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Summary

Star Trackers are devices that provide higher accuracy than other attitude sensors
with the added benefits of 3-axis attitude determination. Nevertheless, Star Trackers
are frequently heavy, complex and costly systems that can not be adopted by small
satellites such as the Aramis from Politecnico di Torino, which needs high-accuracy
attitude determination to cover the requirements of certain types of payload.

In this thesis, the state of the art in attitude sensing is described, specially that
of Star Trackers. Then, a preliminary design of a low-mass, low-cost, low-power and
coarse accuracy Star Tracker is proposed to satisfy the requirements of the Aramis

spacecraft.
Different available algorithms for identifying the presence of single stars on the

imager plane are analyzed, as well as those for pattern recognition necessary to
ultimately measure the spacecraft attitude. One set of such image processing and
pattern recognition algorithms are chosen for use on board Aramis. Subsequently,
they are tested with the experimental use of the 3D open source planetarium Ce-
lestia, while a parallel test of the image processing algorithms is performed on real
star field imagery to confirm their capabilities with real-world data.

A scheme is proposed to reduce the amount of false results thanks to the use
of attitude approximations coming from other sensors, through the homogeneous
segmentation of the celestial sphere.

Commonly used methods to produce the desired quaternion output are described,
and finally, an assessment of the performance of the tested algorithms is made.
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Chapter 1

Introduction

With the now increasing trend of the use of microsatellites, the cost of production
and launch has decreased as much as their size, thanks to the use of miniature
technologies, new and cheaper launch vectors, and piggyback launches.

Microsatellites provide great advantages besides their convenient price tags.
Their characteristics are perfect for the creation of low-data rate communications
constellations, their potential for formation flying is quite promising for multiple-
point information gathering and finally, their relative simplicity is adequate for edu-
cational purposes. This last characteristic was observed by the faculty of Standford
University, and in 2001, a new standard called CUBESAT was created to facilitate
the development of this sort of spacecraft.

This standard was broadly adopted in many Universities around the globe,
among many other institutions with a need to study and develop satellites within
shorter amounts of time and with less resources, as opposed to multimillion-euro
satellites with weights that can achieve a few tons.

One of the adopters of this technology was Politecnico di Torino, which in 2006
finished its CUBESAT Satellite, PicPot.

After the loss of the PicPot during launch, a new small satellite system was
envisioned, built on the grounds left by PicPot, the Aramis Small Satellite.

This chapter will provide an overview of the PicPot, the Aramis, the space
environment in which they operate, a brief description of the ADCS subsystem, its
sensors, and more specifically, of Star Trackers.

1.1 Aramis’ predecessor: PicPot

PiCPoT, an italian acronym for Piccolo Cubo del Politecnico di Torino (Small Cube
of Politecnico di Torino) was the first nanosatellite developed by the University, a
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1 – Introduction

project undertaken with the collaboration of different departments, namely the Elec-
tronics Engineering Department, Aerospace Department, Energetics Department
and Physics Department. This, with the objective of making it a multidisciplinary
project with a homogeneous representation from different pertaining fields.

PiCpoT was a CUBESAT, equipped with five solar panels, three cameras, two
antennae, one kill switch, and a test connector.

Figure 1.1: PicPot, Politecnico di Torino CUBESAT

Other than showing the possibility of a multi-department collaboration in the
Politecnico, it had the objective of verifying the reliability of the Commercial Off-
The-Shelf components in a space environment, and obtaining direct knowledge of
the environment in Low Earth Orbit and Medium Earth Orbit.

PiCPot was composed by a set of basic subsystems.

• The Power Switch was the one in charge of generating the necessary voltages
to keep all the other subsystems in function. It selected the adequate battery
and solved Latch-Up events.

• The Power Supply watched the state of the batteries and the solar panels.
ProcA and ProcB were the two on board processors, and executed the same
operations; they adquired data from the telemetry sensors, administered the
payload and sent/received data from the groundstation.

2



1.2 – The Aramis Micro Satellite

• The Payload was a board designed to acquire the images from one of the three
on board cameras, and converted the raw images to JPG format, so they could
be transmitted to earth.

• The TxRx subsystem was in charge of sending and receiving commands to and
from the ground via 437 MHz for the uplink and 2.4 GHz for the downlink.

The launch was performed through a Kosmotras-operated Dnepr rocket, but
a failure in the hydraulic system led to unexpected instability, which forced the
emission of an emergency command in order to shut down the motor. [2]

Figure 1.2: Dnepr launch. Source: Christian Hessmann

Although the launch was a failure, the project was highly successful in estab-
lishing an environment of space research in the Politecnico, which would lead to a
second generation of satellites made in the University.

1.2 The Aramis Micro Satellite

Aramis is a new type of satellite, evolved from PiCPoT, although its objectives are
now much broader.

The intention is to create a highly flexible satellite, which won’t have to be
redesigned almost from scratch for each different mission, and will only have a
different configuration thanks to the possibilities given by a modular architecture.

The Aramis project foresees the use of three basic modular blocks. These are:

3



1 – Introduction

Figure 1.3: Aramis satellite in a 2x2x1 configuration

• Power Supply Block: it allocates the energetic resources and has inside the
atitude control systems, by comparison, it comprises the Solar Panel, Power
Supply, Battery and Power Switch subsystem used in the PiCPoT setup.

• TxRx Block: it is in charge of communicating with the ground station in a
bi-directional manner, sensing incoming and outputting outgoing data.

• Payload Block: This block can be used for anything the mission requires,
from Synthetic Aperture Radar sensing to image acquisition, or many other
different possible experiments on the particular conditions of microgravity,
vacuum or radiation present in the earth orbit.

These blocks are coordinated by an On Board Computer (OBC), controlling the
overall functioning of the satellite.

Finally, a ground station that adheres to the ESA GENSO network will be
developed. This will dramatically increase coverage, compared to a single ground
station, allowing the uploading/downloading of data at more than one single point
of the Earth.

1.3 Considerations on the Space Environment

A spacecraft operating in space is exposed to an environment significantly different
from that of the earth. This has a great deal of influence on the design of the

4
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Figure 1.4: GENSO educational network coverage

different parts, specially those of electronic nature.

In the environment close to the Earth, there are multiple possible sources of
ionizing radiation that can hit a spacecraft.

The Van Allen radiation belts have a high density of energetic protons and
electrons that come from the sun and get caught in Earth’s magnetic field. They
mostly follow the path of the magnetic field lines. There may be also be considerable
fluxes of He, N, and O in the form of heavy ions.

Figure 1.5: South Atlantic Anomaly and Van Allen Belts. Source: NASA.

Proton energies can go from 0.01 to 400 MeV with fluxes of about 108 to
600/cm2s, respectively, and electrons can have between 0.4 to 4.5 MeV and fluxes
between 4 ∗ 108 to 100/cm2s, respectively.

When orbiting low altitudes, with a low inclination, the most important radiation
feature is the South Atlantic Anomaly (frequently abbreviated to SAA). Because of
the offset of the magnetic field of the Earth with respect to the axis of rotation, this
is the region where a part of the Van Allen belt is brought to low altitudes (∼ 500
to 1000 km above the earth).
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1 – Introduction

Primary cosmic rays are also a source of particles with great kinetic energy.
Despite their name, they should not be confused with electromagnetic radiation.
Primary cosmic radiation in LEO consists of about 83% protons, 13% alpha particles,
1% nuclei with an atomic number greater than 2, and 3% electrons. The intensity of
cosmic rays is dependent on the solar cycle, and it diminishes as the sunspot number
cycle escalates.

Sun activity also plays an important role in spacecraft design: solar particle
events are another ingredient of the mix of radiation in Earth orbit. They are
random waves of solar activity, these are, Solar Flares, in which the sun emits
strong electromagnetic radiation along with electrons and protons that stream out
of the Sun through a ”corridor” established by the interplanetary magnetic field.
The rate of this emissions oscillates in a cycle that lasts eleven years.

Figure 1.6: STARDUST: GOES-8 graph describing the solar wind event. Source:
NASA.

Another source of problems for space hardware are Coronal Mass Ejections or
CMEs. They are massive expulsions of gas and charged particles at hundreds of
kilometers per second.

A third effect, is the continuous loss of the Sun mass into space, a permanent
flow of a million tonnes per second in every possible direction. This is called Solar
Wind, and it is composed by electrons and protons that travel in the range between
300 and 700 kilometers per second, and with a density near the earth of about 6
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1.3 – Considerations on the Space Environment

particles per cubic centimeter. It can, though, vary strongly in a matter of hours or
minutes, as well as in the long 11 year Sun activity cycle.

All this factors should be taken into account when choosing the components
that will constitute any device that flies into LEO, for this matter, the Aramis Star
Tracker.

Phenomena, known as Single Event Effects (SEEs) are originated by a single
particle carrying great energy. They are divided in different classes, depending on
their consequences in the operation of electronic circuitry. The types of SEE include:
[3][4]

Single Event Upsets (SEU) are soft errors, and do not imply the destruction
of the device. They usually manifest themselves as transient pulses or bitflips, and
can affect digital, analog and optical components, as well as interface circuitry. They
are called soft errors since a reset or rewriting makes the device return to its normal
state and behave in a correct manner afterwards. Multiple Bit Upsets (MBU)
are the particular case of SEUs in which more than one bit flip is produced in
different points due to one or more striking particles.

Single Hard Errors (SHE) cause permanent change in the operation of a
component, for example, a stuck bit in a memory.

Single Event Latchups (SEL) are the case in which the device functionality
is lost, caused by a high current state produced by a single event. It is possible for a
SEL to cause permanent damage. It requires power strobing of the device in order
to regain stability.

Single Event Burnout (SEB) is the condition in which device destruction is
caused due to a high current state in a power transistor.

Single Event Gate Rupture (SEGR) is a condition caused by a single ion
in power MOSFETs and can produce a conducting path in the gate oxide.

In order to measure the energy deposited per unit length when an energetic
particle travels through a material, a value called Linear Energy Transfer (LET)
is used. The most commonly used LET unit is MeV ·cm2

mg
of material. Furthermore,

a threshold of LET can be established, it is called indeed, the Threshold LET
(LETth), and it is the minimum LET that can cause an effect at a particle fluence
of 1 · 107 ions

cm2 .
A Star Tracker, as it will be seen in more detail in the next chapters, works by

acquiring images of the starfield. These images can be corrupted when radiation
events occur. A particular case of SEU can take place, affecting the imager with a
relatively long duration.

