. See figure 6.3.

The sensors were read through analog channels of the MCU, assigned using templates, using the

acquire() method of the ADC' external class.
Code:

Bk1B31A2S: :housekeeping(ushort index) {
monitor2V8.housekeeping(index) ;
monitorVPA.housekeeping(index) ;
monitor3V3.housekeeping(index) ;
monitorPDB.housekeeping(index) ;
absCurr.housekeeping(index) ;
temperature.housekeeping(index) ;
monitorVREF.housekeeping(index) ;

195



6 — Software

MessageHandler

This class support methods and template configurations in order to handle the OBC requests
and relative responses. It is the software implementation of the interfacing functions described in
section 4.4. It is used the PROTOCOL template as I12C and other templates related to the selected
SLOT (see figure 6.4 for the selected slots and pins).

This class contains the methods which are interrupt driven, handling every single byte in re-
ception and in transmission. The synchronization between the request and the eventual further
response is described in section 4.4 and implemented in this class, where after a full command has
been received, a call of the interpret(command : ushort) of Bk1B31A2S class is made.

The interpreter starts with check sequence of the command. If corresponds to CMD_GET
STATUS, CMD_TRANSMIT, or GET_PACKAGE the reset of the beacon timing happens, be-
cause of the interaction with the OBC, as depicted before in figure 6.17. If it is acommand which
requires to return some data, the buffer of the MesageHandler bufferRead : byte* is initialized
by a proper payloadLen length and filled with data described in use case Get Received Packet
described in section 4.2.4. If it is a transmit command from the OBC, it is received a buffer
which will be stored in a MesageHandler previously bufferWrite : byte*. (As provided by 1B45
SubSystem Serial Data Bus).

The CMD_WAKEUP is used to firstly put in active mode the MCU and then initialize the
transceiver. Conversely, when CMD_STANDBY the RxStatus is set accordingly as in figure
6.27, the transceiver put in Power Down mode and the MCU put in standby, but capable of
listening from the bus, as provided by use cases in section 4.3. Always from these use cases, the
CMD_SET ADDR is used to change the destination address in the tile and keep it until new
address is eventually set.

A final remark on the change of the configuration, is related to the nature of the configRegister
which allows it to be modified. Therefore, any command which can lead to any kind of modification
must call the already described writeConfig() in order to update the configuration and apply it,
by calling the initialization of the transceiver in the default mode RX.

According to figure 6.17 and the other diagrams of the AraMiS protocol, every time a command
CMD_GET _ STATUS is issued, suddenly the OBC issue commands related to the RF interaction.
This means that every time the CMD__ GET__STATUS is issued, the beacon timeout counter should
be restarted. This is handled in the interpret() too.

196



6 — Software

6.4.41 interpret()

This function is called by the MessageHandler class when a command is received.

If command = CMD_ TRANSMIT, it is initiated the transmission sequence described in section
6.4.22. It is the implementation of use case Transmit (from section 4.3).

If command = GET PACKAGE, is prepared the bus present in the MessageHandler, through
the object bus of the Bk1B31A2S class, with the content of the auxBuff : uchar[BUFFLEN]
prepared autonomously by the system according to section 6.4.2. It is the implementation of the
use case Get Received Packet (section 4.2.4).

If command = CMD_ WAKEUP the Bk1B4221W _Tile Processor 4M unti is resumed from
the low power mode and the Bk1B31A2_ Transceiver 437MHz unit is put in RX mode. This
implements the WakeUp use case (from section 4.3).

If command = CMD__STANDBY the Bk1B31A2 Transceiver_437MHz is put in power down
mode, and then also the Bk1B4221W_ Tile  Processor_ 4M unit. Implements the Standby use case
(from section 4.3).

If command = CMD_SET_ ADDR is copied to addressGround : uchar[7] the desired
address. In order to adapt it to the AX.25 protocol, the single left shift is automatically performed
at run-time before storing the new address.

If command = CMD__ DEPLQY issue the opening command to the antenna.

It is also checked if the OBC had required any possible modification of the configRegister :
CS_ REDUNDANCY [LENGTH__ CONFIG]. In this case it is applied the configuration
to the tile and reinitialize it in RX mode, because the configuration could affect the channel
parameters and therefore the Bk1B31A2 Transceiver 437MHz unit should be reinitialized in the
RX (default) mode.

When issued the CMD__ GET_STATUS, among with GET__ PACKAGE and CMD_ TRANSMIT,
the beacon timeout counter is reset.

Code:

Bk1B31A2S::interpret (ushort command) {
TmrBeacon = 0;

switch (command) {

case Commands.CMD_TRANSMIT:

CC1020InitTX(baud, freq, modulation, paPower);

break;

case Commands.GET_PACKAGE:

bus.lenght = payloadLen; // contains all the payloadLen updated after the unpacking
bus.bufferRead[0] = ns;

197



6 — Software

memcpy (bus.bufferRead+1, auxBuff, bus.length);
RxStatus = RX_IDLE;

updateStatus (RxStatus, paStatus);

break;

case bus.message: :MessageHandler.command.CMD_WAKEUP:
Wakeup() ;

CC1020InitRX(baud, freq, modulation, paPower);
break;

case bus.message: :MessageHandler.command.CMD_STANDBY:
CC1020PD(); //include lo switch e pa

RxStatus = RX_IDLE; // non si deve perdere il
contenuto in RAM

Standby () ;

break;

case Commands.CMD_SET_ADDR:
for (byte i = 0; i < 6; i++)

[ T |

addressGround[i] (bus.bufferWrite[i] << 1);
addressGround[6] = bus.bufferWrite([6]; //SSID
break;

case (bus.message: :MessageHandler.command.CMD_SET_CONFIGURATION | |
bus.message: :MessageHandler.command.CMD_RESET_CONFIGURATION ||
bus.message: :MessageHandler.command.CMD_WRITE_CONFIGURATION)

writeConfig(&baud, &freq, &modulation, &paPower) ;

CC1020InitRX(baud, freq, modulation, paPower);

break;

case (bus.message::MessageHandler.command.CMD_GET_STATUS) :
TmrBeacon = O;

break;

X

b

6.4.42 CC1020PD()

This function put the Bk1B31A2_ Transceiver 437MHz unit in power down mode. A proper
configuration of the transceiver’s registers is assumed to be already made, allowing to issue only

one single command to CC1020.

Bk1B31A2S::CC1020PD() {
transceiver.CC1020.SetReg(CC1020_MAIN, Ox1F);
transceiver.CC1020.SetReg(CC1020_PA_POWER, 0x00);
// p. 55 datasheet
3

198



T

pioa | (3DVLIOA|80d MH = Bougn @ xapuBuidaayasnoy 12L'g

pon : (IOVLIOA|EAE MH = Hous{ : xapu)buidessasnoy (g} g

on (DT LI0A HIHA HH = tez_ra :xepul)burdadyesnoy 518

— +
pion : (IDVLIOAT VAN 3H = :oﬁ_: : xapu)fuidaayasnoy 1y | g

+ =
plon  (39VLI0ABAZ HMH = Poys] : xapul)Buidesypsnoy g1 g
pron : {BAN LYy 34W3LHH = poysn © xdpujBuidesyesnel; z'1 g
poA T (INFHEND AH = Padsn - xapubuidadyasnoy <1 1 g

I W W S

Iy

A

(IBusayasnoy ;g

Jowewn st g

uigEsy

I

oy 8als

(lov'sa s

B (ov™ea ¥ 14
. " -
O™Laye
_Hﬁ_ﬁ v 20T _|
O - g
(low™sa i1
Josiua
S ameadwa 10SUBS
o 08 Josuas L stelgig losuag jus amesadiia

£rdSW D LOTS | |ERdSW O LOTS rdSW Y LOTS | | eBmionTsIEIEIE ; sosua Ny SzElgLE Josuag 8 osuag POE| | IoSUag BOE| | JOSUSS abe) | Josueg ebe| | |EEIELE JosUag U

0 S0 OERdSIN 8 LOTS OE [ sues s omeiadws idosuagTIue 6eloA OLELEINE 0N VLELGINE | 194 WLELELNE 194 YIELELYE |IoA VLELgkNE ; 2uNg ZELEINE Budeayesnoy
£rdSW 0 1018 [ebdSW 0 1O7S| | :DERdSW E LOTS | | #dSWY LOTS| | eBmoA SLELELNE| | LTSEelELNs | | #noTszeiae GOdoIueW | I EACIOIUCW | ! JIAIOIUDW | @ wdaloiuow | Baspsojuow | sinjeiaduwa) weunosge || SZYIERINE - SaWLERINE | & def -«

199
Housekeeping connections and functions involved

Figure 6.31.



6 — Software

6.4.43 CC1020AutoWakeUpMode()

The CC1020 when put in RX mode need a proper sequence of configurations. Moreover, in this
application is configured to be in Automatic Power-Up Sequencing, in which upon a proper signal
in PSEL pin, start searching for a received signal of a strength (RSSI) which is over a defined
threshold. The CC1020 provides a reading of the RSSI level from the RSSI register. The RSSI
reading is a logarithmic measure of the average voltage amplitude after the digital filter in the digital
part of the IF chain and can be referred to the incoming relative power. This is proportional to
VGA gain too, therefore should be kept in mind its amplification, if the absolute power reading is
needed. Despite this, it is only needed the relative value of the RSSI for the automatic power-up
triggering.

According to the required conditions, SmartRF Studio helps in defining the optimum levels of
the VGA and a starting point for a minimum carrier sense threshold, considering the bandwidth,
frequency deviation and crystal tolerance defined. The threshold value set in the VGA4 register
can be offset to obtain an higher or lower threshold. This threshold is used to set the operating
point of the gain control, where its hysteresis can be tuned.

The threshold comparison is used for the Automatic Power-up sequencing mode. The initializa-
tion for this modality starts from the power off assumption, so resetting all the registers each time,
in order to discard the previous values on transceiver’s on-chip registers, reducing the variables
time life and therefore reducing SEUs events. This mode allow the transceiver to wake up from
Power Down mode upon toggling the PSEL pin, this automatically put the RX mode and search
for an incoming carrier higher than the threshold level of RSSI and automatically enters in RX
mode. If no signal is detected, will turn back in power down automatically.

Note for the testing phase: Activating the reception periodically, assuming that the power

down mode lasts less than half of the preamble duration, will introduce a power saving improvement

without loosing any information.

200



6 — Software

Initialization steps

The steps to use this mode are made by a sequence of commands in order to reset the transceiver.
Then configuring the RX parameters (associated to transceiver’s configuration registers labelled as
A) in order to obtain the settings devised in previous chapters. The configuration follow different
cases for different baudrates, since each require a fine tuning of the on-chip RF components and
a well determined bandwidth (as seen before). Despite a single baudrate is used, a full support is
provided for all the possible settings, if needed. The configuration follows the use cases, therefore is
activated the NRZ coding, no scrambling is implemented, the ADC frequency is set to the optimal
designed value, AFC settling time is set to the slowest, obtaining a more precise frequency control.
To ease the development, for some settings are used the already tested methods of CC1020 class,
which are extracting the register values from the required parameters. These decisions were made
considering the slow speed of satellite data, which requires a precise control of the transceiver,
therefore reducing errors of the transceiver’s internal measurements, and not necessarily reducing

the attach time in RX mode, which is not so important in this moment.