One example of solar flare radiation affecting the functioning of a Star Tracker
was an incident involving NASA’s STARDUST. The spacecraft was at 1.4 AU from
the sun, heading towards the earth, when a solar wind passed through STARDUST,
and a wave of protons impacted the CCD camera, producing hundreds of star-like
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1 – Introduction

Figure 1.7: STARDUST: Last acquired image under the effect of a solar flare.
Source: NASA.

Figure 1.8: STARDUST: Image from the Star Tracker some days after, showing
stars and a planet. Source: NASA.

dots, as seen in figure 1.7.

The STARDUST Star Tracker uses the 12 brightest stars for pattern matching
(more detailed descriptions of this process will be given in successive chapters as
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well), so when its two Star Trackers had a great quantity of false stars and it couldn’t
get a read of the real star field, the spacecraft entered safe mode, with its panels
pointing to the sun, spinning and awaiting instructions from Earth.

The recovery was possible only a few days later, when the effect of protons was
gone and one of the Star Trackers could acquire actual stars, as can be seen in figure
1.8. The magnitude of this solar wind can be visually recognized in figure 1.6.

SELs are handled by the power management subsystem, avoiding the complete
loss of the Star Tracker. SEUs are mitigated by the use of less radiation-susceptible
components, specially memories; and in the case of the Imager, by invalidating any
attitude reading that comes from SEU-affected images.

1.4 Attitude Determination and Control

Attitude Determination and Control Systems (ADCS) are those in charge of estab-
lishing the orientation of the satellite with respect to an inertial reference frame.
The attitude of a spacecraft at any time can be described by three values, a roll
angle, a pitch angle and a yaw angle. The system then controls the body axes in a
way that errors in roll, pitch and yaw are within determined error margins.

Bodies in space that are not controlled, such as asteroids or space debris, will
tumble. For example, the Sputnik I Satellite tumbled this way [5]. Needless to say,
natural tumbling is not allowed in modern spacecraft, due to the fact that the solar
panels must be pointed to obtain solar energy in order to work.

The orientation that the satellite needs will be a characteristic of each mission.
The bus or structure is the mounting base of one or more payloads, and depending
on the characteristics of each of these and of the satellite subsystems, they will have
to be pointed in specific directions. For example, solar panels will have to be pointed
at the Sun and antennae to their target.

It is common that the orientation has to be established with respect to a frame
of reference based on the Earth, for example, it may be required that the face with
a camera will need to point to the center of the Earth (nadir).

Satellites have different configurations, such as spinners, or dual spinners, that
take advantage of the inertia of the satellite to keep it pointing at a determined
location without having to intervene, or doing so very little. Aramis though, is a
three-axis stabilized satellite, which allows for relatively quick changes in attitude.

As of the moment of development of this thesis, Aramis was not foreseen to
have pointing mechanisms. These are mechanisms in which parts of the spacecraft
move independently to orient themselves towards a desired location. In general, this
mechanisms shall be avoided when not necessary [6].

The accuracy needed by a satellite is generally determined by the payload. When
using Earth Observation sensors or telescopes, an accuracy of the order of the arc
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seconds is quite common. Accuracy of control is less than the accuracy of measure-
ment.

Attitude, the quantity our sensor will measure, is a straight forward concept.
A frame of reference must be adopted (the concept of frame of reference will be
elaborated in a later section), once this has been done, the attitude will be the
deviation with respect to this reference.

Attitude quantification can be effectuated in various ways, such as Euler angles,
direction cosine matrixes, or quaternions. These will be explained at a later point,
along with the frames of reference.

1.5 Attitude Sensors

Every spacecraft requires attitude sensors to obtain data that can be used to calcu-
late a reference of its position and pointing its antennae, cameras or other sensing
and communication devices during a mission.

Attitude sensors come in a wide variety of types. The sensor used in any specific
mission depends largely on the characteristics of the mission, since, as previously
stated, the accuracy required by each mission may vary. The sensing device must
achieve a balance between accuracy, size, computational power and Field of View
(FOV) constraints (as we will see, some sensors may work only in the day, while
some others may work only if the sun is not pointing directly towards them, and so
on).

To further elaborate on this, and justify the use of a star tracker in the Aramis

setup, we will analyze the most used sensor systems in modern spacecraft:

1.5.1 Horizon Sensors

Earth horizon sensors are used mainly for navigation and weather reports. They
consist in a camera working in the infrared zone of the spectrum that detects the
contrast between the low radiation of the cold space and the heat of earth’s at-
mosphere. The system is able to determine attitude through an image processing
algorithm that can effectively determine the horizon respect to the spacecraft and
establish the vector to the earth (nadir) [7].

This system has the advantage of being able to work during the night as well as
during the day, and is the method in which light reflected form the spacecraft has
the lowest effect on the image, as opposed to attitude sensing systems that use the
visible part of the spectrum. Its accuracy is not very good though, as it is typically
0.1 to 0.25 degrees. For higher accuracy, it is necessary to correct data for Earth
oblateness and horizon variations that occur at different seasons.
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1.5 – Attitude Sensors

Figure 1.9: Planet Earth as seen in the infrared spectrum by the GOES-N Geosta-
tionary Satellites. Source: NASA.

1.5.2 Radiofrecuency beacons

These systems can be used as a pointing reference. The drawback is that if high
accuracies are needed, a directional antenna is needed. This method is only able to
determine a pointing direction but it can achieve accuracies of up to 1 arcminute.
[8]

1.5.3 Solar sensors

Solar sensors detect the position of the sun with respect to the spacecraft, and are
commonly used to hide sensitive systems from heat or intense light, and also to
position solar panels.

Usually, a solar sensor consists in an optical sensitive chip, with a MEMS optics
structure on top (a single pinhole or an array of them) that projects the sun on chip
and its image is processed by an external logic.

One of the advantages of using Solar Sensors is that the sun, as far as the
spacecraft is concerned, keeps a constant radius, so a point approximation can be
made. It also has an adequate accuracy for many applications. Further accuracy
improvements can make use of the diffraction rings that form on the sensor plane.

Other implementations take solar panels used to recharge the battery as an
attitude sensor, albeit a very rough one.

The main disadvantage of this type of sensors is that no matter what, it simply
will not work at night. This is a great disadvantage if the mission should want,
for example, to engage communication or take photographs on the dark side of the
earth.
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Figure 1.10: A sun sensor for microsatellites from Jet Propulsion Lab, Caltech

1.5.4 Magnetometers

Magnetometers are simple, reliable and lightweight sensors that consist in a set of
three coils that measure the intensity of the magnetic field in up to three axis [9],
and with a model of Earth’s magnetic field, is able to determine the attitude.

Magnetometers have the advantages of being a sensor and actuator at the same
time, and of being relatively simple. The disadvantage is that the information
provided is limited to two axes, a great margin of uncertainty is due to the not
complete knowledge of the earth’s magnetic field, its shifting, and the fact that they
can only work under about 1000 km above the surface of the earth. The latter
though, is not a limitation for the Aramis since it will operate in LEO.

Figure 1.11: The Oersted satellite magnetometer (right) mounted on the same plat-
form with a Star Tracker (left). Source: Danish Meteorological Institute.
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1.6 – Star Trackers

1.6 Star Trackers

A Star Tracker, whose design is the aim of this thesis, is an apparatus essentially
composed by an optics system, a sensor and an electronics assemble which does the
image processing and carries on with the attitude estimate algorithms, aided by a
memory bank.

The sensor can be a Charged Coupled Device (CCD) sensor (heavier and more
expensive but less sensitive to dark noise -a feature that would be well appreciated
in our device-) and CMOS (less expensive and performing, but some CMOS sensors
are sensitive enough for a Star Tracker application).

Star Trackers identify stellar patterns and compare them with previous images
or a database of stars stored on board. This results in an attitude measurement of
the star tracker with respect to the celestial sphere, which can then be translated
to the attitude of the spacecraft with respect to an inertial reference frame.

The position of the stars is extremely reliable and numerous catalogs exist. There
are cases of bright stars disappearing, such as a star the Galileo Probe saw disappear
while it was using this celestial body to stabilize its attitude [10], we should keep in
mind nevertheless, that these disappearing stars are extremely rare.

A Star Tracker, not depending on the earth or the sun, is a very flexible subsystem
and also gives the best accuracies between all the common attitude sensors. The
most complex (heavy , expensive and power hungry) Star Trackers are able to provide
attitude accuracies of the order of some arc-seconds.

In the recent past, given the high precision that Star Trackers can achieve, multi
million euro ventures and international space projects used heavily Attitude Control
Systems based on very complex and expensive Star Trackers. We will try to obtain
most likely an accuracy better than a Sun Sensor, but certainly lower than these
state-of-the art Star Trackers. Using this relatively new niche of star trackers will
allow us to build a sensor that can achieve a good balance between cost, simplicity
and accuracy.

The Star Tracker is the ADCS sensor of choice for the Aramis satellites that
require fine attitude determination.

The study and development of Star Trackers for nanosatellites is currently a hot
topic in many research institutions around the globe, due to the great mass and
price of this type of attitude sensor, which, as stated before, makes it prohibitive
for its use in small satellites. An example can be seen in table 1.1.

The use of COTS and the fact that coarse results, as opposed to high preci-
sion measurements, will be obtained, allow the price reduction of the Aramis Star
Tracker. For a comparison with the current state of the art, figures 2.14, 2.15 and
2.16 are provided.

Star trackers are divided into Star Scanners, which scan the whole celestial sphere
using the attitude correction system of the spacecraft, gimbaled Star Trackers, which
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Figure 1.12: A-Star Tracker from Galileo Avionica

Sensor Type CCD
Tracked Stars Up to 10
Operation modes LIS (Lost in Space) and Tracking Mode
FOV 16.4
Roll rate 0.5 deg/sec @ full accuracy, 2 deg/sec @ reduced

acc.
Bias error <10 arcsec
Low frequency error <7 arcsec (pitch and yaw) <25 arcsec (roll)
Random error at 0.5
deg/sec

<9 (arcsec pitch and yaw) <95arsec (roll)

Random error at 2deg/sec <20 arcsec (pitch and yaw) <210 (arcec roll)
Operation temperature -30 to +60 deg C
Power consumption 8.9 W +
Mass 3 kg with baffle
Size 195(L)x175(W)x288(H) mm

Table 1.1: Galileo Avionica A-Star Tracker Specifications

have a moving head to scan a considerable portion of the stars available, and fixed-
head Star Trackers, which stay still and take images of a limited FOV. The latter
will be the model we will center our efforts in for this project, for the sake of the
relative ”simplicity” required by the Aramis Subsystems.
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Type Size·Mass·Power
Savings

Operating angle Axes Accuracy

Magnetometer Low Full sphere, but
needs no mag.
interference

3 1 arcminute

Radiofrequency
beacon

Medium Narrow:
Nadir± ∼ 10◦

2 1 arcminute

Horizon sensor Medium Narrow:
Nadir± ∼ 10◦

2 5 arcminutes

Sun Sensor Low Narrow:
Sun± ∼ 30◦

2 1 arcminute

Solar Panel Low Narrow:
Sun± ∼ 30◦

2 1 degree

Star Tracker High Wide: Full
sphere except
earth or sun

3 25 arcseconds

Aramis Satellite
Star Tracker

Low Wide: Full
sphere except
earth or sun

3 200 arcseconds (goal)

Table 1.2: Current sensor types comparison
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Chapter 2

Architecture

This chapter describes the requirements of the Aramis Star Tracker, defines its func-
tional composition and proposes different components based on their performance
and on their capacity of operating in the space environment described in chapter 1.

A Star Tracker is basically composed by three sections. The optics, an imager
and a processing unit. The optics collect light with different schemes, they can
be pin-hole-based or lens-based. The imager detects the impinging photons and
translates them into electrons. This signal is then transmitted to the processing
unit that is in charge of interpreting the provided image to obtain relevant attitude
data. It then sends the data over the Satellite bus and also receives commands over
the latter.

As an example on figure 2.1 we can see what the Oersted Advanced Stellar
Compass [11] scheme looks like. The lens collects light from the stars and the CCD
converts it to an analog signal. This signal is amplified and converted to a useful
digital signal by the frame grabber. The CPU, which has already loaded star data
from the Flash PROM into the DRAM, processes the image data and sends it back
to the interface circuit, that will send it to the bus. Commands from a central
computer give the interface circuit necessary instructions of operation.

2.1 Requirements

The requirements for the Aramis satellite Star Tracker are:

• It shall provide an indication of the current attitude of the satellite.

• It shall have an accuracy of the order of the hundreds of arc-seconds.

• It shall have a low mass: Aramis is a small satellite. The size and mass of
each component is critical. Typical commercial Star Trackers have a mass
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2 – Architecture

Figure 2.1: Oersted µASC

comparable to that of a whole Aramis Satellite, and a size greater than one of
its tiles.

• It shall have a low consumption: It shall use low consumption components
where possible.

• Full autonomy preferred, although it could use the help of other sensors (sun
sensor, magnetic sensor) for coarse approximations.

• It shall be able to determine attitude with Roll rates of up to 10o/sec

• It shall use COTS (Commercial Off-the-Shelf) components which are not easily
affected by cosmic rays.

Additional considerations for the Hardware/Software

• Stellar database should be encoded with a TBD error correction code in Flash
Memory to protect it from SEU

• Periodic reloading of Stellar data into RAM

• SEL protection done by Power Subsystem

18



2.2 – UML Model

The Aramis Star Tracker will be divided in two parts, one will contain the
optics and the sensor (the Star Tracker Camera Unit - SCU) and another one (Star
Tracker Processing Unit - SPU), all the elements required by the CPU to process
data (memory, energy management, oscillators, etcetera).

This will allow more functionality in physically mounting the setup, because
the camera unit will be able to stand in places that would not be so accessible or
practical if the sensor was mounted on the same bulky board as the CPU.

Figure 2.2 shows the components of the Stellar Compass.

Figure 2.2: Star Tracker block diagram

2.2 UML Model

The Unified Modeling Language, or UML is a graphical language used in order to
depict, specify and build a system. UML models are widely used for systems that
require software development, as they can be transformed into software and facilitate
the process of collaboration between the different individuals and entities involved
in a project.

UML has 13 types of diagram, three of the most important ones are the following:

• Class Diagram a Class Diagram is a kind of structure diagram that describes
the system composition through the use of classes. The attributes for each class
are specified, as well as the relationships between classes.

• Sequence Diagram a Sequence Diagram is a graphical representation of the
processes in a system, and the way they operate between them, and their
correspondent order. It shows the processes that coexist at the same time, as
vertical lines, and the messages exchanged between them, as horizontal arrows.
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• Use Case Diagram a Use Case Diagram has as a purpose, to show a con-
densed vision of the functionality of the system, through the use of actors, that
are entities external to the system and can interact with the system. Every
actor has a goal. This goal is shown, as well as eventual dependencies between
the use cases.

The Use Case Diagram for the Star Tracker is provided to facilitate the interac-
tion with other entities inside the satellite, to illustrate the intended functioning of
the Star Tracker, and to provide a base for the development of the code.

Figure 2.3: Use cases of the Star Tracker with 1B232 and Stars/Sky as actors

Five actors can be identified:

• 1B232 Centralized Attitude Controller It is the AOCS computer in
charge of coordinating the inputs from the sensors, the desired attitude as
an input from the ground or a satellite routin, and the signals sent to the
actuators to correct the orientation.

• 1B1 Power Management Subsystem It is the subsystem that powers every
other subsystem in the satellite.
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Figure 2.4: Use cases of the Star Tracker with 1B1 Power Management Subsystem
as an actor

Figure 2.5: Use cases of the Star Tracker with Integrator and Configurer as actors

• Stars/Sky The celestial sphere from which the Star Tracker obtains a refer-
ence to produce an attitude output.
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• Integrator It is the person on the ground in charge of setting up the Star
Tracker and putting it in operational conditions in the spacecraft assembly.

• Configurer The person in charge of providing the required catalogues and
files.

The event sequence of the Use Cases are as follows:

activateStarSensor

CAC sends a ACTIVATE STAR TRACKER command

ST activates the Star Tracker, loads libraries, initializes the Star Tracker, sends a
ACK indication to CAC when the Star Tracker is ready to receive requests.

deactivateStarSensor

CAC deactivates the Star Tracker.

sendSystemTime

CAC sends the system time in a TBD format, most likely Julian Date to the Star
Tracker.

ST Confirms its internal clock calibration

getStarAttitudeQuaternion

CAC requests the current attitude quaternion and indicates if it needs a LIS mea-
surement, or a measurement with an initial approximation, indicating its avail-
ability.

ST confirms that it is ready to make a measurement.

CAC sends the initial approximation in a TBD format that can be an unitary
vector or RA/DEC in the celestial sphere frame of reference.

ST sends the resulting attitude quaternion along with the time at which the image
was acquired, or an indication of the lack of an attitude quaternion, along with
the failure reason.
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2.3 – Star Tracker Processing Unit (SPU)

SELaction

CAC detects a Single Event Latchup due to an energized particle hitting a device

• calls the turn OFF use case

• calls the turn ON use case

inputStarcatalogue

Integrator inputs all the databases required for the functioning of the device, in-
cluding the triangle database and the starfield database.

inputAOCSparameters

Integrator inputs the quaternion rotations necessary to convert the startracker
local reference frame into the spacecraft local reference frame.

The class diagram of the hardware, on the other hand, can be seen in figure 2.6.

2.3 Star Tracker Processing Unit (SPU)

The Star Tracker Processing Unit is the section in charge of analyzing the star
pattern and produce an attitude indication output.

2.3.1 CPU

The Star Tracker processing unit should use a CPU that has a good balance between
high performance and low consumption, as the image processing algorithms must
be executed fast enough. The processor should be able to handle data from high
resolution, most likely megapixel images. The pipeline execution should be quick
enough to process the image in near-real time to ready the star tracker for the next
frame capture; great delays are not acceptable.

Image processing will be not the only duty for the CPU, it will also have to search
through star data and perform the operations to calculate the attitude quaternion,
each function shall not compromise the other ones, given that the real time constraint
for the star tracker is evident.
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Figure 2.6: Star Tracker Hardware Class Diagram

Power management functions such as a programmable voltage regulator and
low power state would be a plus since a waste of energy in the satellite is not
affordable, with a power unit struggling to remain charged while payload, AOCS
and communication modules take energy away from it.

The CPU unit should be as immune as possible to radiation-generated SEL
effects, as the latchup of the device would result in a single point failure.

2.3.2 Flash Memory

The flash memory has the purpose of storing the boot data for the CPU and the
stellar data with the coordinates of each star on the celestial sphere that we intend
to use.

Enough space for the planar triangle catalogue or the two-star angle catalogue
should be left. The planar triangle catalogue, through the chosen algorithm, among
those described in chapter 5, resulted in 21.245 Megabytes of memory in an ASCII
file of double-precision numbers. This, though, is an upper bound: we used more
than 21o of FOV and allowed the 6 brightest stars per FOV to stay, and the most
likely configuration will use optics with a 18o FOV, which produces much less tri-
angles than the former.
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On the other hand, the alternative two-star angle catalogue occupies much less
memory than database for the planar triangle method. Additional space for the
overhead of the Hamming code would be needed.

The Flash memory should also have space for the code that runs the CPU. The
exact size of the memory required for this function will be determined upon com-
pletion of the translation of the MATLAB code into C code, and cross-compilation
for the Blackfin DSP.

2.3.3 RAM Memory

RAM memory should be able to hold a grayscale 8-bit image. The estimated filesize
for an image generated with the chosen sensor is 1.25 MB. If more complex algo-
rithms should be formulated, more images could be needed in the Random Access
Memory, therefore, more RAM would be a plus.

It should also be able to store a redundant or Hamming-coded full catalogue
of the planar triangles and the star couples. Also the individual star data must
be stored in the dynamic memory, as keeping it in the Flash memory would have
prohibitive effects on the real time functioning of the device.

2.4 Camera Unit (SCU)

The Star Tracker Camera Unit is the section that is in charge of obtaining images of
the star field and sending them to the SPU. The camera unit is a separated daughter
board with the imager and the optics.

2.4.1 Imager

The imager or sensor, is the device located on the focal plane, which translates
photons into electrons, and then into a codified signal that contains the raw image
in grayscale.

The imager can be CCD or CMOS. CCDs (which stand for Charged Coupled
Device) are composed by an array of photosensitive coupled capacitors that trans-
port analog signals and are controlled by a clock.