Then is configured the signalling of the continuous lock of PLL, that will be checked to verify
the calibration. This value is present in the LOCK register. The receive chain and PA are put
in power down (PD_MODE = 1). The auto-calibration starts and will be performed again if the
PLL does not lock, situation that could happens. After this the chip is put in full power up (PD
mode 0), then is activated the automatic power-up, which end by putting the chip in full power
down. After a PSEL toggle is performed and the RSSI triggers the RX mode, and so a packet is

potentially received or the receiver goes in timeout, this sequence should be reinitialized. [12]

This method implements the Automatic Power-Up Sequencing mode mentioned in section 6.4.43.
This method can be used for different configurations by using the proper parameters: baudr :
ulong for the chosen baudrate, freq : AllowedFrequencies for the used carrier frequency, mod
: t__modulation for the selected RF modulation. The MCU’s pins connected to the transceiver

are initialized according to figures 6.9 and 6.8. Then it is reset, preparing it for the programming.

A set of switch-case is deployed to handle the requested baudrate configuration. Each configura-
tion contains a defined set of SetReg() methods for writing a different configuration present in the
enumeration TRANSCEIVER _SETTINGS while variables dev (deviation) and bw (bandwidth)
are updated.

Then are set the transceiver’s internal configuration modules A and B, respectively, for RX and

TX modes, using some already tested methods. To avoid possible errors the TX part is configured

201



6 — Software

too, using SetFreqA () and SetFreqB() methods. The Modem() configures the modem hardware gen-
erating variables for the MODEM register. According to CC1020Auto Wake UpMode() mod param-
eter, the updated dev and bw variables, are then set the deviation (with Deviation((ushort)mod,
dev)), the filter bandwitdth (with FilterBand Width(bw, baudr)) and the automatic frequency con-
trol with AFC_control(CC_SETTLING, dev).

After the configuration (which is common with TX mode in next section) is followed the sequence
labelled WakeUpCC1020ToRX in figure 6.32 provided by TI, turning on the crystal, bias generator
and synthesizer. Now the transceiver is in PD mode 1 (the core is active but separated from the
outside, so the receive chain and the internal PA are in power down) and it is performed the
next step in figure 6.32, the calibration, using the CC1020Calibrate() method. Here the label
SetupCC1020PD is skipped and since after the calibration the PLL is in lock, the auto wake-
up mode can be activated by putting the CC1020 in PD mode 0 (which means that is fully
power up and connected to the internal receive chain); this step consists in activating the on-chip
configuration labelled A for the RX mode, by writing PDMODEO_RX A value in MAIN register.
Now after a delay of at least 100 us, it is put in auto powering up mode by writing in MAIN the
value AUTO_POWERING__UP. The chip now waits for the PSEL pin to be toggled.

Code:

Bk1B31A2S: :CC1020AutoWakeUpMode (ulong baudr, Use_Cases::AllowedFrequencies freq,
Bk1B31A2W_0BRF_437MHz: :t_modulation mod) {

//init CC to PD. The CC1020 class uses bitbanging,

NOT SPI (is compatible). PSEL is high
transceiver.CC1020_Init(); //PSEL high

// From AN, first reset
transceiver.SetReg(CC1020_MAIN, MAIN_RESET) ;
transceiver.SetReg(CC1020_MAIN, MAIN_OUT_RESET); //out of reset

//sequence from RF Studio. Now is PD (mode is described in documentation of this class)
// configuration
ulong dev = 0;
ulong bw = O;

//consigliati per bandw con doppler,

quindi VGAx gil regolati

// cambiare i VGA se sul campo non funziona correttamente

(che sia sensitivith , selettivitd , ecc)

switch (baudr) {

case 2400: //25, ma dev’essere 50

transceiver.SetReg(CC1020_INTERFACE, (X0SC_BYPASS | SEP_TX_RX | NOGATE_DCLK_PLL
| GATE_DCLK_CS | NO_PA | NO_LNA | PA_LOW | LNA_LOW));

transceiver.SetReg(CC1020_RESET, Oxff);

transceiver.SetReg(CC1020_SEQUENCING, (PSEL_TOGGLE | WAIT_32ADC | MAXCS_WAIT));

transceiver.SetReg(CC1020_CLOCK_A, CONF2400);

202



6 — Software

transceiver.SetReg(CC1020_CLOCK_B, CONF2400);
transceiver.SetReg(CC1020_VCO, (VCO_CURR_2_8_A | VCO_CURR_2_8_B));
transceiver.SetReg(CC1020_VGA1l, (FREEZE_32ADC | WAIT_16FCLK
| CS_SIG_RESET2CY | CS_SIG_SET2CY));
transceiver.SetReg(CC1020_VGA2, (AGC_AVG_4CY | HYSTER_GAIN | AGC_ON
| LNA_SETTING | MAX_LNA | MIN_LNA));
transceiver.SetReg(CC1020_VGA3, (VGA_MAX_GAIN | VGA_DOWN));
transceiver.SetReg(CC1020_VGA4, (CS_LEVEL | VGA_UP));
transceiver.SetReg(CC1020_LOCK, (LOCK_CONTINUOUS | LOCK_WINDOW |
LOCK_RESTART_MODE | LOCK_ACCUR));
transceiver.SetReg(CC1020_FRONTEND, (LNAMIX_CURRENT, LNA_CURRENT,
MIX_CURRENT, LNA2_CURRENT, SDC_CURRENT, LNAMIX__BIAS));
transceiver.SetReg(CC1020_ANALOG, (BANDO | LOSC_DC | BLANK_OFF |
PHASE_SHORT_DELAY | PA_BOOST | DIV_BUFF_CURRENT));
transceiver.SetReg(CC1020_BUFF_SWING, (PRE_SWING |
RX_SWING | TX_SWING));
transceiver.SetReg(CC1020_BUFF_CURRENT, (PRE_CURR | RX_CURR | TX_CURR)) ;
transceiver.SetReg(CC1020_PLL_BW, PLL_BW);
transceiver.SetReg(CC1020_CALIBRATE, (NO_CAL | CAL_WAIT
| CAL_SINGLE | CAL_ITER));
transceiver.SetReg(CC1020_MATCH, 0x00);
transceiver.SetReg(CC1020_PHASE_COMP, 0x00) ;
transceiver.SetReg(CC1020_GAIN_COMP, 0x00);
transceiver.SetReg(CC1020_POWERDOWN, 0x00);

dev = 2025;
bw = 25000;
break;

case 4800: //50kHz
transceiver.SetReg(CC1020_INTERFACE, (X0SC_BYPASS | SEP_TX_RX
| NOGATE_DCLK_PLL | GATE_DCLK_CS | NO_PA | NO_LNA | PA_LOW | LNA_LOW));
transceiver.SetReg(CC1020_RESET, Oxff);
transceiver.SetReg(CC1020_SEQUENCING, (PSEL_TOGGLE | WAIT_32ADC |
MAXCS_WAIT));
transceiver.SetReg(CC1020_CLOCK_A, CONF4800);
transceiver.SetReg(CC1020_CLOCK_B, CONF4800) ;
transceiver.SetReg(CC1020_VCO, (VCO_CURR_2_8_A | VCO_CURR_2_8_B));
transceiver.SetReg(CC1020_VGA1l, (FREEZE_32ADC |
WAIT 16FCLK | CS_SIG_RESET2CY | CS_SIG_SET2CY));
transceiver.SetReg(CC1020_VGA2, (AGC_AVG_4CY | HYSTER_GAIN |
AGC_ON | LNA_SETTING | MAX_LNA | MIN_LNA));
transceiver.SetReg(CC1020_VGA3, (VGA_MAX_GAIN1 | VGA_DOWN));
transceiver.SetReg(CC1020_VGA4, (CS_LEVEL1 | VGA_UP));
transceiver.SetReg(CC1020_LOCK, (LOCK_CONTINUQUS | LOCK_WINDOW |
LOCK_RESTART_MODE | LOCK_ACCUR));
transceiver.SetReg(CC1020_FRONTEND, (LNAMIX_CURRENT, LNA_CURRENT,
MIX_CURRENT, LNA2_ CURRENT, SDC_CURRENT, LNAMIX_ BIAS));
transceiver.SetReg(CC1020_ANALOG, (BANDO | LOSC_DC | BLANK_OFF |
PHASE_SHORT DELAY | PA_BOOST | DIV_BUFF_CURRENT));
transceiver.SetReg(CC1020_BUFF_SWING, (PRE_SWING

203



6 — Software

| RX_SWING | TX_SWING));
transceiver.SetReg(CC1020_BUFF_CURRENT, (PRE_CURR

| RX_CURR | TX_CURR));
transceiver.SetReg(CC1020_PLL_BW, PLL_BW);
transceiver.SetReg(CC1020_CALIBRATE, (NO_CAL | CAL_WAIT

| CAL_SINGLE | CAL_ITER));
transceiver.SetReg(CC1020_MATCH, 0x00);
transceiver.SetReg(CC1020_PHASE_COMP, 0x00) ;
transceiver.SetReg(CC1020_GAIN_COMP, 0x00);
transceiver.SetReg(CC1020_POWERDOWN, 0x00);

dev = 2475;
bw = 50000;
break;

case 9600: //50kHz
transceiver.SetReg(CC1020_INTERFACE, (X0SC_BYPASS | SEP_TX_RX |
NOGATE_DCLK_PLL | GATE _DCLK_CS | NO_PA | NO_LNA | PA_LOW | LNA_LOW));
transceiver.SetReg(CC1020_RESET, Oxff);
transceiver.SetReg(CC1020_SEQUENCING, (PSEL_TOGGLE

| WAIT_32ADC | MAXCS_WAIT));
transceiver.SetReg(CC1020_CLOCK_A, CONF9600) ;
transceiver.SetReg(CC1020_CLOCK_B, CONF9600) ;
transceiver.SetReg(CC1020_VCO, (VCO_CURR_2_8_A | VCO_CURR_2_8_B));
transceiver.SetReg(CC1020_VGA1l, (FREEZE_32ADC

| WAIT 16FCLK | CS_SIG_RESET2CY | CS_SIG_SET2CY));
transceiver.SetReg(CC1020_VGA2, (AGC_AVG_4CY

| HYSTER_GAIN | AGC_ON

| LNA_SETTING | MAX_LNA | MIN_LNA));
transceiver.SetReg(CC1020_VGA3, (VGA_MAX_GAIN1 | VGA_DOWN));
transceiver.SetReg(CC1020_VGA4, (CS_LEVEL1 | VGA_UP));
transceiver.SetReg(CC1020_LOCK, (LOCK_CONTINUQUS | LOCK_WINDOW

| LOCK_RESTART _MODE | LOCK_ACCUR));
transceiver.SetReg(CClOQO_FRONTEND, (LNAMIX_CURRENT, LNA_CURRENT,
MIX_CURRENT, LNA2_CURRENT, SDC_CURRENT, LNAMIX__BIAS));
transceiver.SetReg(CC1020_ANALOG, (BANDO | LOSC_DC | BLANK_OFF |
PHASE_SHORT_DELAY | PA_BOOST | DIV_BUFF_CURRENT)) ;
transceiver.SetReg(CC1020_BUFF_SWING, (PRE_SWING

| RX_SWING | TX_SWING));
transceiver.SetReg(CC1020_BUFF_CURRENT, (PRE_CURR

| RX_CURR | TX_CURR));
transceiver.SetReg(CC1020_PLL_BW, PLL_BW);
transceiver.SetReg(CC1020_CALIBRATE, (NO_CAL |
CAL WAIT | CAL_SINGLE | CAL_ITER));
transceiver.SetReg(CC1020_MATCH, 0x00);
transceiver.SetReg(CC1020_PHASE_COMP, 0x00) ;
transceiver.SetReg(CC1020_GAIN_COMP, 0x00);
transceiver.SetReg(CC1020_POWERDOWN, 0x00);

dev = 4950;
bw = 50000;
break;

204



6 — Software

case 19200:
transceiver.