There is a photoactive region and a transmission region. The image is projected
by the optics onto the photoactive region, making each capacitor accumulate a
charge proportional to the intensity of light that impinges it. Once the array has
been exposed to light, a control circuit makes each capacitor transfer its charge to its
neighbor. The last capacitor puts its charge onto a charge amplifier, which converts
the charge into voltage. Through a repetition of this process, the circuit converts
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the charges into a sequence of voltages which it samples, converts to digital data
and then stores into a register. [12]

The CCD is commonly fabricated in three architectures: full frame, frame trans-
fer and interline; which address differently the problem of shuttering.

A full-frame device has a full photoactive area and has no shutter. A mechanical
shutter must be added or the image will smear as the image is being read.

In a frame transfer CCD, half of the silicon area is covered by an opaque mask.
The image can be transferred quickly from the image area to the storage area.
This image can be read slowly from the opaque area while another image is being
projected onto the photoactive zone. This architecture requires twice the silicon of
a full-frame CCD and it costs twice as much.

The interline architecture masks every-other column of the imager with an opaque
mask, so it only takes a one-pixel move for a pixel to reach the storage and readout
region.

Generally, applications that require a high level of light capture, should use full-
frame CCDs, and those that require a relatively low cost and low power consumption,
should use interline CCDs.

CMOS sensors, on the other hand, are more flexible regarding the reading
process, as every pixel can be individually read. This allows in some systems to
have a ”windowing” capability useful for target tracking.

CMOS imagers can have a passive pixel or an active pixel configuration. Passive
pixels are the oldest ones. They generate a high amount of background noise, so
active pixel sensors were designed to reduce this defect. This is accomplished by
means of an active circuitry that determines and cancels the noise levels at each
pixel. Active Pixel Sensors (APSs) allow to have a larger pixel array and have
higher resolution, while still consuming far less power than CCDs.

Current APS technologies bring them almost up to par to CCD sensors. The
balance between performance and energy consumption (the latter being critical for
the Aramis micro satellite) make APS the sensor of choice for our star tracker.

2.4.2 Optics assembly

The optics section has the collection of light as a main function. A lens or a pinhole
can potentially be used in an optic system.

The pinhole

A pinhole is a small hole on a thin surface that allows light through this single point
and produces an image on the sensor, located in a dark box. The smaller the hole,
the sharper the image will be, but longer exposure times will be required.
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If the perforation is large, the diverging set of rays causes the blurred image, as
each infinitesimal point of the star field will be projected as a circular patch of light
on the sensor. If the hole becomes smaller, though, the patch becomes small, but
the effect of diffraction increases, and a blurred picture is obtained again. Three
effects must be balanced, the amount of light that is allowed onto the imager, the
divergence of the rays, and the diffraction. An optimum hole size is that for which
the divergence and diffraction have equal influence on the resulting image. This
happens when:

d =
√

2l · f (2.1)

where d is the diameter of the hole, l is the wavelength of the light and f is the
focal length or distance from the pinhole to the imager plane.

However, the use of a pinhole means that there will be a dramatically high
integration time. With a commercial camera from the ground, integration times for
a night sky picture where stars appear clear, can range from 5 up to 30 seconds [13].
It is licit to believe that a pinhole, having an aperture hundreds of times smaller
than one of these cameras, will make it take too long to integrate an image.

Single lens

A single lens is a piece of refractive material that has two opposite surfaces, normally
both curved, or one curved and the other one, a plane. because of the curvature of
the surfaces, the different rays of an incoming beam are refracted at different angles
in a way that they converge on a single point. This point is called the focal point
of the lens. Every lens has a focal length, which is the distance from the center of
the lens to the point in which the image is formed. A lens with a long focal length,
forms a larger image and have a narrow FOV, whereas a lens with a short focal
length will form a smaller image and have a wider FOV.

Images, in the case of the SCU, are real (as opposed to virtual images that can
be only seen through the lens) and project onto the sensor which is located on the
focal plane.

The focal plane for a single lens, is actually not a flat plane. The so-called
curvature field must be taken into account [14]. This optical aberration can be
better observed in figure 2.7. Object PQ generates a curved image P’Q’. This is
caused by the outer ray having a nearer focus point, when compared to the inner
ray. This makes the rays that go through the center of the lens, intersect the foci in
this way. If all the possible rays are projected and the plane is constructed between
P and Q, curvature can be observed.

An example of the distortion generated by field curvature on stars that are
projected close to the border of an imager can be seen in figure 2.8. Distortion in
these stars is significant, and can lead to a misinterpretation of their real brightness
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Figure 2.7: Field Curvature. Source: University of British Columbia

value, as a single star would appear smaller, and therefore dimmer, in the center of
the image than in the zones closer to the border.

Figure 2.8: Field Curvature effect on a Star Field. Side images: wide Field of View,
center image: Detail of a distorted star.

The aperture of a lens is an opening through which light is admitted. The greater
it is, the larger the lens is, and the better are its capability of collecting light. The
downside of having a large aperture is the resulting mass, since the aperture is a
physical lens, as opposed to the pinhole solution. For a Star tracker, the normal
approach is to maximize the aperture while maintaining a certain mass limitation.
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Single lenses are the simplest form of lenses (besides a pinhole) and therefore, are
lighter than the lens that will be explained next.

Double Gauss Lens

The Double Gauss lens is a set of two positive meniscus lenses with two negative
meniscus lenses in the middle. This configuration reduces optical aberrations, such
as chromatic aberration or, the one that interests us the most, field curvature [15].
An illustration of this type of lens can be seen in figure 2.9, the focal plane lies
effectively on a flat surface, that will correspond to that of the imager, and the
projected image will present no distortion.

Figure 2.9: Double Gauss lens. Source: Zemax software

The use of this type of lens comes with two drawbacks, one is the increased cost
of the device, and the other is the greater mass of this type of lenses.

2.5 Components selection and Preliminary Schemat-

ics

The selection of the parts takes into account radiation data publicly available to
avoid SEE, availability from known part resellers (RS components, Farnell), ease of
integration with the other components, quality of the documentation and software
available for the part from the hardware vendor and from third parties.

As the requirements for the SPU have changed, and may change again dramati-
cally during the development of the project by the incorporation of new techniques,
or after the cross compilation of the software for the DSP; the schematic capture and
components selection of the SPU is out of the scope of this thesis. However, the lat-
est iteration of its design is shown in the appendix. This is the last proposal before
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it was decided not to continue its development and it does not fulfill the memory
requirements for the Star Tracker, but it is shown for information purposes.

A block scheme of this first design can be seen in figure: 2.10. However, in this
chapter, critical components that can be useful for the SPU wil be chosen, namely
the microprocessor, the sensor and the optics.

Figure 2.10: Aramis Star Tracker HW Block Scheme

2.5.1 Star Tracker Processing Unit

The microprocessor will be an analog devices Blackfin DSP. It was found being
used in micro star trackers such as the FAR-MST and LIST from Aeroastro (VA,
USA), in the payload of NASA’s New Millenium ST8 Project, and in the Payload
of Politecnico di Torino’s PicPot, a camera that was to take pictures of the Earth
from LEO.

The ADSPBF533 is a powerful DSP, capable of performing intensive image pro-
cessing while maintaining power efficiency. In the case the drawn power should
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be too high for the energy efficiency of the satellite, a downgrade to the fully pin-
compatible ADSPBF532 with lower consumption can be made with relative ease.
[16]

In tests performed by JPL to characterize SELs in the BF533 for the payload of
the ST8, the BF533 presented a LET threshold of ∼ 15MeV · cm2/mg, a saturated
cross-section of ∼ 1E − 06 cm2 and a SEL probability of 0.008% for a 6 month
mission and 14 hours of operation in polar LEO. [17] Radiation in a polar LEO
orbit is known for its higher radiation conditions, compared with other LEO orbits.
Current plans for Aramis don’t include a launch in polar orbit, this leaves a broad
safety margin for operation, also considering the non-continuous operation of the
device, as it will only be used for precise pointing of special instrumentation.

2.5.2 Star Tracker Camera Unit

Sensor

For the reasons stated in section 2.4.1, the imager will be an Active Pixel Sensor
(CMOS), Aptina (previously Micron) MT9M001C12STM Monochrome sensor. This
is a 1280H x 1024V digital image sensor. This family of sensors offers the advan-
tage of having a straightforward method of interfacing the sensor and the processor
through its Parallel Peripheral Interface without the need of any extra ”glue logic”
[1], reducing complexity and SEE probabilities.

Optics

The only easily available Double Gauss lenses are TECHSPEC lenses sold by Ed-
mund Optics. They are manually focusable and their focus should be set to infinity.
They can be installed on C-MOUNT standard interfaces, so the manufacturing of a
C-MOUNT dark case to be installed on the PCB is necessary.

2.6 Comparison with State of the Art

As the requirements stated, the Star Tracker needs to have a convenient price for
a University project; a low mass, adequate for a satellite with the characteristics of
Aramis; and finally, a low power consumption.

These requirements can be achieved by using COTS components with moderated
consumption and with standby capabilities. Some of them have been introduced in
section 2.5; a preliminary schematic, located in the appendix, has been developed.
It is possible now to produce and a raw estimate of the maximum consumption,
the mass and the price of the satellite. These values can be better put in context
with the state of the art in figures 2.14, 2.15 and 2.16. It is important to note that
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Figure 2.11: ADSPBF533 Functional Diagram. Analog Devices.

Figure 2.12: Aptina sensor-dsp interface. On the left, imager video source. On the
right, PPI of Blackfin. Source: Analog Devices [1]

the manpower cost is not taken into account for the Aramis systems, being it an
educational project; and also that these figures consider masses and consumption of
the memory devices too, devices that are surely subject to change, however, they
should provide a good approximation of what the project is seeking. Data obtained
and calculated from: [18, 16, 19, 20].

2.7 Star Tracker mounting

The optics should be covered by a light shade assembly, in order to keep the light
that is not in the FOV from entering the optics and filling it with light that would
invalidate the image. Possible parasite light may include that of the moon, the sun,
Earth albedo and reflections from the spacecraft itself. This light shade should have
an aperture angle equal or slightly higher than the defined FOV. It shall also be
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Figure 2.13: TECHSPEC Double Gauss Focusable Lens. [1]

Figure 2.14: Cost versus Accuracy for various Star Trackers. Figures for Aramis are
estimates.

painted with matte black paint in the inside to minimize reflections.
The Aramis satellite operates with solar panels located on the different faces of

the cubic modules, therefore an optimum inclination angle for the light shade would
be 45 degrees, so no sunlight would enter during the charging of the batteries with
the panels of the side the light shade stands on, or with those of the side adjacent
to it when the sun light vector is normal to the panel surfaces.

Based on the physical architecture of Aramis [21], the setup shown in figures
2.17 and 2.18 is proposed.
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Figure 2.15: Mass versus Accuracy for various Star Trackers. Figures for Aramis

are estimates.

Figure 2.16: Power versus Accuracy for various Star Trackers. Figures for Aramis

are estimates.
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2.7 – Star Tracker mounting

Figure 2.17: Internal setup (solid view)

Figure 2.18: Setup (detailed view)
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Chapter 3

Image Processing

3.1 Data Flow

Images taken by the SCU will need to be pre-processed in order to be able to do
pattern identification. This is the first of the chapters describing the algorithms that
will be used on board the Star Tracker.

3.2 Simulation Platform

In order to make and test the algorithms, one must have images that simulate
the image generated by the sensor. Not having a directly available system, as
appropriate cameras with good optics and the capacity of integrating a signal over a
long period of time, were hard to find and expensive to acquire by the author, a new
approach was taken with the aid of a planetarium program quite popular among the
astronomical community.

Celestia is a 3D astronomy software, based on the Hipparcos Catalogue that
permits the user to visualize any moment in any point of the known Universe.
Celestia can display a myriad of objects that can go from the biggest known stars
to some of the artificial satellites that orbit the earth. The software is based on the
OpenGL graphics display library. It is widely by ESA and NASA for educational
programs and as a visual interface for trajectory analysis software. No prior uses
of Celestia as a Star Tracker simulator were found, so various tests were performed
on it before starting its use on this project, namely, tests on visualized patterns
were compared with patterns characterized directly from the accurate catalog. The
pattern criteria used was that of planar triangles, which is explained in section 5.5.

Celestia allows the use of scripts written in Lua language. A tutorial on the basics
of this language can be found in [22] and [23]. Celestia has two different scripting
languages: celestia-scripts (.cel extension ), which provides less control capabilities,
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and the new Lua-scripting (suffix: .celx), a complete programming language that,
as stated before, is based on Lua and allows for more interaction with the system.
This allows the grabbing of screenshots and the possibility of writing files.

With this software, it is possible to visualize or not, atmospheres, clouds, con-
stellations, orbits, planets, among many other factors or objects. For our purposes,
on the visualization options menu, everything should be turned off, and allow only
for visualization of stars and planets. In some cases it is useful to have the celestial
grid on to visualize and have a sense of orientation, but not for frame capturing
purposes.

Star signals, as we will soon see, are approximatively a 2D gaussian curve, so
the unfocused point option should be chosen in the star visualization menu. The
simulator must be very close to the Earth’s position in order to avoid undesirable
parallax effects on stars.

A series of scripts were developed in order to create the simulation. These scripts
usually establish a FOV angle, visualization parameters.

The chosen field of view was based on the default size of the window of celestia. It
is extremely important to note that the same FOV must be used in all the algorithms,
including the Star Catalogue generation and the pattern recognition algorithm. This
parameter will change when the optics are completely defined.

An example of the scripts used to scan parts of the celestial sphere is:

{
unmarkall {}
lookback {}
s e t v i s i b i l i t y l i m i t {magnitude 6 .0}
s e t {name ”FOV” value 21.534638888888890}

s e l e c t { ob j e c t ”HIP 33316” }
c en te r { }
wait {durat ion 5}
r o t a t e {

durat ion 3
ra t e 10
ax i s [ 0 1 0 ]

}

r o t a t e {
durat ion 3
ra t e 10
ax i s [ 1 0 0 ]

}
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r o t a t e {
durat ion 3
ra t e 10
ax i s [ 0 0 1 ]

}
}

This is a simple .cel script, it sets the maximum visible star to magnitude 6.0, the
field of view to 21.53 degrees (our chosen FOV). it centers the view on the Hipparcos
object 33316 and waits for 5 seconds then rotates for 3 seconds around the y axis
of the local frame of reference at 10 degrees per second, afterwards it rotates for 3
seconds at 10 degrees per second about the x local axis, and finally it rotates for 3
seconds at 10 degrees per second around the z local axis.

.celx scripts are more complex. The script used to get screenshots, that can be
run at the same time as the .cel script that makes the rotations, obtains attitude
values such as euler angles, attitude quaternion and RA/DEC values (all of them
are explained in chapter 4 The .celx code used is available in the code appendix.

Other tools such as Microsoft Worldwide Telescope were used in order to man-
ually identify stars and their location when no complete catalogue information was
available in Celestia.

3.3 The Star Signal

The signal coming from a star and impinging the imager plane will be assumed to
be a gaussian function. This is just an approximation, as there are refraction effects
that shape the signal in a slightly different way: the light that comes from the stars
and arrives to the focal plane is actually an Airy’s function. The center of the Airy’s
function, which is commonly known as the Airy’s Disk corresponds to about 86% of
the photons that compose the star.

The Airy’s function, up to the first zero is approximated by the Gaussian Func-
tion. The two dimensional Gaussian function corresponds to:

g(x,y) =
1

2πσxσy

e
−[

(x−µx)2

2σ2
x

+
(y−µy)2

2σ2
y ] (3.1)

where x and y are the position on the plane, µi is the mean position of the
centroid and σ is the standard deviation from the mean.

The entity that interests us in order to measure the position of a star in the
imager plane is the stellar signal. The sensor translates the incoming photons into
electrons. The formula that describes this translation is:
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elect = a · FFSR · tshutter · g · 10
28−Mv

2.5 (3.2)

where a is the area of the lens or pinhole, FFSR is the product of the fill factor
and the spectral response of the sensor, as given by the manufacturer, tshutter is the
time during which the shutter is open (either mecanically or electronically) to let
the star photons convert into electrons, g is the gain, or the number of electrons
equivalent to an analog-to-digital unit (ADU), finally Mv is the visual magnitude of
the star.

The percentage the sensor area dedicated to actually collecting photons is called
fill factor. CCDs have the advantage of a 100% fill factor but CMOS sensors, such
as the one to be used on the Aramis Star Tracker have much less than that [24].
The spectral response is the mean value of imager responsiveness to the differents
part of the spectrum, and is given in A/W units.

3.4 Noise

The image acquired by a real sensor based on current technologies is always affected
by noise to some degree. There are different types of noise affecting the image. The
most relevant in-pixel noises are dark current, signal shot and background noise,
there are also other noises due to the AD conversion, such as the readout and
quantization noises. This section presents the different types of noises that can be
found in an electronic imager.

3.4.1 Signal shot noise

Signal shot noise is a process that is due to the fact that light comes in quanta
and when the light hits the imager, due to the random nature of light, at a certain
moment the number of photons that hits it may be a determinate amount, and in
the next moment, that same number of photons from the same source may vary.
The photon arrival is a Poisson process, and as such, the expected value is equal to
the variance, and the standard deviation is:

σshot =
√
eNum (3.3)

where eNum is the number of electrons of a certain star.

3.4.2 Dark current noise

Dark current is a comparatively small current that flows trough the sensor when no
light is being impinged on it. It is due to the aleatory generation of electrons and
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holes in the depletion region of the semiconductor. Dark current may be reduced
if the sensor is physically in contact with a passive or active cooling device. The
standard deviation of dark noise is:

σdark =
√
d · t (3.4)

where d is the dark current rate in [e
s
] and t is the period of time in which the

dark current electrons are being generated.

3.4.3 Background noise

Background noise is a sum of all the other possible sources of noise. This can be
the earth’s albedo, the reflected light from the sun on a not perfectly black-painted
sun shade, etcetera. This is not a value easy to model, and all the possible measures
should be taken to reduce its influence to a value under that of the boundary between
the noise and the performance requirements.

3.4.4 Quantization noise

Quantization noise is due to the fact that an Analog to Digital conversion is quan-
tized, that is, the values are not defined all over the operating dynamic, but there
will be ranges of photons quantities to which a common value will be assigned. This
is because the discrete nature of the digital signal.

For example, to a range between 0 and 99 photons, a value of 50 electrons will
be assigned, whereas any value between 100 and 199 produced will have a discrete
value of 150 electrons.

Quantization can be modeled as a stochastic process with uniform distribution,
where all values between two boundaries have the same likelihood of occurrence,
and the distribution has a zero mean. Therefore, the variance of this type of noise is
defined by the expected value of the mean-squared error, so the standard deviation
is [25]:

σquantization =
∆√
12

(3.5)

being ∆ the gain associated to the sensor:

∆ =
fullWell

ADUmax

(3.6)

Where fullWell is the maximum number of electrons that each pixel is able
to hold, and ADUmax the maximum number that the analog-digital converter can
represent (2 to the power of the number of bits), in the case in which the signal
conditioning does convert fullWell into the voltage value ADCmax.
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3.4.5 Readout noise

Readout noise is the effect of the not exact conversion from photons to electrons to
the readout of the imager. The amplifier is not an ideal one, so it typically gives
out the correct value on average, but presents aleatory scatter. Readout noise is a
quantification of this scatter.

Its standard deviation is defined by:

σ =
R

g
(3.7)

Where R are the electrons produced by the readout noise, and g is the gain in
electrons per ADU. It is interesting to note that the readout error decreases with
higher gain, as opposed to the quantization noise, that does the contrary.

Readout and quantization images are values on which we can not have influence,
they are determined by the fabrication processes and are intrinsic to a specific sensor.

3.4.6 Total Noise

The noise that can be found at the output is the result of the different types of noise
previously described.

The variance is the the mean difference between the squares of the real value and
the measure. When we have large sample sizes, the variance of each variable gets
closer to the statistical variance, and cross-correlations approach zero, therefore, for
large sample sizes and for Poisson and Gaussian distributions, the variance of the
noise electrons is:

σ2
N = σ2

S + σ2
D + σ2

R + σ2
Q + σ2

B (3.8)

Where sigmas S,D,R,Q and B represent the variance of each type of noise,
namely, signal, dark current, readout, quantization and background noises.