//100khz BW
SetReg(CC1020_INTERFACE, (X0SC_BYPASS | SEP_TX_RX

| NOGATE_DCLK_PLL | GATE_DCLK_CS | NO_PA | NO_LNA | PA_LOW | LNA_LOW));

transceiver.
transceiver.
WAIT_32ADC |
transceiver.
transceiver.
transceiver.
transceiver.
WAIT_16FCLK
transceiver.

SetReg(CC1020_RESET, Oxff);

SetReg(CC1020_SEQUENCING, (PSEL_TOGGLE |

MAXCS_WAIT));

SetReg (CC1020_CLOCK_A, CONF19200) ;

SetReg (CC1020_CLOCK_B, CONF19200) ;

SetReg(CC1020_VCO, (VCO_CURR_2_8_A | VCO_CURR_2_8_B));
SetReg(CC1020_VGA1, (FREEZE_32ADC |

| CS_SIG_RESET2CY | CS_SIG_SET2CY));
SetReg(CC1020_VGA2, (AGC_AVG_4CY | HYSTER_GAIN | AGC_ON

| LNA_SETTING | MAX_LNA | MIN_LNA));

transceiver.
transceiver.
transceiver.

SetReg(CC1020_VGA3, (VGA_MAX_GAIN2 | VGA_DOWN));
SetReg(CC1020_VGA4, (CS_LEVEL1 | VGA_UP));
SetReg(CC1020_LOCK, (LOCK_CONTINUOUS | LOCK_WINDOW |

LOCK_RESTART_MODE | LOCK_ACCUR));

transceiver.

SetReg(CC1020_FRONTEND, (LNAMIX_CURRENT, LNA_CURRENT,

MIX_CURRENT, LNA2_CURRENT, SDC_CURRENT, LNAMIX__BIAS));

transceiver.

SetReg(CC1020_ANALOG, (BANDO | LOSC_DC | BLANK_OFF |

PHASE_SHORT_DELAY | PA_BOOST | DIV_BUFF_CURRENT));

transceiver.
transceiver.
transceiver.
transceiver.

SetReg(CC1020_BUFF_SWING, (PRE_SWING | RX_SWING | TX_SWING));
SetReg (CC1020_BUFF_CURRENT, (PRE_CURR | RX_CURR | TX_CURR));
SetReg(CC1020_PLL_BW, PLL_BW);

SetReg(CC1020_CALIBRATE, (NO_CAL |

CAL_WAIT | CAL_SINGLE | CAL_ITER));

transceiver.
transceiver.
transceiver.
transceiver.
dev = 9900;
bw = 100000;
break;

case 38400:
transceiver.

SetReg(CC1020_MATCH, 0x00);

SetReg(CC1020_PHASE_COMP, 0x00);
SetReg(CC1020_GAIN_COMP, 0x00);
SetReg(CC1020_POWERDOWN, 0x00) ;

//150
SetReg(CC1020_INTERFACE, (XOSC_BYPASS | SEP_TX_RX |

NOGATE_DCLK_PLL | GATE_DCLK_CS | NO_PA | NO_LNA | PA_LOW | LNA_LOW));

transceiver.
transceiver.
transceiver.
transceiver.
transceiver.
transceiver

SetReg(CC1020_RESET, Oxff);

SetReg(CC1020_SEQUENCING, (PSEL_TOGGLE | WAIT_32ADC | MAXCS_WAIT));
SetReg(CC1020_CLOCK_A, CONF38400) ;

SetReg(CC1020_CLOCK_B, CONF38400) ;

SetReg(CC1020_VCO, (VCO_CURR_2_8_A | VCO_CURR_2_8_B));

.SetReg(CC1020_VGA1l, (FREEZE_32ADC | WAIT_16FCLK |

CS_SIG_RESET2CY | CS_SIG_SET2CY));

transceiver.

SetReg(CC1020_VGA2, (AGC_AVG_4CY | HYSTER_GAIN | AGC_ON |

LNA_SETTING | MAX_LNA | MIN_LNA));

transceiver.
transceiver.
transceiver.

SetReg(CC1020_VGA3, (VGA_MAX_GAIN | VGA_DOWN));
SetReg(CC1020_VGA4, (CS_LEVEL3 | VGA_UP));
SetReg(CC1020_LOCK, (LOCK_CONTINUOUS | LOCK_WINDOW |

205



6 — Software

LOCK_RESTART_MODE | LOCK_ACCUR));

transceiver.

SetReg(CC1020_FRONTEND, (LNAMIX_CURRENT, LNA_CURRENT,

MIX_CURRENT, LNA2_CURRENT, SDC_CURRENT, LNAMIX__BIAS));

transceiver.

SetReg(CC1020_ANALOG, (BANDO | LOSC_DC | BLANK_OFF |

PHASE_SHORT_DELAY | PA_BOOST | DIV_BUFF_CURRENT));

transceiver.
transceiver
transceiver.
transceiver
transceiver.
transceiver.
transceiver.
transceiver.
dev = 19800;
bw = 150000;
break;

case 76800:
transceiver.

SetReg(CC1020_BUFF_SWING, (PRE_SWING | RX_SWING | TX_SWING));

.SetReg(CC1020_BUFF_CURRENT, (PRE_CURR | RX_CURR | TX_CURR));

SetReg(CC1020_PLL_BW, PLL_BW);

.SetReg(CC1020_CALIBRATE, (NO_CAL | CAL_WAIT | CAL_SINGLE | CAL_ITER));

SetReg(CC1020_MATCH, 0x00);

SetReg(CC1020_PHASE_COMP, 0x00);
SetReg(CC1020_GAIN_COMP, 0x00);
SetReg(CC1020_POWERDOWN, 0x00) ;

//200
SetReg (CC1020_INTERFACE, (XOSC_BYPASS | SEP_TX_RX

| NOGATE_DCLK_PLL | GATE_DCLK_CS | NO_PA | NO_LNA | PA_LOW | LNA_LOW));

transceiver.
transceiver.
MAXCS_WAIT))
transceiver.
transceiver.
transceiver.
transceiver.

SetReg(CC1020_RESET, 0xff);

SetReg(CC1020_SEQUENCING, (PSEL_TOGGLE | WAIT_32ADC |
SetReg(CC1020_CLOCK_A, CONF76800) ;
SetReg(CC1020_CLOCK_B, CONF76800) ;

SetReg(CC1020_VCO, (VCO_CURR_2_8_A | VCO_CURR_2_8_B));
SetReg(CC1020_VGA1, (FREEZE_32ADC |

WAIT_16FCLK | CS_SIG_RESET2CY | CS_SIG_SET2CY));

transceiver.

SetReg(CC1020_VGA2, (AGC_AVG_4CY | HYSTER_GAIN | AGC_ON

| LNA_SETTING | MAX_LNA | MIN_LNA));

transceiver.
transceiver.
transceiver.

SetReg(CC1020_VGA3, (VGA_MAX_GAIN3 | VGA_DOWN));
SetReg(CC1020_VGA4, (CS_LEVEL2 | VGA_UP));
SetReg(CC1020_LOCK, (LOCK_CONTINUOUS

| LOCK_WINDOW | LOCK_RESTART_MODE | LOCK_ACCUR)) ;

transceiver.

SetReg(CC1020_FRONTEND, (LNAMIX_CURRENT, LNA_CURRENT,

MIX_CURRENT, LNA2_CURRENT, SDC_CURRENT, LNAMIX__BIAS));

transceiver.

SetReg(CC1020_ANALOG, (BANDO | LOSC_DC | BLANK_OFF |

PHASE_SHORT_DELAY | PA_BOOST | DIV_BUFF_CURRENT));

transceiver.
| RX_SWING |
transceiver.
transceiver.
transceiver.
transceiver
transceiver.
transceiver.
transceiver.
dev = 36000;
bw = 200000;
break;

SetReg(CC1020_BUFF_SWING, (PRE_SWING

TX_SWING));

SetReg(CC1020_BUFF_CURRENT, (PRE_CURR | RX_CURR | TX_CURR));
SetReg(CC1020_PLL_BW, PLL_BW);

SetReg(CC1020_CALIBRATE, (NO_CAL | CAL_WAIT | CAL_SINGLE | CAL_ITER));

.SetReg(CC1020_MATCH, 0x00);

SetReg(CC1020_PHASE_COMP, 0x00);
SetReg(CC1020_GAIN_COMP, 0x00);
SetReg(CC1020_POWERDOWN, 0x00);

206



6 — Software

case 153600: //500
transceiver.SetReg(CC1020_INTERFACE, (XO0SC_BYPASS | SEP_TX_RX

| NOGATE_DCLK_PLL | GATE_DCLK_CS | NO_PA | NO_LNA | PA_LOW | LNA_LOW));
transceiver.SetReg(CC1020_RESET, Oxff);
transceiver.SetReg(CC1020_SEQUENCING, (PSEL_TOGGLE | WAIT_32ADC | MAXCS_WAIT));
transceiver.SetReg(CC1020_CLOCK_A, CONF153600) ;
transceiver.SetReg(CC1020_CLOCK_B, CONF153600) ;
transceiver.SetReg(CC1020_VCO, (VCO_CURR_2_8_A | VCO_CURR_2_8_B));
transceiver.SetReg(CC1020_VGA1l, (FREEZE_32ADC | WAIT_16FCLK

| CS_SIG_RESET2CY | CS_SIG_SET2CY));
transceiver.SetReg(CC1020_VGA2, (AGC_AVG_4CY | HYSTER_GAIN | AGC_ON

| LNA_SETTING | MAX_LNA | MIN_LNA));
transceiver.SetReg(CC1020_VGA3, (VGA_MAX_GAIN4 | VGA_DOWN));
transceiver.SetReg(CC1020_VGA4, (CS_LEVEL4 | VGA_UP));
transceiver.SetReg(CC1020_LOCK, (LOCK_CONTINUQUS | LOCK_WINDOW

| LOCK_RESTART MODE | LOCK_ACCUR));
transceiver.SetReg(CC1020_FRONTEND, (LNAMIX_CURRENT, LNA_CURRENT,
MIX_CURRENT, LNA2 CURRENT, SDC_CURRENT, LNAMIX__BIAS));
transceiver.SetReg(CC1020_ANALOG, (BANDO | LOSC_DC | BLANK_OFF

| PHASE_SHORT DELAY | PA_BOOST | DIV_BUFF_CURRENT));
transceiver.SetReg(CC1020_BUFF_SWING, (PRE_SWING | RX_SWING | TX_SWING));
transceiver.SetReg(CC1020_BUFF_CURRENT, (PRE_CURR | RX_CURR | TX_CURR));
transceiver.SetReg(CC1020_PLL_BW, PLL_BW);
transceiver.SetReg(CC1020_CALIBRATE, (NO_CAL | CAL_WAIT | CAL_SINGLE | CAL_ITER));
transceiver.SetReg(CC1020_MATCH, 0x00);
transceiver.SetReg(CC1020_PHASE_COMP, 0x00) ;
transceiver.SetReg(CC1020_GAIN_COMP, 0x00);
transceiver.SetReg(CC1020_POWERDOWN, 0x00);
dev = 72000;
bw = 500000;
break;

default:
break;

3

transceiver.SetFreqA(freq, REF_DIV); //ref div = 2
transceiver.SetFreqB(freq, REF_DIV);

transceiver.Modem(F_ADC, NO_SCRAMB, NRZ); //fadc 1.2288,

no scrambling O, NRZ (1-1 = 00)

transceiver.Deviation((ushort)mod, dev);

transceiver.AFC_control (CC_SETTLING, dev); // settling max (3)
transceiver.FilterBandWidth(bw, baudr);

transceiver.SetReg(CC1020_MAIN, RX_A_PDMODE1_X0SC); //now it is in PD

mode 1, xosc on

transceiver .WAIT_CYCLEQ);

transceiver.SetReg(CC1020_MAIN, RX_A_PDMODE1_XO0SC_BIAS); //now it is in PD mode 1, bias on
transceiver .WAIT_CYCLE(); // wait. see p.55 datasheet

207



6 — Software

transceiver.SetReg(CC1020_MAIN, RX_A_PDMODE1_ON); //now it is in PD mode 1,
synth on, FULL ON
transceiver.SetReg(CC1020_PA_POWER, 0x00); // no spurs
CC1020Calibrate(); // ANO70
transceiver.SetReg(CC1020_MAIN, PDMODEO_RX_A); //now it is in PD mode O, put in RX
transceiver .WAIT_CYCLE(); //at least 100us
transceiver.SetReg(CC1020_MAIN, AUTO_POWERING_UP); // put in
auto-powering up, wait for PSEL to toggle
}

208



6 — Software

ResetCC1020

WakeupCC1020ToRx/
WakeupCC1020ToTx

SetupCC1020PD

Turn on power

v

Reset CC1020
MAIN: RX_TX=0, F REG=0,
PD _MODE=1, FS_PD=1.
XOSC_PD=1, BIAS PD=1
RESET N=0

v

RESET N=1

v

Program all necessary registers
except MAIN and RESET

v

Turn on crystal oscillator, bias
generator and synthesizer
successively

v

Calibrate VCO and PLL

v

MAIN: PD_ MODE=1, FS_PD-=1.
XOSC_PD=1, BIAS PD=1
PA_POWER=00h

Figure 6.32. Initializing sequence

209




6 — Software

6.4.44 CC1020TxMode()

When data is ready from the OBC, the OBRF’s MCU need to instruct the transceiver to use the
TX mode, where the transceiver provides a clock signal in which the MCU will synchronize on
it and the MCU provides the bit of the stream to the DIO pin, on the falling edge of DCLK.
According to the previous analysis of the parameters, the optimum register values are derived from
SmartRF Studio. The initialization starts from the power off assumption, in order to discard the

previous values on registers, which can be affected by SEUs events, as seen for RX mode.

Initialization steps

The steps to use this mode are made by a sequence of commands in order to reset the transceiver.
Then configuring the TX parameters (associated to transceiver’s configuration registers labelled
as B) in order to obtain the characteristics shown in previous chapters. The configuration follow
different cases for different baudrates, since each require a fine tuning of the internal RF components
and a well determined bandwidth (as seen before in RX mode). Up to the calibration step, the
configurations are the same for the RX mode, except a different bit indicating the usage of chip
module B. Then, the chip is put in full power up (PD mode 0), activating it in the TX mode,
and the transceiver starts transmitting data at DIO. To avoid dummy bits, the DIO should be
driven as soon as possible from the MCU, therefore after the final initialization there are no other
instructions. [13]

This method implements the transceiver initialization in TX mode mentioned in section 6.4.44.
This method can be used for different configurations by using the proper parameters: baudr
: ulong for the chosen baudrate, freq : AllowedFrequencies for the used carrier frequency,
mod : t_ modulation for the selected RF modulation and txpower : ushort for the intensity
of transmitted power. The MCU’s pins connected to the transceiver are initialized according to
figures 6.9 and 6.8. Then it is reset, preparing it for the programming.

The switch-case implementation is the same for the CC1020AutoWakeUpMode() and code is
different on the final part only. As for RX initialization, the procedure starts from the assumption
of power off, due to the SEU considerations made on the auto wake-up mode, so the sequence
follows the flowchart in figure 6.32. After the various registers configurations already made for the
RX mode, is followed the sequence labelled WakeUpCC1020ToTX in figure 6.32, turning on the
crystal, bias generator and synthesizer. Then is calibrated as for the RX mode. Now, the procedure
labelled SetupCC1020PD in figure 6.32 is skipped and since after the calibration the PLL is in lock,
the TX mode can be directly activated by putting the CC1020 in PD mode 0, which means that is

210



6 — Software

in full power up, connected to the internal PA and activated for the TX mode. This configuration
uses the on-chip configuration labelled B for the TX mode, writing PDMODEO_TX B value in
MAIN register. The chip now starts to provide a clock signal on the DCLK pin and reads the
value on DIO.

Code:

Bk1B31A2S::CC1020TxMode (ulong baud, Use_Cases::AllowedFrequencies freq,

Bk1B31A2W_0BRF_437MHz: :t_modulation modulation, ushort txpower) {

//init CC to PD. The CC1020 class uses bitbanging, NOT SPI (is compatible).
PSEL is high

transceiver.CC1020_Init(); //PSEL high

// From AN, first reset

transceiver.SetReg(CC1020_MAIN, MAIN_RESET) ;

transceiver.SetReg(CC1020_MAIN, MAIN_OUT_RESET); //out of reset

//sequence from RF Studio. Now is PD (mode is described in documentation

of this class)

// configuration

ulong dev = 0;

ulong bw = 0;

//consigliati per bandw con doppler, quindi VGAx gilk regolati

// cambiare i VGA se sul campo non funziona correttamente (che sia sensitivith ,
selettivith , ecc)

switch (baudr) {

case 2400: //25, ma dev’essere 50
transceiver.SetReg(CC1020_INTERFACE, (X0SC_BYPASS | SEP_TX_RX |
NOGATE_DCLK_PLL | GATE_DCLK_CS | NO_PA | NO_LNA | PA_LOW | LNA_LOW));
transceiver.SetReg(CC1020_RESET, Oxff);
transceiver.SetReg(CC1020_SEQUENCING, (PSEL_TOGGLE | WAIT_32ADC | MAXCS_WAIT));
//transceiver.SetReg(CC1020_FREQ_2A, 0x3a);
//transceiver.SetReg(CC1020_FREQ_1A, 0Ox7a);
//transceiver.SetReg(CC1020_FREQ_OA, 0xf1);
transceiver.SetReg(CC1020_CLOCK_A, CONF2400);
//transceiver.SetReg(CC1020_FREQ_2B, 0x3a);
//transceiver.SetReg(CC1020_FREQ_1B, 0x85);
//transceiver.SetReg(CC1020_FREQ_OB, 0x9d);
transceiver.SetReg(CC1020_CLOCK_B, CONF2400) ;
transceiver.SetReg(CC1020_VCO, (VCO_CURR_2_8_A | VCO_CURR_2_8_B));
//transceiver.SetReg(CC1020_MODEM, 0x50);
//transceiver.SetReg(CC1020_DEVIATION, 0x09);
//transceiver.SetReg(CC1020_AFC_CONTROL, Oxca);
//transceiver.SetReg(CC1020_FILTER, 0x3f);
transceiver.SetReg(CC1020_VGA1, (FREEZE_32ADC | WAIT_16FCLK |
CS_SIG_RESET2CY | CS_SIG_SET2CY));

transceiver.SetReg(CC1020_VGA2, (AGC_AVG_4CY | HYSTER_GAIN |
AGC_ON | LNA_SETTING | MAX_LNA | MIN_LNA));
transceiver.SetReg(CC1020_VGA3, (VGA_MAX_GAIN | VGA_DOWN));
transceiver.SetReg(CC1020_VGA4, (CS_LEVEL | VGA_UP));

211



6 — Software

transceiver.SetReg(CC1020_LOCK, (LOCK_CONTINUQUS | LOCK_WINDOW

| LOCK_RESTART_MODE | LOCK_ACCUR));
transceiver.SetReg(CC1020_FRONTEND, (LNAMIX_CURRENT, LNA_CURRENT,
MIX_CURRENT, LNA2 CURRENT, SDC_CURRENT, LNAMIX__BIAS));
transceiver.SetReg(CC1020_ANALOG, (BANDO | LOSC_DC | BLANK_OFF

| PHASE_SHORT DELAY | PA_BOOST | DIV_BUFF_CURRENT));
transceiver.SetReg(CC1020_BUFF_SWING, (PRE_SWING | RX_SWING | TX_SWING));
transceiver.SetReg(CC1020_BUFF_CURRENT, (PRE_CURR | RX_CURR | TX_CURR)) ;
transceiver.SetReg(CC1020_PLL_BW, PLL_BW);
transceiver.SetReg(CC1020_CALIBRATE, (NO_CAL | CAL_WAIT

| CAL_SINGLE | CAL_ITER));
//transceiver.SetReg(CC1020_PA_POWER, paPower);
transceiver.SetReg(CC1020_MATCH, 0x00);
transceiver.SetReg(CC1020_PHASE_COMP, 0x00);
transceiver.SetReg(CC1020_GAIN_COMP, 0x00);
transceiver.SetReg(CC1020_POWERDOWN, 0x00);

dev = 2025;
bw = 25000;
break;

case 4800: //50kHz
transceiver.SetReg(CC1020_INTERFACE, (X0SC_BYPASS | SEP_TX_RX |
NOGATE_DCLK_PLL | GATE_DCLK_CS | NO_PA | NO_LNA | PA_LOW | LNA_LOW));
transceiver.SetReg(CC1020_RESET, Oxff);
transceiver.SetReg(CC1020_SEQUENCING, (PSEL_TOGGLE | WAIT_32ADC | MAXCS_WAIT));
//transceiver.SetReg(CC1020_FREQ_2A, 0x3a);
//transceiver.SetReg(CC1020_FREQ_1A, Ox7a);
//transceiver.SetReg(CC1020_FREQ_0A, Oxfl);
transceiver.SetReg(CC1020_CLOCK_A, CONF4800);
//transceiver.SetReg(CC1020_FREQ_2B, 0x3a);
//transceiver.SetReg(CC1020_FREQ_1B, 0x85);
//transceiver.SetReg(CC1020_FREQ_O0B, 0x9d);
transceiver.SetReg(CC1020_CLOCK_B, CONF4800);
transceiver.SetReg(CC1020_VCO, (VCO_CURR_2_8_A | VCO_CURR_2_8_B));
//transceiver.SetReg(CC1020_MODEM, 0x50);
//transceiver.SetReg(CC1020_DEVIATION, 0x09);
//transceiver.SetReg(CC1020_AFC_CONTROL, Oxca);
//transceiver.SetReg(CC1020_FILTER, 0x3f);
transceiver.SetReg(CC1020_VGA1l, (FREEZE_32ADC | WAIT_16FCLK

| CS_SIG_RESET2CY | CS_SIG_SET2CY));
transceiver.SetReg(CC1020_VGA2, (AGC_AVG_4CY | HYSTER_GAIN

| AGC_ON | LNA_SETTING | MAX_LNA | MIN_LNA));
transceiver.SetReg(CC1020_VGA3, (VGA_MAX_GAIN1 | VGA_DOWN));
transceiver.SetReg(CC1020_VGA4, (CS_LEVEL1 | VGA_UP));
transceiver.SetReg(CC1020_LOCK, (LOCK_CONTINUQUS | LOCK_WINDOW

| LOCK_RESTART MODE | LOCK_ACCUR));
transceiver.SetReg(CClOQO_FRONTEND, (LNAMIX_CURRENT, LNA_CURRENT,
MIX_CURRENT, LNA2_CURRENT, SDC_CURRENT, LNAMIX__BIAS));
transceiver.SetReg(CC1020_ANALOG, (BANDO | LOSC_DC | BLANK_OFF

| PHASE_SHORT_DELAY | PA_BOOST | DIV_BUFF_CURRENT));