3.4.7 Signal-to-noise ratio

Signal to noise ratio is the value that tells us the quality of a signal. It is defined as
the ratio between the signal and the background noise.

SNR =
Signal

√

σ2
S + σ2

D + σ2
R + σ2

Q + σ2
B

(3.9)

where Signal is the number of electrons that should ideally be produced by the
impinging photons. As we will see, it is important to keep a high SNR, so the noise
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should be kept down. In cases when we have dim stars in the FOV, these may not
present a stronger signal than the noise.

The noises we will take into account will be signal shot, dark current and readout
noises. The other sources of noise are not as relevant comparatively.

3.5 Thresholding

The average noise is generally lower than the star signal. In order to separate the
noise from the real image, it is possible to determine a threshold and eliminate every
signal that is below this level. A typical star with noise is depicted in figure 3.1.

Figure 3.1: Original noisy star

One appropriate threshold could be the average level of the whole picture, since
pixels containing stars are a very small part of the whole pixel array, even if they
are included in an averaging process, the result will give a good evaluation of the
black background level.

This background level can vary over time, as a rotation takes place, for example.
This may be due to the presence of nebulae in the background, which rises the
average value. The approach used to solve this is to take the last 5 frames and
make an average out of them, instead of using one single frame. In the simulation,
this algorithm is implemented, but nebulae are not activated in Celestia, as its
representation is not realistic enough (too high levels of brightness, representation
composed by sets of artificial OpenGL circles).

Different thresholds were tested, starting from the average level. This value
though, left too much noise in the picture. The one that offered the best results of
star identification was a level of 2σ, that is, twice the noise level.

Everything below the threshold was regarded as noise and a binary mask was
created to mark these pixels as black, and potentially valid star pixels as white. The
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results can be observed in figure 3.2.

Figure 3.2: Resulting mask after thresholding

The term ”potentially valid” is used here because even though noise under twice
the average noise level was eliminated, there is still a remaining part of these dis-
turbances, in fact, small sized points that are the peaks of the noise can be found in
the picture and in the mask. They are usually quite sparse when compared to the
evident star clusters in the image.

This characteristic can be exploited to get rid of these pixels. Two windowing
methods proposed by Huffman [25] were considered to clean the image up from
them.

The first one consisted in scanning the whole image, in steps of 1 pixel with a
5-by-5 window. As the window steps in one new pixel in the center of the window,
it reads all the pixels in the window. If at least half of the pixels in the window are
potentially valid, the center pixel is deemed valid. This method leaves a mask that
reflects more closely the shape of the stars, but has a computational cost.

The second method involved using the 5-by-5 window with 5 pixel steps. If half
of the pixels in any given window are potentially valid, all the potentially valid pixels
in the window are deemed valid. With this method, the stars have a more squared
shape, but at a reduced computational cost

The time performance of the first method (spkremoval1) when compared to the
second one (spkremoval2) was considerably better, and no significant difference was
found in the actual spike removal, so the second one was chosen in order to minimize
the load on the processor. The results of spkremoval2 can be appreciated in figure
3.3.
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Figure 3.3: Mask after windowing with spkremoval2, showing star pixel clusters

3.6 Centroiding

The Aramis Star Tracker performs a weighted sum technique operation to accurately
identify the center of the stars. This method determines a virtual center of gravity,
where the quantity of photons is considered as the weight value of the pixel.

It should be noted that through this method, it is possible to obtain sub-pixel
accuracies, this represents a major improvement on the position determination, if
compared with the possibility of measuring the position of a star just by using its
geometrical center pixel.

The clusters of pixels belonging to every single star, are marked with the aid of
a second matrix where each pixel has a number greater than zero that is unique to
the star it belongs to, or zero if it is not a valid pixel.

After the noise spike filtering is complete, a centroid algorithm is run on the
valid pixels, and using the grayscale level as the weight it calculates the x-y position
on the image plane with equation 3.10

pos =
n
∑

i=1

Phi · position
∑n

i=1 Ph
(3.10)

where i is the actual pixel, n is the total number of pixels of the star and Ph is
the number of photons, or for that matter, the grayscale level of the actual pixel.
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Figure 3.4: Centroiding of three stars with detail of one of the three
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Chapter 4

Considerations on the Frames of
Reference

A frame of reference is a coordinate system useful to identify the positions of the
objects that are in it. The reference frame used for a Star Tracker needs special
considerations that will be addressed in this chapter.

4.1 The celestial Sphere

A Star Tracker uses the Celestial Sphere as its main frame of reference. The Celestial
Sphere is a virtual sphere of ”infinite” radius that rotates around the Earth sharing
the same axis, equator and poles with the planet. Every object in space can be
considered as being on this imaginary sphere.

Parallax is the difference of the position of an object if viewed through two lines
of sight. This can influence more or less the position of objects on the celestial
sphere, depending on specific conditions. Nearby elements have a higher parallax,
while the farther ones have a lower parallax.

There can be two ways of considering the celestial sphere: geocentrically or
topocentrically. When we refer to a geocentrical celestial sphere, we are thinking of
a sphere centered on an observer that is in the origin of Earth’s coordinate system, so
no parallax effects must be taken into account. If we refer to a topocentrical celestial
sphere, the observer is on the surface of the earth, and parallax effects should be
taken into account, specially to address objects that are not too far away from earth.
In our case, the stars are practically on the same position on the celestial sphere,
even in LEO, as they are quite far away.

The celestial sphere, just like the Earth, is divided into two hemispheres, and
different coordinate systems can be established. The coordinates our catalogue
uses are the equatorial coordinate system, which is the most widely utilized. Its
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parameters are Right Ascension (RA) and Declination (DEC).

Figure 4.1: Celestial Sphere. Source: NASA

The location on the celestial sphere over an observer is the zenith. An arc passing
by the poles of the celestial sphere and by the observer’s zenith is the observer’s
meridian. The nadir is the direction opposite the zenith: for example, straight
down from a spacecraft to the center of the planet.

The celestial sphere seems to be rotating around the earth with a period of 23
hours and 56 minutes. This is called the sidereal time, which is faster than the solar
time (the period with which the sun appears to do a full rotation around the earth).

4.2 Right Ascension and Declination

Right Ascension is similar to terrestrial longitude, except it is not measured having
an origin in a directly earth-referenced point, but on the First Point of Aries, which
is the point in the sky where the sun crosses the celestial equator during the Vernal
equinox. Right Ascension is measured in hours, minutes and seconds, and it increases
going east from the First Point of Aries. RA can be also abbreviated as α.

The full celestial sphere, has 24 hours of RA. This means that each hour corre-
sponds to 15 degrees of arc, each minute of RA to 15 arc seconds and each second
of RA, 15 arc minutes.

Declination (Dec or δ) is much like the terrestrial latitude. The unit that is
normally used is the degree, with its minutes and arc seconds. Any object that lies

48



4.3 – Precession, nutation and polar motion

on the celestial equator has a Declination of 0 degrees; if it’s on the north pole, the
declination is +90 degrees; and finally if it’s on the south pole, Dec is -90 degrees.

As an example, we can read the coordinates from our catalogue, for the star
Sirius (the brightest star on the sky), whose RA is 6h, 45m and 8.9173 sec and Dec
-16 degrees, 42 minutes and 58.017 seconds.

4.3 Precession, nutation and polar motion

Precession is the change in direction of the rotational axis of the Earth with respect
to the sky. The orientation of said axis is permanently changing, forming a virtual
cone with a half-angle cone of 23.5 degrees in a cycle that lasts about 25765 years.
This movement is caused basically due to the gravitational forces that the Moon
and the Sun exert on the Earth. Therefore, the poles move in circles over the same
time period. Currently, Polaris is the northernmost star, but this will change over
time, when other stars will find a position as the ”northern star”.

Nutation is an semi-regular motion in the axis of planet Earth. It happens
because of the tidal forces that cause precession change in time in a way that makes
precession inconstant. It consists in a small nodding motion with a period of 18.5
years and amplitude of 9.5 arc seconds. This is a very small change that we won’t
consider.

Other effects are the changes in the Earth’s pole orientation due to motions in
the Earth’s core and mantle, and changes in the distribution of water. There are
two movements associated with this, the Chandler Wobble, and a drift. They are
much smaller and almost irrelevant for our purposes.

4.4 Epochs

As the position of the stars change, albeit in a very slow manner, there is a need
to establish a fixed moment at which the coordinates of the celestial bodies are
specified, and which will be approximately valid for a period of time.

With time, imprecisions accumulate, and this causes errors in ephemeris predic-
tion, so it is necessary for astronomers to recalculate the values. This is when an
Epoch is defined in international agreements among astronomers.

The current epoch is called J2000,which refers to the RA and DEC of an object
on January the 1st, 2000 12 Universal Time. This is what is called a Julian Epoch,
that is because it is exactly 100 x 365.25 days since the previous standard epoch
J1900 (January 0 12UT). J2000 is the epoch that the catalogue of the Aramis Star
Tracker uses.
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4.5 Catalogue

A list of the stars with their location is necessary in order to produce the attitude
measurement given a set of identified stars on the sensor.

4.5.1 The Yale Bright Star Catalogue

The Yale Bright Star Catalogue, is a star catalogue that lists all the stars with
magnitude lower (brighter) than 6.5. This is basically every star on the celestial
sphere visible to the naked human eye. The magnitudes that a sensor can detect are
generally those brighter than Mv=5 (this obviously depends largely on the sensor’s
properties which will be discussed later).

The YBS catalogue is broadly used as a source of astronomical data. It contains
a compilation of many stars contained in other catalogues, double and multiple star
identifications, indication of variability, equatorial positions for the B1900.0 and
J2000 epochs, galactic coordinates, photoelectric photometric data when they exist,
spectral types, proper motions, parallax, radial and rotational velocity, among other
useful data.

The YBSC contains 9110 objects of which 9096 are stars. 14 objects in the
original compilation of 1908 were actually novae or extragalactic objects preserved
to maintain the numbering, and they should be excluded in the optimization process.

The catalogue, that is available online for download [26], contains the variables
listed in figure 4.2.

4.5.2 Catalogue Optimization

One major constraint when assessing the hardware of the Star Tracker is the size of
star database. If we were to use a whole catalogue of stars, it would occupy more
than a hundred Megabytes, only for the pattern database [27]. Since the database
is not only made up of the list of stars, but also of the patterns, we have therefore to
optimize the catalogue to handle it better. Besides, a great quantity of these stars
can’t be seen by the sensor.