212



6 — Software

transceiver
transceiver

.SetReg (CC1020_BUFF_SWING, (PRE_SWING | RX_SWING | TX_SWING));
.SetReg (CC1020_BUFF_CURRENT, (PRE_CURR | RX_CURR | TX_CURR));

transceiver.SetReg(CC1020_PLL_BW, PLL_BW);
transceiver.SetReg(CC1020_CALIBRATE, (NO_CAL | CAL_WAIT
| CAL_SINGLE | CAL_ITER));
//transceiver.SetReg(CC1020_PA_POWER, paPower);
transceiver.SetReg(CC1020_MATCH, 0x00);
transceiver.SetReg(CC1020_PHASE_COMP, 0x00) ;
transceiver.SetReg(CC1020_GAIN_COMP, 0x00);
transceiver.SetReg(CC1020_POWERDOWN, 0x00);

dev = 2475;
bw = 50000;
break;

case 9600: //50kHz
transceiver.SetReg(CC1020_INTERFACE, (X0SC_BYPASS | SEP_TX_RX

| NOGATE_DCLK_PLL | GATE_DCLK_CS | NO_PA | NO_LNA | PA_LOW | LNA_LOW));

transceiver.SetReg(CC1020_RESET, Oxff);
transceiver.SetReg(CC1020_SEQUENCING, (PSEL_TOGGLE | WAIT_32ADC
| MAXCS_WAIT));
//transceiver.SetReg(CC1020_FREQ_2A, 0x3a);
//transceiver.SetReg(CC1020_FREQ_1A, 0x7a);
//transceiver.SetReg(CC1020_FREQ_0A, Oxfl);
transceiver.SetReg(CC1020_CLOCK_A, CONF9600) ;
//transceiver.SetReg(CC1020_FREQ_2B, 0x3a);
//transceiver.SetReg(CC1020_FREQ_1B, 0x85);
//transceiver.SetReg(CC1020_FREQ_0B, 0x9d);
transceiver.SetReg(CC1020_CLOCK_B, CONF9600) ;
transceiver.SetReg(CC1020_VCO, (VCO_CURR_2_8_A | VCO_CURR_2_8_B));
//transceiver.SetReg(CC1020_MODEM, 0x50);
//transceiver.SetReg(CC1020_DEVIATION, 0x09);
//transceiver.SetReg(CC1020_AFC_CONTROL, Oxca);
//transceiver.SetReg(CC1020_FILTER, 0x3f);
transceiver.SetReg(CC1020_VGA1l, (FREEZE_32ADC | WAIT_16FCLK

| CS_SIG_RESET2CY | CS_SIG_SET2CY));
transceiver.SetReg(CC1020_VGA2, (AGC_AVG_4CY | HYSTER_GAIN

| AGC_ON | LNA_SETTING | MAX_LNA | MIN_LNA));
transceiver.SetReg(CC1020_VGA3, (VGA_MAX_GAIN1 | VGA_DOWN));
transceiver.SetReg(CC1020_VGA4, (CS_LEVEL1 | VGA_UP));
transceiver.SetReg(CC1020_LOCK, (LOCK_CONTINUQUS | LOCK_WINDOW

| LOCK_RESTART MODE | LOCK_ACCUR));
transceiver.SetReg(CC1020_FRONTEND, (LNAMIX_CURRENT, LNA_CURRENT,
MIX_CURRENT, LNA2_CURRENT, SDC_CURRENT, LNAMIX__BIAS));
transceiver.SetReg(CC1020_ANALOG, (BANDO | LOSC_DC | BLANK_OFF

| PHASE_SHORT_DELAY | PA_BOOST | DIV_BUFF_CURRENT));

transceiver.SetReg(CC1020_BUFF_SWING, (PRE_SWING | RX_SWING | TX_SWING));
transceiver.SetReg(CC1020_BUFF_CURRENT, (PRE_CURR | RX_CURR | TX_CURR));

transceiver.SetReg(CC1020_PLL_BW, PLL_BW);
transceiver.SetReg(CC1020_CALIBRATE, (NO_CAL | CAL_WAIT
| CAL_SINGLE | CAL_ITER));

213



6 — Software

//transceiver.SetReg(CC1020_PA_POWER, paPower);
transceiver.SetReg(CC1020_MATCH, 0x00);
transceiver.SetReg(CC1020_PHASE_COMP, 0x00) ;
transceiver.SetReg(CC1020_GAIN_COMP, 0x00);
transceiver.SetReg(CC1020_POWERDOWN, 0x00) ;

dev = 4950;
bw = 50000;
break;

case 19200: //100khz BW
transceiver.SetReg(CC1020_INTERFACE, (X0SC_BYPASS | SEP_TX_RX

| NOGATE_DCLK_PLL | GATE_DCLK_CS | NO_PA | NO_LNA | PA_LOW | LNA_LOW));
transceiver.SetReg(CC1020_RESET, Oxff);
transceiver.SetReg(CC1020_SEQUENCING, (PSEL_TOGGLE | WAIT_32ADC | MAXCS_WAIT));
//transceiver.SetReg(CC1020_FREQ_2A, 0x3a);
//transceiver.SetReg(CC1020_FREQ_1A, 0Ox7a);
//transceiver.SetReg(CC1020_FREQ_OA, 0xf1);
transceiver.SetReg(CC1020_CLOCK_A, CONF19200);
//transceiver.SetReg(CC1020_FREQ_2B, 0x3a);
//transceiver.SetReg(CC1020_FREQ_1B, 0x85);
//transceiver.SetReg(CC1020_FREQ_OB, 0x9d);
transceiver.SetReg(CC1020_CLOCK_B, CONF19200);
transceiver.SetReg(CC1020_VCO, (VCO_CURR_2_8_A | VCO_CURR_2_8_B));
//transceiver.SetReg(CC1020_MODEM, 0x50);
//transceiver.SetReg(CC1020_DEVIATION, 0x09);
//transceiver.SetReg(CC1020_AFC_CONTROL, Oxca);
//transceiver.SetReg(CC1020_FILTER, 0x3f);
transceiver.SetReg(CC1020_VGA1, (FREEZE_32ADC | WAIT_16FCLK

| CS_SIG_RESET2CY | CS_SIG_SET2CY));
transceiver.SetReg(CC1020_VGA2, (AGC_AVG_4CY | HYSTER_GAIN

| AGC_ON | LNA_SETTING | MAX LNA | MIN_LNA));
transceiver.SetReg(CC1020_VGA3, (VGA_MAX_GAIN2 | VGA_DOWN));
transceiver.SetReg(CC1020_VGA4, (CS_LEVEL1 | VGA_UP));
transceiver.SetReg(CC1020_LOCK, (LOCK_CONTINUQUS | LOCK_WINDOW

| LOCK_RESTART_MODE | LOCK_ACCUR));
transceiver.SetReg(CC1020_FRONTEND, (LNAMIX_CURRENT, LNA_CURRENT,
MIX_CURRENT, LNA2_ CURRENT, SDC_CURRENT, LNAMIX_ BIAS));
transceiver.SetReg(CC1020_ANALOG, (BANDO | LOSC_DC | BLANK_OFF

| PHASE_SHORT DELAY | PA_BOOST | DIV_BUFF_CURRENT));
transceiver.SetReg(CC1020_BUFF_SWING, (PRE_SWING | RX_SWING | TX_SWING));
transceiver.SetReg(CC1020_BUFF_CURRENT, (PRE_CURR | RX_CURR | TX_CURR));
transceiver.SetReg(CC1020_PLL_BW, PLL_BW);
transceiver.SetReg(CC1020_CALIBRATE, (NO_CAL | CAL_WAIT

| CAL_SINGLE | CAL_ITER));
//transceiver.SetReg(CC1020_PA_POWER, paPower);
transceiver.SetReg(CC1020_MATCH, 0x00);
transceiver.SetReg(CC1020_PHASE_COMP, 0x00);
transceiver.SetReg(CC1020_GAIN_COMP, 0x00);
transceiver.SetReg(CC1020_POWERDOWN, 0x00);
dev = 9900;

214



6 — Software

bw = 100000;
break;

case 38400: //150
transceiver.SetReg(CC1020_INTERFACE, (XOSC_BYPASS | SEP_TX_RX

| NOGATE_DCLK_PLL | GATE_DCLK_CS | NO_PA | NO_LNA | PA_LOW | LNA_LOW));
transceiver.SetReg(CC1020_RESET, Oxff);
transceiver.SetReg(CC1020_SEQUENCING, (PSEL_TOGGLE | WAIT_32ADC | MAXCS_WAIT));
//transceiver.SetReg(CC1020_FREQ_2A, 0x3a);
//transceiver.SetReg(CC1020_FREQ_1A, 0x7a);
//transceiver.SetReg(CC1020_FREQ_OA, 0xf1l);
transceiver.SetReg(CC1020_CLOCK_A, CONF38400);
//transceiver.SetReg(CC1020_FREQ_2B, 0x3a);
//transceiver.SetReg(CC1020_FREQ_1B, 0x85);
//transceiver.SetReg(CC1020_FREQ_OB, 0x9d);
transceiver.SetReg(CC1020_CLOCK_B, CONF38400) ;
transceiver.SetReg(CC1020_VCO, (VCO_CURR_2_8_A | VCO_CURR_2_8_B));
//transceiver.SetReg(CC1020_MODEM, 0x50);
//transceiver.SetReg(CC1020_DEVIATION, 0x09);
//transceiver.SetReg(CC1020_AFC_CONTROL, Oxca);
//transceiver.SetReg(CC1020_FILTER, 0x3f);
transceiver.SetReg(CC1020_VGA1, (FREEZE_32ADC | WAIT_16FCLK

| CS_SIG_RESET2CY | CS_SIG_SET2CY));
transceiver.SetReg(CC1020_VGA2, (AGC_AVG_4CY | HYSTER_GAIN

| AGC_ON | LNA_SETTING | MAX_LNA | MIN_LNA));
transceiver.SetReg(CC1020_VGA3, (VGA_MAX_GAIN | VGA_DOWN));
transceiver.SetReg(CC1020_VGA4, (CS_LEVEL3 | VGA_UP));
transceiver.SetReg(CC1020_LOCK, (LOCK_CONTINUOUS | LOCK_WINDOW

| LOCK_RESTART_MODE | LOCK_ACCUR));
transceiver.SetReg(CC1020_FRONTEND, (LNAMIX_CURRENT, LNA_CURRENT,
MIX_CURRENT, LNA2_ CURRENT, SDC_CURRENT, LNAMIX_ _BIAS));
transceiver.SetReg(CC1020_ANALOG, (BANDO | LOSC_DC | BLANK_OFF

| PHASE_SHORT_DELAY | PA_BOOST | DIV_BUFF_CURRENT));
transceiver.SetReg(CC1020_BUFF_SWING, (PRE_SWING | RX_SWING | TX_SWING));
transceiver.SetReg(CC1020_BUFF_CURRENT, (PRE_CURR | RX_CURR | TX_CURR));
transceiver.SetReg(CC1020_PLL_BW, PLL_BW);
transceiver.SetReg(CC1020_CALIBRATE, (NO_CAL | CAL_WAIT

| CAL_SINGLE | CAL_ITER));
//transceiver.SetReg(CC1020_PA_POWER, paPower);
transceiver.SetReg(CC1020_MATCH, 0x00);
transceiver.SetReg(CC1020_PHASE_COMP, 0x00) ;
transceiver.SetReg(CC1020_GAIN_COMP, 0x00);
transceiver.SetReg(CC1020_POWERDOWN, 0x00);

dev = 19800;
bw = 150000;
break;

case 76800: //200
transceiver.SetReg(CC1020_INTERFACE, (X0SC_BYPASS | SEP_TX_RX
| NOGATE_DCLK_PLL | GATE_DCLK_CS | NO_PA | NO_LNA | PA_LOW | LNA_LOW));

215



6 — Software

transceiver.SetReg(CC1020_RESET, Oxff);
transceiver.SetReg(CC1020_SEQUENCING, (PSEL_TOGGLE | WAIT_32ADC | MAXCS_WAIT));
//transceiver.SetReg(CC1020_FREQ_2A, 0x3a);
//transceiver.SetReg(CC1020_FREQ_1A, Ox7a);
//transceiver.SetReg(CC1020_FREQ_0A, Oxfl);
transceiver.SetReg(CC1020_CLOCK_A, CONF76800) ;
//transceiver.SetReg(CC1020_FREQ_2B, 0x3a);
//transceiver.SetReg(CC1020_FREQ_1B, 0x85);
//transceiver.SetReg(CC1020_FREQ_O0B, 0x9d);
transceiver.SetReg(CC1020_CLOCK_B, CONF76800) ;
transceiver.SetReg(CC1020_VCO, (VCO_CURR_2_8_A | VCO_CURR_2_8_B));
//transceiver.SetReg(CC1020_MODEM, 0x50);
//transceiver.SetReg(CC1020_DEVIATION, 0x09);
//transceiver.SetReg(CC1020_AFC_CONTROL, Oxca);
//transceiver.SetReg(CC1020_FILTER, 0x3f);
transceiver.SetReg(CC1020_VGA1l, (FREEZE_32ADC | WAIT_16FCLK |
CS_SIG_RESET2CY | CS_SIG_SET2CY));
transceiver.SetReg(CC1020_VGA2, (AGC_AVG_4CY | HYSTER_GAIN |
AGC_ON | LNA_SETTING | MAX_LNA | MIN_LNA));
transceiver.SetReg(CC1020_VGA3, (VGA_MAX_GAIN3 | VGA_DOWN));
transceiver.SetReg(CC1020_VGA4, (CS_LEVEL2 | VGA_UP));
transceiver.SetReg(CC1020_LOCK, (LOCK_CONTINUQUS | LOCK_WINDOW
| LOCK_RESTART MODE | LOCK_ACCUR));
transceiver.SetReg(CC1020_FRONTEND, (LNAMIX_CURRENT, LNA_CURRENT,
MIX_CURRENT, LNA2_ CURRENT, SDC_CURRENT, LNAMIX__BIAS));
transceiver.SetReg(CC1020_ANALOG, (BANDO | LOSC_DC | BLANK_OFF
| PHASE_SHORT DELAY | PA_BOOST | DIV_BUFF_CURRENT));
transceiver.SetReg(CC1020_BUFF_SWING, (PRE_SWING | RX_SWING | TX_SWING));
transceiver.SetReg(CC1020_BUFF_CURRENT, (PRE_CURR | RX_CURR | TX_CURR));
transceiver.SetReg(CC1020_PLL_BW, PLL_BW);
transceiver.SetReg(CC1020_CALIBRATE, (NO_CAL | CAL_WAIT |
CAL_SINGLE | CAL_ITER));
//transceiver.SetReg(CC1020_PA_POWER, paPower) ;
transceiver.SetReg(CC1020_MATCH, 0x00);
transceiver.SetReg(CC1020_PHASE_COMP, 0x00) ;
transceiver.SetReg(CC1020_GAIN_COMP, 0x00);
transceiver.SetReg(CC1020_POWERDOWN, 0x00);

dev = 36000;
bw = 200000;
break;

case 153600: //500
transceiver.SetReg(CC1020_INTERFACE, (X0SC_BYPASS | SEP_TX_RX

| NOGATE_DCLK_PLL | GATE_DCLK_CS | NO_PA | NO_LNA | PA_LOW | LNA_LOW));
transceiver.SetReg(CC1020_RESET, Oxff);
transceiver.SetReg(CC1020_SEQUENCING, (PSEL_TOGGLE | WAIT_32ADC

| MAXCS_WAIT));
//transceiver.SetReg(CC1020_FREQ_2A, 0x3a);
//transceiver.SetReg(CC1020_FREQ_1A, 0x7a);
//transceiver.SetReg(CC1020_FREQ_OA, 0xf1);

216



6 — Software

transceiver.SetReg(CC1020_CLOCK_A, CONF153600) ;
//transceiver.SetReg(CC1020_FREQ_2B, 0x3a);
//transceiver.SetReg(CC1020_FREQ_1B, 0x85);
//transceiver.SetReg(CC1020_FREQ_O0B, 0x9d);
transceiver.SetReg(CC1020_CLOCK_B, CONF153600);
transceiver.SetReg(CC1020_VCO, (VCO_CURR_2_8_A | VCO_CURR_2_8_B));
//transceiver.SetReg(CC1020_MODEM, 0x50);
//transceiver.SetReg(CC1020_DEVIATION, 0x09);
//transceiver.SetReg(CC1020_AFC_CONTROL, Oxca);
//transceiver.SetReg(CC1020_FILTER, 0x3f);
transceiver.SetReg(CC1020_VGA1l, (FREEZE_32ADC | WAIT_16FCLK
| CS_SIG_RESET2CY | CS_SIG_SET2CY));
transceiver.SetReg(CC1020_VGA2, (AGC_AVG_4CY | HYSTER_GAIN
| AGC_ON | LNA_SETTING | MAX_LNA | MIN_LNA));
transceiver.SetReg(CC1020_VGA3, (VGA_MAX_GAIN4 | VGA_DOWN));
transceiver.SetReg(CC1020_VGA4, (CS_LEVEL4 | VGA_UP));
transceiver.SetReg(CC1020_LOCK, (LOCK_CONTINUQUS | LOCK_WINDOW
| LOCK_RESTART_MODE | LOCK_ACCUR));
transceiver.SetReg(CC1020_FRONTEND, (LNAMIX_CURRENT, LNA_CURRENT,
MIX_CURRENT, LNA2_CURRENT, SDC_CURRENT, LNAMIX__BIAS));
transceiver.SetReg(CC1020_ANALOG, (BANDO | LOSC_DC | BLANK_OFF |
PHASE_SHORT DELAY | PA_BOOST | DIV_BUFF_CURRENT));
transceiver.SetReg(CC1020_BUFF_SWING, (PRE_SWING | RX_SWING | TX_SWING));
transceiver.SetReg(CC1020_BUFF_CURRENT, (PRE_CURR | RX_CURR | TX_CURR));
transceiver.SetReg(CC1020_PLL_BW, PLL_BW);
transceiver.SetReg(CC1020_CALIBRATE, (NO_CAL | CAL_WAIT
| CAL_SINGLE | CAL_ITER));
//transceiver.SetReg(CC1020_PA_POWER, paPower) ;
transceiver.SetReg(CC1020_MATCH, 0x00);
transceiver.SetReg(CC1020_PHASE_COMP, 0x00) ;
transceiver.SetReg(CC1020_GAIN_COMP, 0x00);
transceiver.SetReg(CC1020_POWERDOWN, 0x00);
dev = 72000;
bw = 500000;
break;

default:
//aHK: :configRegister[1] |= (ushort) (7 & MASK_CS_BAUDRATE);
break;

}

transceiver.SetFreqA(freq, REF_DIV); //ref div = 2
transceiver.SetFreqB(freq, REF_DIV);
//transceiver.SetReg(CC1020_FREQ_2A, 0x3a);
//transceiver.SetReg(CC1020_FREQ_1A, 0x7a);
//transceiver.SetReg(CC1020_FREQ_0OA, Oxfl);
//transceiver.SetReg(CC1020_FREQ_2B, 0x3a);
//transceiver.SetReg(CC1020_FREQ_1B, 0x85);
//transceiver.SetReg(CC1020_FREQ_OB, 0x9d);

217



6 — Software

transceiver.Modem(F_ADC, NO_SCRAMB, NRZ); //fadc 1.2288,
no scrambling O, NRZ (1-1 = 00)
//transceiver.SetReg(CC1020_MODEM, 0x50);

transceiver.Deviation((ushort)mod, dev);
//transceiver.SetReg(CC1020_DEVIATION, 0x09);

transceiver.AFC_control (CC_SETTLING, dev); // settling max (3)
//transceiver.SetReg(CC1020_AFC_CONTROL, Oxca);

transceiver.FilterBandWidth(bw, baudr);
//transceiver.SetReg(CC1020_FILTER, 0x3f);

transceiver.SetReg(CC1020_MAIN, TX_B_PDMODE1_X0SC); //now it
is in PD mode 1, xosc on

transceiver .WAIT_CYCLEQ);

transceiver.SetReg(CC1020_MAIN, TX_B_PDMODE1_X0SC_BIAS); //now
it is in PD mode 1, bias omn

transceiver .WAIT_CYCLE(); // wait. see p.55 datasheet

transceiver.SetReg(CC1020_MAIN, TX_B_PDMODE1_ON); //now it is
in PD mode 1, synth on, FULL ON

transceiver.CC1020.SetReg(CC1020_PA_POWER, 0x00); // no spurs

CC1020Calibrate(); // ANO70

transceiver.CC1020.SetReg(CC1020_MAIN, PDMODEO_TX_B); //powerdown mode O

transceiver.CC1020.SetReg(CC1020_PA_POWER, txpower);

}

218



6 — Software

6.4.45 CC1020Calibrate()

At every initialization of the CC1020, is performed an internal calibration of VCO and PLL. Is
aimed to compensate for supply voltage, temperature and process variations. It is activated by
writing the value CAL on the CALIBRATE register, as implemented in the CC1020Calibrate()
method. Once started the calibration is performed automatically and sets the maximum VCO
tuning range and optimum charge pump current for PLL stability. The calibration result is stored
internally in the chip, and is valid as long as power is not turned off. To prevent SEUs and
compensate for temperature variation, the calibration is performed at every initialisation made.