First, only use of brightness and location (RA and DEC) data is made. Further-
more, stars that won’t be used are removed from the catalogue.

In order to read the catalogue, a small C program was written so that MATLAB
could interpret the YBSC with its native reading routines.

Then, a MATLAB script was developed, which first filters the stars to use those
with brightness higher than a certain magnitude.

The 9110 stars and objects from the bright star catalogue are plotted and shown
in figure 4.3.
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Figure 4.2: Information provided by the YBSC

Figure 4.3: Full set of stars from the Yale Bright Star Catalogue

Then the filtering procedure occurs, and the whole celestial sphere is scanned
with a window with the dimension of the FOV (entered by the user), and with in-
tervals of one degree. First ordering stars in function of their magnitude and leaving
the 10 brightest ones for each iteration. Also the objects that are not regarded as
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stars are conveniently filtered away from the catalogue as they are lacking any useful
data on the catalogue.

The result of this filtering can be seen in figure 4.4. It produces 1312 stars for
5 stars per FOV and a FOV of 21o 32” 4.7’. This FOV was established for testing
on the Celestia simulator, only for practical reasons, as it is the FOV of the default
window.

Figure 4.4: Filtered stars, leaving at least 6 for any given FOV

The position of an object in the celestial sphere is represented by a unit vector
pointing from the origin (this can be the star tracker frame body or the earth) to a
point in the celestial sphere.

These vectors can be obtained from the image with the following relationships:

vecpos = (compx,compy,compz) (4.1)
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Where ppx and ppy are the x and y pixel pitches of the sensor. x and y are the
coordinates in the imager plane. Frequently, pixels are square so most of the time
ppx = ppy. f is the focal length of the lens.
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4.5 – Catalogue

Then, screenshots from stars were taken from Celestia, an open source planetary
simulator based on the ESA Hipparcos Catalogue which displays star data (among
data from many other bodies) using OpenGL.

The stars Wezen δCMa , Adhara δCMa and Sirius δCMa (the brightest star in
the celestial sphere), all from the Canis Major constellation, were selected, and the
correspondence of the pattern seen in Celestia and the one seen calculated from the
catalogue were proven right, although other sets of stars, with different brightness
values, in different positions might not give the same successful result. For more
information on the pattern matching technique, see section 5.5.

53



4 – Considerations on the Frames of Reference

54



Chapter 5

Pattern Recognition

Several different algorithms have been proposed to assess the attitude of the space-
craft based on image readings. Their difference is determined by the quantity of stars
analyzed, the regime in which they operate, the load they put onto the processor
and their actual effectiveness.

Once an image has been acquired and the positions of the stars have been iden-
tified in the imager plane, equations and are used to obtain an unitary vector for
each of the chosen stars, for all the following algorithms, grid pattern matching is
an exception. Afterwards, an algorithm to identify the pattern of stars is applied.
Among many other algorithms it is possible to find the following:

5.1 Single Star Matching

Acquiring an image and individually identifying a star could theoretically be possible
by using visual magnitude, data that we have readily available from the YBSC. The
difficulty in this case would be achieving an almost perfect noise rejection, since
stars with a similar visual magnitude are likely to appear with exactly the same
magnitude on the data provided by the sensor; added noise could be enough to
modify it. Only in cases where the star brightness exceeds magnitude 0 or 1, we can
have a high probability of getting a good result. This is however not an option; the
chances of having such a bright star in a FOV of even a high value like 30 degrees
are quite low, as there are few stars with that brightness.

The response for an individual star in different sensors varies widely, and different
stars with the same magnitude have different spectral components, so even if the
sensor gets the same apparent magnitude for two stars, there is the possibility of
them not having the same magnitude because one could be considered brighter than
it actually is if the sensor has a better response at its wavelength; being able to
discern that would add much complexity. Moreover, the sensor response changes
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5 – Pattern Recognition

Figure 5.1: Single Star identification

over time, so we might not get the same response for a given star at the beginning
of the mission, or 6 months later.

It has been demonstrated in tests [25] that, for a given star, mean distance
between the sensed value and the actual Mv increases when the brightness decreases,
and so does the standard deviation of said difference. For Mv values of 4 and
dimmer, Mv data can not be obtained if the noise floor is not dropped below 5σ,
that is 99.99994% of the times, the signal must exceed the noise by the SNR, this
is quite impractical.

5.2 Grid Pattern Matching

Grid algorithms can identify the pattern through one basic technique (although
there are variants of it). A pattern database is generated from the star database
and a pattern is constructed from the image produced by the sensor and looked
for in the database. The pattern is designed through the use of grids, with zeros
identifying the lack of a star, and ones identifying the presence thereof.

Given a set of stars in the FOV, one of them will be called reference star, then a
section of the FOV that surrounds this star with a determinate radius is determined.
Then all the stars contained on the zone are translated with the reference star to
the center of the FOV. Then, an align star is selected from the accompanying stars,
and the whole set is rotated with the reference star in the center, until the align star
coincides with a reference frame.

Afterwards, a grid of g x g is made. if a grid cell contains a reference star,
the cell will have a 1 assigned, otherwise it will have a 0. Those bits constitute
pattern information for each star, and the database is made by sets of bits that give
information on each single star. [28]

This method has the advantage of giving a light load to the DSP, and is rather
simple. Neural network matching instead of direct comparison could even be tried
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with it because it produces the kind of patterns that can be recognized by such a
kind of algorithm.

The drawback is that at least 10 stars must be seen at any time in the FOV, and
at least 7 stars need to be matched to properly identify the pattern. [27].

5.3 Angle Method Pattern Matching

Once a set of stars is located in the FOV, a simple method of establishing the rela-
tionship between two of them is determining the angle that separates the stars,
matching this distance to an angle database that provides every possible angle
smaller than the FOV.

In order to create the database of angles, a data structure named spherical quad-
tree is used. It is used to store objects located in a 2D space, being able to find one
of them within a determined area without the need of going through every object
in the space.

Figure 5.2: Angle pattern matching

The database angles are sorted by angle, and a technique named k-vector is
used to have a faster search. The angle of each pair of stars is plotted against its
location in the catalog, the equation of this line can then be used with the generated
k-vector to locate the pair of stars given their angle. This allows a search within an
uncertainty region, as opposed to a search of the whole catalog. [27].

The angle between two stars is given by θ = arccos(r1· r2) where r1 and r2 are
the vectors obtained from the image or the original catalogue (YBSC in our case).

Since the position of the star mark after the centroiding is subject to errors due
to noise, it is possible that in a given FOV, there are more than one pair of stars
with the same angles. Therefore, it is wise to use more than one couple in the
measurement to reduce the probability of an error. This sis achieved through the
use of the pivoting technique.

One of the stars from the original pair is tagged as the pivot. A set of couples
from the catalogue or from a second image (in the case of tracking mode) that have
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a similar angle, within a threshold margin, are selected. Then a third star in the
original image is picked and the distance to the pivot star is calculated. Afterwards,
only the pivot star that shares those two distances is identified. If duality should
persist, an additional pivot star can be picked and the process is repeated.

The more stars are present in the FOV, the more likely it is that the results will
be accurate.

5.4 Spherical Triangle Method Pattern Matching

A method was developed by C. Cole and J. Crassidis [29] to use spherical triangles
made up by combinations of three stars. The core idea is that more information
can be obtained from a triangle than just from three angles. This will accelerate
the attitude calculation time and will allow us to use less stars in average than the
angle method with pivoting.

Figure 5.3: Spherical Triangle Pattern Recognition

One drawback is that we always will need at least three stars in the FOV, con-
trasting with the angle method, that could theoretically work with only two stars,
but we have seen that in practice we will always need to do pivoting, which will
make us use three stars and, quite frequently, even more.

The spherical triangles must be sorted by area and polar moment so we can use
the k-vector, just like in the angle method.

The area of the spherical triangle is defined as follows, with bi being the vector
of the ith star.

ASphT = 4tan−1

√

tan
(s

2

)

tan

(

s− a

2

)

tan

(

s− b

2

)

tan

(

s− c

2

)

(5.1)

where:
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a = cos−1

(

b1· b2
|b1||b2|

)

(5.2)

b = cos−1

(

b2· b3
|b2||b3|

)

(5.3)

c = cos−1

(

b3· b1
|b3||b1|

)

(5.4)

and:

s =
1

2
(a+ b+ c) (5.5)

Normally, two spherical triangles that have the same area can have a very dif-
ferent polar moment.

The polar moment is calculated using a recursive algorithmm dividing the trian-
gle into small triangles. The area of each small triangle, dASphT is multiplied by the
square of the arc distance from the centroid of each smaller triangle to the centroid
of the large, original one. The result for each triangle is added.

IpSphT =
∑

θ2dA (5.6)

Where θ is the angular distance between the centroid of the small spherical
triangle to the centroid of the greater spherical triangle, and dA is de area of the
smaller triangle.

Even though the standard deviation error that we should use to provide an error
threshold to match triangles is difficult to compute, through random simulations it
has been possible to demonstrate that the probability of IpSphT being inside the 3σ
bound is 99.7% [25, p. 97].

5.5 Planar Triangle Method Pattern Matching

After the publication of the spherical triangle pattern matching, the same authors
developed a new similar method that was based on planar triangles instead of spher-
ical ones. [29]

Just like the previously explained algorithm, this one relies on the calculation of
the area and the polar moment of the geometrical figure.

Like for the spherical triangle method, bi is the vector of the ith star. Then, the
area of the triangle is calculated by using Heron’s formula:

APlanT =
√

s(s− a)(s− b)(s− c) (5.7)
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where:

a = ||b1 − b2|| (5.8)

b = ||b2 − b3|| (5.9)

c = ||b1 − b3|| (5.10)

and

s =
1

2
(a+ b+ c) (5.11)

This equation can be used for both the local frame and the Earth inertial frame.
However, given that the measurement is not error-free, it is necessary to obtain a
set of boundaries to work on.

The planar area is a non-linear function of b1, b2 and b3, so a linearization must
be performed to establish a variance.

If

bi = Dri (5.12)

where bi is the vector pointing to a star in the local frame of reference, D is the
direction cosine matrix and ri is the vector pointing to the star in the inertial frame
of reference. For more information on the concept of direction cosine matrices, refer
to section 6.1.1.