The calibration starts by writing the bit CAL in CALIBRATE register. After waiting at least
100us, is polled the STATUS register for the CAL_COMPLETE bit to be set, indicating the
calibration complete. If the register is polled more than CAL_TIMEOUT times without success,
the loop break and do not block the OBRF firmware main execution. Modifying at compile-time
the CAL_TIMEOUT, the maximum time of this polling can be adjusted.

Assuming the calibration is successful, is then polled the LOCK_ CONTINUOUS bit, indi-
cating that the PLL is locked and stable. The lock signal accuracy is set in LOCK register in
CC1020TzMode() and CC1020Auto WakeUpMode() which are using the calibrate method. Also
here there is a limit on the polling, with the LOCK_TIMEOUT parameter.

At this point if the PLL is not stable locked, the calibration restart. This outer loop will be
broken if more than CAL__ ATTEMPT MAX calibrations fails. Finally, the PLL continuous lock
bit is returned by the method. [13]

Code:

bool Bk1B31A2S::CC1020Calibrate() {
//calibrate for the active register (A or B). So not dual.
// Calibrate, and re-calibrate if necessary:

for (nCalAttempt = CAL_ATTEMPT_MAX; (nCalAttempt>0); nCalAttempt--) {
transceiver.SetReg(CC1020_CALIBRATE, (CAL | CAL_WAIT | CAL_SINGLE | CAL_ITER));
transceiver .WAIT_CYCLEQ);

for(TimeOutCounter=CAL_TIMEOUT; ((transceiver.ReadReg(CC1020_STATUS)&CAL_COMPLETE)
==0x00) && (TimeOutCounter>0); TimeOutCounter--); // wait for cal

for (TimeOutCounter=LOCK_TIMEQUT; ((transceiver.ReadReg(CC1020_STATUS)&LOCKED_CONTINUQUSLY)
==0x00) && (TimeOutCounter>0) ; TimeOutCounter--); // wait to lock after cal

// Abort further recalibration attempts if successful LOCK
if ((transceiver.ReadReg(CC1020_STATUS)&0x10) == 0x10) {
break;

3

219



6 — Software

}
// Return state of LOCK_CONTINUOUS bit

return ((bool) (transceiver.ReadReg(CC1020_STATUS)
&LOCKED_CONTINUQUSLY)==LOCKED_CONTINUQUSLY) ;

}

220



Chapter 7

Tile Layout

In this chapter will be shown the physical placement of the OBRF on a CubeSat tile. It consist
in the transfer from schematics to a complete PCB which will fit the allowed tile’s space. This
1B31A OBRF 437MHz must be mounted in the same tile with the 1B31B OBRF 2.4GHz and half
of the tile space is reserved for each design. The starting point of the tile is shown in figure 7.1,
where there is room for the UHF section. This space is less than the half tile, but since there will
be a further design, correction and integration of the SHF band hardware, it is assumed to have
almost half of space available. It is used the tool Mentor Graphics Expedition PCB to design and
generate the manufacturing data and GC-Prevue for gerber analysis. Then the RF circuit design

has been supported using the AWR, TxLine tool.

7.1 Placement criteria

Since in space there is only thermal dissipation via conduction and radiating, thermal consider-
ations are not trivial. The CubeSat structure provide thermal absorption only with four screws,
that can be seen at the four edges in figure 7.1. The main heat sources are the power supply
and the switching regulator. The PCB that will be used is composed by 4 layers shown in figure
7.2, while using vias will double the external copper thickness during the manufacturing process,
extending the external layers to 35um. In order to spread the heat as much as possible, are placed
thermal vias under the critical components, through all the 4 layers and keeping them connected
with the ground planes places in all layers.

The thermal path on the copper should not be interrupted otherwise the thermal resistance

in the path will increase, being only the FR4 with an higher thermal resistivity (copper p =

221



7 — Tile Layout

ARAMIS-C1 Bk1B31B_.2_4CGHz_DBRF V1
DET - Politecnico di Torino 10713

HERL
. S Urymmer
o oo g 0 FrEe

1B31A UHF Module

383718

Figure 7.1. The implementation of half tile with the 1B31B OBRF and the avilable
space for the UHF module

0.00256m - K - W1 FR-4 p = 2.9m - K - W~1). A thermal resistance approximation is given by

the formula 7.1, in accordance with figure 7.3:

L

"= Ks

(7.1)

where K is the thermal conductivity, the inverse of thermal resistivity shown above for the copper
and FR-4; L is the length of the path and S = L - d is the cross sectional area of the copper
on PCB, being L the same value of the length (it is considered a square of copper plane shape)

and d = 35um is the copper thickness. For a single layer, on copper, 0j4yer = 72%. The power

222



7 — Tile Layout

copper - 1 18pm 1407
Prepreg 7628 180um 7mil
Prepreg 7628 180um 7mil

copper - 2 35um loz

Core 710pm  27.95mil

copper - 3 35um loz

Prepreg 7628 180um 7mil
Prepreg 7628 180um 7mil
copper - 4 18uym 120Z

Figure 7.2. PCB stack-up adopted

amplifier on both sides presents interruptions on the copper path, due to components or to a NC

pins; thermal considerations are then made on 3 layers only.

Heat flow direction

!
v

Figure 7.3. Model of PCB copper trace, with cross section S and length L; not in scale

As thermal pads are used 16 vias with 0.125mm internal radius and 0.3 mm external one and
their length is about 1.5mm, gold plated (K = 320m~!- K—!.W). The total thermal resistance

of vias is:

; B 1.5mm
vias = 950 1 K—1. W - 16 - 7(0.32mm? — 0.1252mm?)

~ 1.25°K/W (7.2)

223



7 — Tile Layout

o

K
W

Since the layers are 3, the total resistance is their parallel equivalent, obtaining O¢otai 1ayer = 24
Note that the external radius is the minium distance between the square which contain the via and

the via’s radius, because the thermal pad is a bigger square composed of 16 of these sub-squares

containing hole via, see figure 7.4. The total thermal resistance for the power amplifier is therefore

External radius

Figure 7.4. Single thermal via placed under the power amplifier. Center yellow circle is an hole,
the green square outside is gold plated (worst thermal case).

the parallel of the two above:

1
0,01 + 0,0

total__layer

9tomlip,4 = ~ 6°K/W (73)

The TPS5450 will use 8 different vias, with difference between internal and external circle area

difference of 0.18mm?2. This bring to a:

1.5mm
Ovias = ~ 1.1°K /W 7.4
—TPS = 320m -1 - K1 - W -8 m(0.18mm)2 / (7.4)
The total is:
1
Orota = ~ 2.6°K/W 7.5
total__TPS 9,1 I 9,1 / ( )

total__layer viasp PS

where the switching efficiency is grater than 85%.
The power amplifier RF6886 works with a maximum efficiency of n = 53% at 35dBm (P, =
3.16W) of output RF power. This means a heat dissipation of:

1—
Py= P,y - (n”> = 2.8W (7.6)

The RF switch, provides 0.4dB of insertion loss. This is the 10% of the maximum transmitted
power, dissipating 300mW on the ground plane. Here there are few vias, but there are no thermal
vias underneath the switch. The thermal resistance is more near to 70 °K/W. [15][16]

As a conclusion, these thermal considerations were made neglecting the radiated heat and the

conductivity of the FR-4, in order to understand roughly the upper thermal bounds; in order to

224



7 — Tile Layout

achieve the worst conditions, the first ground plane is not considered, but in practice it is expected
that will help in reducing the thermal resistance. With these assumptions, some further verification
on board testing should be perfomed. The final placement decision is then to put the RF and power

supply components on the edges, while the low-power digital parts kept in middle.

7.2 Traces

The main power source is provided by the PDB pins, which are feeding the switching regulator in
which provides in output 3.1V at 3A peak. From figure 7.5 are derived the trace widths, chosen
where looking for the lowest possible temperature increase. Power amplifier traces are then chosen
to be from 1 to 2 mm. The others are not an issue.

The RF traces are treated separately, in order to obtain 502 of characteristic impedance. The
gerbers of the reference design of CC1020 has been analysed and measured with GC-Prevue,
considering the reference evaulation board stackup. These values are derived using AWR TxLine
tool, where with that reference was of a microstrip type (figure 7.6). All the RF nets connected
to the chip and used to connect all the matching components are shown to have a line impedance
of 8012, while, as suggested by the datasheet, the lines connected directly to the antenna are 502,
proving the correctness of the analysis.

The power amplifier analysis was not so trivial, because the high RF output power os exiting
from the whole side of the chip, using all the 6 pins. For this reason it has been chosen the lowest
impact under impedance mismatching terms, with constantly varying width, to a standard width
of 0.2mm, corresponding to more then 70§2 impedance. This is confirmed by reference designs of
other equivalent chips of the same manufacturer, since the actual layout model was not available.
As explicitly sugested by datasheet, the lines outside the matching networks are designed to be
5092.

The 5082 impedances width are not considered as a microstrip, because the ground plane sor-
rounding them. Are considered as a groundwd coplanar waveguide (figure 7.7) and the proper

width is derived using AWR, TxLine tool, again.

225



7 — Tile Layout

Track width (mm)

100 C
= 75.C
30 f/:;'f 60 ¢
= A A w5
I~ A °
|~ 4 30¢C
o A ////’j.—’j 20°
= c
E 16 ///// ,.-—'jf
é 12 /’F’/Ifé"—,f - 10°C
9 1 A — %
i ] o
AT P
5 VA sl M &
£ o A o
a e £
2 /e &
Al E
1 g{/ R
Z
0,5 y -
0 0,026 0,05 0,1 0,15 0,2 0,35 0,3 0,8 0,45 mm>
= e CI'OSS—
0,25 - : = section
0,5 \\_T\I“"\.-“'"\. track
\ -
1 N \\_ = -
1.5 ~ -\"'l % S
2. ™ \“\ -H""*..
2.5 S \‘\. T
sr LY \\_ ‘ﬁ\' “-..‘_ a
Y
4 \\ \\ \N"‘--..,k WS um
5 \\ \ . B
6 i ! ==
7 L \ ™ 70 pm
B L AN
o)
9 : P
10 ey Ny
175pm Wpm
Cupper-thickness frack

Figure 7.5. Standard PCB width analysis graphs, from PCB manufacturer

226



7 — Tile Layout

metallic
microstrip
substrate

metallic
ground plane

Figure 7.6. Microstrip

DIELECTRIC ER

Figure 7.7. Grounded coplanar waveguide

227



7 — Tile Layout

7.3 PCB implementation

The final tile with the 1B31A OBRF 437 MHz module is shown in figure 7.8, without the SHF
module (1B31B OBRF 2.4GHz). Are visible the 4 screws used to fix the PCB, each connected to

Figure 7.8. Tile with 1B31A OBRF module placed

the 4 grounded layers.

7.3.1 Layer organization

As mentioned before, are used 4 layers. In each of them is placed a digital/RF GND mostly for
shielding all traces and for heat spreading purposes. The result of the whole module engineering
left enough space for a PCB stack-up of 4 layers instead of the 8 already defined, without affecting

performances and lowering the costs.

228



7 — Tile Layout

The layer 1 in blue (figure 7.9) contains all the components, the silkscreen, soldermask and
solderpaste; are also shown the 3 mains locations of the RF subsystem, the digital subsystem and
power supply subsystem. The RF traces are kept here to avoid vias and are shielded with ground
planes. Is then used this layer to wire as mush as possible all the signals. The analog ground
(AGND) plane shapes are drawed here, under the CC1020 (on RF side), the current sensor and
the LM317L.(in the power supplies side).

Layer 2 (figure 7.10), is used mainly for grounding purposes, but few traces are still placed,
mainly due to AGND distribution and few traces that were not placeable elsewhere. Layer 3
(figure 7.10), is used to place the power nets, the supply distribution of the possible voltages. Even
here some signal traces are routed, but shielded by the GND plane. Finally, the fourth layer (figure

7.12) provides connections mainly for digital signal and sensor traces, all shielded between them.

229



7 — Tile Layout

POWER SUPPLIES

DIGITAL LOW-POWER

RF CIRCUITS

Figure 7.9. PCB Layer 1 and the 3 subsystems placement highlight



7 — Tile Layout

Figure 7.1023FCB Layer 2



7 — Tile Layout

Figure 7.11. PCB Layer 3
232



7 — Tile Layout

Figure 7.12. PCB Layer 4
233



Chapter 8

Conclusions

This work consisted in the completion of a previous and only partially developed AraMiS On-
Board Radio Frequency module, in the UHF band, in which were analyzed its feasibility in terms
of power and link budgets, and was performed the main hardware components selection. Here the
whole project is organized and documented using the UML Visual Paradigm tool, from the use
cases definitions to the hardware.

Were defined all the timings and the specifications in which the system must be compliant with,
and are rearranged the AraMiS telecommunication protocol at low level, without changing the
interaction, therefore not affecting the dependability.

Therefore, after showing the specification of the system, in this thesis the environment constraints
were verified under the worst case conditions and starting from them, have been devised the use
cases of the module. These were necessary in order to manage the design inside a well defined
boundaries and develop an affordable system, with hardware and software tightly interconnected.

Since the main component selection was already performed, the hardware needed only a reor-
ganization in UML class diagrams to keep coherency with the use cases and the logical behaviour
defined. The hardware is redesigned using the already selected components, reorganizing its hierar-
chy and modularity. Are used tool such as SmartRF Studio from TI, Mentor Graphics Expedition
Enterpise, AWR TxLine. Are also used a some application and development notes from the man-
ufacturers. The design improves the power supply system and the housekeeping sensors.

The software was instead completely developed from scratch, with the help of some already
developed modular software in the AraMiS project library. According to use cases and timings
devised, the high level software organization is defined, according with the available hardware

components selected. Then are defined the proper algorithms and their implementations for the

234



8 — Conclusions

RF protocol adopted, for the on-satellite communication and the module housekeeping. A complete
integration of the CC1020 handling is devised, supported by the TI application notes.

Once the whole integration is completed, is devised the physical implementation of the tile. A
thermal analysis is performed, in order to devise a good PCB placement. The PCB manufacturer is
Eurocircuits and the design tool used were AWR TxLine and again the Mentor Graphics Expedition
Enterprise suite. The final PCB is not yet manufactured.

A further work could be mainly devoted to software development and refinement, since various
calibration parameters and templates needs to be defined and tested on the microcontroller, pos-
sibly using a development board for the transceiver. There is also a lack on the documentation
of the antenna control system, that will be available after purchasing the hardware; therefore are
instantiated the methods related to it, but are not developed as well as the set of commands. Then
the PCB manufacturing can be issued and the final tile could be tested. Therefore, the OBRF at
SHF band can be integrated with this telecommunication module, so testing and troubleshooting
will be possible also to the complete CubeSat AraMiS Telecommunication system, by placing both

modules on the same tile.

235



Appendix A

CC1020 Registers

ADDRESS Byte Name Description
00h MAIN Main control register
01h INTERFACE Interface control register
02h RESET Digital module reset register
02h SEQUENCING Automatic power-up sequencing conftrol register
04h FREQ 24 Frequency register 24,
05h FREQ 1A Frequency register 1A
OEh FREQ DA Freguency register DA
07h CLOCK A Ciock generation register A
05h FREQ 2B Frequency register 2B
0Sh FREGQ 1B Freguency register 1B
0Ah FREQ 0B Frequency register 0B
0B8h CLOCK B Clock generation register B
OCh VCO YCO cwrrent control register
O0Ch MODEM Modem control register
OEh DEVIATION Tx frequency deviation register
OFh AFC CONTROL | RX AFC control register
10h FILTER Channel filtter | RS51 control register
11h YVGAT WGEA control register 1
12h ViEAZ YGA control register 2
13h ViGAS Wi5A control register 3
14h ViGAd VGEA control register 4
15h LOCK Lock comirol register
16h FRONTEND Front end bias cumrent control register
17h ANALOG Analog modules control register
18h BUFF_SWING LO buffer and prescaler swing control register
18h BUFF_CURRENT | LO buffer and prescaler bias cumrent control register
1Ah PLL_BW PLL hoop bandwidth / charge pump current control register
1Bh CALIBRATE PLL calibration control register
1Ch PA_POWER Power amplifier output power register
10h MATCH Match capacifor amray control register, for RX and TX impedance matching
1Eh PHASE_COMP Phase emor compensation control register for LO 1VQ
1Fh GAIN_COMP Zain emor compensation control register for mixer 12
20hi POWERDOWN Power-down control register

Figure A.1.

CC1020 Register Overview

236




Appendix B

Bill Of Material
1B31A2M_ OBRF module

Part Lister output for Bk1B31A2M_OBRF_437MHz

# QTY Part Number Ref Designator

1 1 DK-631-1070-2 X1

-ND

2 1 DK-863-1174-1 U4
-ND

3 1 DK_296-21715- U1l
5-ND

4 1 DK_296-23766- U6
1-ND

5 1 DK_300-8526-2 X2
-ND

6 2 DK_311-82JRCT R17,R18
-ND

7 1 DK_311-1011-1 C23
-ND

8 3 DK_311-1014-1 C22,C49,C50
-ND

9 1 DK_311-1016-1 C9
-ND

10 2 DK_311-1024-1 C52,C53
-ND

11 1 DK_311-1025-1 C18
-ND

12 4 DK_311-1026-1 C13-C15,C55
-ND

13 2 DK_311-1061-1 C35,C36

237



B — Bill Of Material 1B31A2M OBRF module

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

-ND
DK_399-1278-1
-ND
DK_399-3525-6
-ND
DK_399-4937-1
-ND
DK_445-1245-1
-ND
DK_445-1270-1
-ND
DK_445-2153-1
-ND
DK_445-3486-1
-ND
DK_490-1125-1
-ND
DK_490-1283-1
-ND
DK_490-1303-1
-ND
DK_490-1305-1
-ND
DK_490-1530-1
-ND
DK_490-1586-1
-ND
DK_497-1572-1
-ND
DK_541-33.0SC
T-ND
DK_587-1523-1
-ND
DK_587-1525-1
-ND
DK_587-1526-1
-ND
DK_587-1527-1
-ND
DK_689-1091-6
-ND
DK_712-1333-1
-ND
DK_1276-3375-
1-ND
DK_B550C-FDIC
T-ND
DK_INA138NA/2
50G4-ND
DK_NTA7002NT1

20
38

C56-C58
C16,C17
1B31A2_TILE_C1,
1B31A2_TILE_C2
L2

C1,C2

L6

C54

C10-C12

C26

c27

C46-C48

U2

R19

L4

L3

L5

c28

U7

c51

C3,C4

D1

U5

M2,M5

238



B — Bill Of Material 1B31A2M OBRF module

39

40

41

42

43

44

45
46

47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71
72
73
74
75
76
a4
78

[

[ S I e e ¢ s I S S N e i

-
o

O N = = N

I = <2 B = S RS

GOSCT
DK_NTA7002NT1
GOSCT-ND
DK_PCC2308CT-
ND
DK_PCD2154CT-
ND
DK_SE2418CT-N
D
DK_WM7612CT-N
D
DK_WM7619DKR-
ND
DK_WM9358-ND
DK_WM10423CT-
ND

FR_2285536
OMNETICS_A291
00-009
RS-624-2222
RS-698-2731
RS_301-322
RS_461-2708
RS_504-6499
RS_504-6506
RS_504-6900
RS_504-7341
RS_504-7363
RS_504-8546
RS_504-8827
RS_504-8934
RS_504-8940
RS_504-8956
RS_504-9224
RS_504-9684
RS_505-0151
RS_505-0303
RS_505-0331
RS_505-0836
RS_505-1081
RS_534-5730

RS_545-4115
RS_566-428_K
RS_616-9391
RS_626-3954
RS_648-0733
RS_669-8808
RS_684-1273
RS_725-4901

Q1,Q2

c21

L1
1B31A2_TILE_X1
J3

J4

J2
J5

L8
J1i

C24

C59
M1,M3,M4,M6
c8

R12

R21
R10,R11,R42,R43
R16

C40

R30

R46-R49
R3,R7,R9,R20
R2,R6,R22
R32

R31

R4,R8
R1,R5,R34-R41
R44,R45

R33

R13

R14,R15
C5,C6,C29-C34,
€39

C19

R23

C7,C37

U3

C41-C45

c25

NR1

L7

239



B — Bill Of Material 1B31A2M OBRF module

8_TP1,8_TP2,
8_TP3,8_TP4,
8_TP5,8_TP6,
8_TP7,8_TP8

240



Bibliography

[1] Cubesat Specification. Available at http://cubesat.calpoly.edu/images/developers/cds_
revl3_final.pdf

[2] Passerone C., Tranchero M., Speretta S., Reyneri L., Sansoe C., Del Corso D., Design Solutions
for a University Nano-satellite, Aerospace Conference, 2008 IEEE | vol. no. pp.1,13, 1-8 March
2008.

[3] Speretta S., Reyneri L. M., Sansoe C., Tranchero M., Passerone C., Del Corso D., Modular

architecture for satellites. 58th International Astronautical Congress, Hyderabad, India, 2007

Source at http://www.planet.com

http://en.wikipedia.org/wiki/Miniaturized_satellite

Stefano Speretta, Project solutions for low cost space missions, PhD thesis, March 2010

Alessandro Matheoud, UHF Radio Frequency Modules for Satellite-Ground Communication,

MS Thesis, 2012

[8] Haider Ali, Telecommunication Subsystem Design for Small Satellite, PhD thesis, March 2014

[9] http://en.wikipedia.org/wiki/0SI_model

[10] William A. Beech, Douglas E. Nielsen, Jack Taylor, AX.25 Link Access Protocol for Amateur
Packet Radio, Version 2.2, July 1998

[11] TT, CC1020 Datasheet, April 2013

[12] TTI, AN070 CC1020 Automatic Power-Up Sequencing

[13] TI, AN023 CC1020 Microcontroller Interfacing

[14]

[15]

[16]

1

4
5
6

https://en.wikipedia.org/wiki/Frequency_modulation
Hittite Microwave Corporation, Thermal Management for Surface Mount Components, 2012

Cree, Optimizing PCB Thermal Performance, CLD-AP37 Rev 2E, 2014

241