Shuster has demonstrated that nearly all the probability of error is concentrated
in a small area in the direction of Dri, so that the sphere containing this point can
be approximated by:

b̃i = Dri+ vi,vT
i Dri = 0 (5.13)

where b̃i is the ith measurement and the sensor error vi is nearly gaussian. This
can satisfy:

E{vi} = 0

Ri = E{vivi
T} = σ[I − (Dri)(Dr

T
i ]

where σ2
i is the variance and E means expectation.

In order to estimate the variance of the triangle area, the following partial deriva-
tive matrix must be evaluated:
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H =
[

hT
1 h

T
2 h

T
3

]

(5.14)

where:

hT
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The partials with respect to a, b and c correspond to:

δA

δa
=

u1 − u2 + u3 + u4

4A
δA

δb
=

u1 + u2 − u3 + u4

4A
δA

δc
=

u1 − u2 + u3 − u4

4A

where:

u1 = (s− a)(s− b)(s− c)

u2 = s(s− b)(s− c)

u3 = s(s− a)(s− c)

u4 = s(s− a)(s− b)

and the partials with respect to b1, b2 and b3 are:
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δa
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=

(b1 − b2)
T

a
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=
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T
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The variance of the area is:

σ2
A = HRHT (5.15)

where:

R =





R1 03x3 03x3

03x3 R2 03x3

03x3 03x3 R3



 (5.16)

where 03x3 is a 3 x 3 matrix of zeros and R1,R2 and R3 are given by the equation
5.14. MatricesH and R are supposed to be the evaluation of the true values, however
using the measured value as an input implies second-order errors that are negligible
[27].

Once the variance is found, the standard deviation can be obtained, and the
boundaries in which the triangle is likely to exist in the ordered list of possible
triangles, can be accurately estimated.

The polar moment for the planar triangle is much easier and less computationally
expensive to calculate than for the spherical triangle:

IPPlanT = APlanT

a2 + b2 + c2

36
(5.17)

Just like for the area, we must determine the boundaries with the standard
deviation. To do this, the following derivative matrix must be calculated:

H̄ =
[

h̄T
1 h̄T

2 h̄T
3

]

(5.18)
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where

h̄T
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δI

δa
= Aa/18,

δI

δa
= Ab/18,

δI

δa
= Aa/18 (5.19)

δI

δA
=

(a2 + b2 + c2)

36
(5.20)

Ad with all the remaining quantities obtained from the area variance calculation.
Finally, the variance of the polar moment is:

σ2
I = H̄RH̄T (5.21)

And just like in the area variance, the true values can be replaced with the
measured values.

Figure 5.4: Planar triangle method, extraction of area and moment
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A database with all the possible triangles that can fit into the FOV is generated.
This database is located in variable triplette.

The contents of this database are displayed in figure 5.5. Column 1 (violet)
contains the area of the triangle, Column 2 contains its polar moment, and columns
3 to 5 (shown in green) show the Harvard Revised Number or HRN (a number that
identifies every star in a unique manner) of each star composing the triangle.

Figure 5.5: A sample of the contents of the triangle database

These parameters (area and polar moment) are also generated on board for the
selected triplet on the imager. Given this measurement, the software shall look for
the match on the triplet database that has the same planar triangle area. There
are though, much more than one triangle with the same area in variable triplette.
Therefore, the value of the polar moment is used, as it is difficult to find two triangles
with both the same area and polar moment. This search is complicated by the fact
that there are more than two hundred thousand triplets, and the measurement is
affected by an error caused by noise.

5.6 K-vector search algorithm

Once the area, the polar moment and their respective standard deviations (σ) are
measured, the next step is searching for the correspondent triangle in the compiled
list of triangles.

As stated in a previous section, finding a direct match of the measured database is
not nearly as easy as making two direct searches using conventional search algorithms
(linear search, binary search, et cetera). Furthermore, the non-infinite accuracy of
the reading makes it so that the area and polar moment measurements of the triangle
formed by the catalog stars will not coincide exactly with the area and polar moment
of the measured triangle. The so-called k-vector method provides efficiency to the
triangle search.
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5.7 – Pivoting

For this purpose, the values of triangle area and polar moment were ordered.
The resulting curve has a paraboloid shape (blue line in figure 5.6). It is possible
now to produce an actual parabola (green line in figure 5.6) that closely resembles
the paraboloid with the area values.

Figure 5.6: K-vector method applied to the Planar Triangle Areas

5.7 Pivoting

Until now, a process of selection has been made, composed by two searches: one of
the measured area and another one of the measured moment. Each of these searches
produces a group of results that fall within certain boundaries. Typically, various
thousands of items are found for each of the two parameters. Then an intersection
is made between the two groups to find a matching triangle. Ideally, this would
produce a single item. In reality, a couple hundred of results are obtained.

The solution to this problem can be achieved with pivoting, This technique in-
volves the selection of more than three stars.

The database created on the ground stores at least the 6 most brilliant stars per
FOV at any time. Pivoting consists in not only using the three brightest stars, but
more of them.

An area and moment measurement is performed on the triangle. Three things
can happen: no match is found, case in which measurements are restarted from the
beginning with a new acquired image (no result); a match is found (conclusive re-
sult), case in which the process is considered successful; and a third case in which no
single match is found (partial inconclusive result). In the last case, the measurement
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of a second triangle is made, this time keeping two of the original triangle’s stars,
and picking the fourth brightest star, and so on. Each time that a new pivoting
occurs, all the triangles that do not share two stars with the previous triangle, are
eliminated from the list. At the end, when no more triangles are available, there are
three possibilities, no result, conclusive result and inconclusive result.

The limitation is in that the process can only be repeated three times with the
current 6 stars per FOV configuration, as the Star Tracker would not ”know” any
further stars that were analyzed.

5.8 Star Selection and Matching

Many different algorithms exist for star selection, some predictive algorithms take
into account the fact that a star will probably go out of the FOV before choosing
it. Most of them have the brightness of the star as the main factor, since they have
a lower error in the centroiding process. Other factors are the relative distance to
other stars, and the probability that a star will disappear because of noise.

For the purposes of this thesis, the three brightest stars are picked. After the
triangle identification, and in order to determine which of the stars of the triangle
corresponds to each of the three catalog stars that were identified, a polling system
was established.

Two criteria are used in order to determine the identity of each star of the
triplet. The first criteria is the brightness. In a matrix that describes the likelihood
of correspondence for each star against the three stars in the catalog, each star is
associated with a catalog counterpart.

Star b Star m Star d
Star m1 •
Star m2 •
Star m3 •

Table 5.1: Star identification matrix

Where Star b is the brightest star in the triangle found in the database, Star m
is the medium brightness star, Star d is the dimmest star in the database triangle,
Star m1 is the brightest star on the imager, Star m2 is the medium brightness star
on the imager, and Star m3 is the dimmest star on the imager.

However, when the three stars have a very similar brightness, this can lead to
false matching, as noise can make one dimmer star look as bright or brighter than
the others.

66



5.8 – Star Selection and Matching

The coefficient of variation is used to assign a value to this measurement. This
way, if the set of star brightnesses are too similar, a small score is assigned to this
criteria, and if the three stars are very different, they will get a greater score. In
order to provide a unit-less score, the coefficient of variation is used. The coefficient
of variation is a the normalized measure of dispersion in a set of data [30]. This
way, the correspondance matrix takes the shape of table 5.2.

Star b Star m Star d
Star m1

σbr

µbr

Star m2
σbr

µbr

Star m3
σbr

µbr

Table 5.2: Star identification matrix

where σbr is the variance of the brightness of the set of measured stars, and µbr

is the average brightness of the measured stars.

Afterwards, a criteria based on the angles between stars is used. The angles
between the stars on the imager are measured, and they are calculated as well for
the set of three stars of the catalog. A correspondence between the three angles
is established, and each star on the imager is matched with a star on the catalog.
The coefficient of variation of the angle measurement is used as a score in the
correspondence matrix. Therefore, if the match established by brightness similarity
coincides with the that established by angle similarity, they are summed up and a
clear matching is made.

Still, if they differ, more weight will be given by the measurement that has the
higher coefficient of variation. An example of this is provided in table 5.3.

Star b Star m Star d

Star m1
σbr

µbr
+

σ 6

µ 6

Star m2
σbr

µbr

σ 6

µ 6

Star m3

σ 6

µ 6

σbr

µbr

Table 5.3: An example of star matching

where σ6 is the variance of the measured angles, and µ 6 is the average angle.
Here, both criteria coincided in matching Star m1, but differed in Stars m2 and m3,
in this case, the criteria with higher σ

µ
will decide the matching process.
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This specific case could be originated by the sides of the planar triangle being too
similar, thus not providing a significant difference that can help clearly identify the
sides of the triangle (greater, medium, smaller), implying an incorrect identification
of individual stars. This will be remedied by the fact that the variance of the
measurement, divided by the average angle will give a small value, and the score
of the (incorrect) association of Stars m2, m3 and Stars b and d, respectively, will

”lose” if the brightness values are less homogeneous, as
σ 6

µ 6
<σbr

µbr
.

5.9 Aided Mode

As seen in the introduction, apart from the Star Tracker, the Aramis Satellite has
other sources of attitude information, namely the sun sensor and the earth magnetic
field sensor.

Originally, the Star Tracker was designed to operate only in Lost in Space (LIS)
mode, but later, a scheme was devised for an Aided Mode too. The Star Tracker
shall operate in one of these two modes, depending on the availability of a coarser
attitude measurement from the aforementioned sensors.

The aided mode makes use of a Geodesic Sphere, or Dymaxion Map, often cred-
ited to Buckminster Fuller, but whose concept was actually created a couple of
decades earlier by Walter Bauerfeldwhile while working on a planetarium projector
at Carl Zeiss [31].

The Dymaxion Map is a projection of a map of the Earth onto the surface of a
polyhedron. This polyhedron can be flattened and form a 2D map that can maintain
an accurate reflection of the proportions of the Earth’s map, but the characteristic
that is of most interest for the star tracker project, is that it provides an homogeneous
subdivision of the celestial sphere.

The first alternative to this approach would have been a more intuitive and
easier to understand RA/DEC subdivision, having a zone, for example defined as
the area delimited by RA 0 hours, RA 1 hours and DEC 0 degrees, DEC 10 degrees.
This has some important inconveniences. First, there would be a greater amount of
subdivisions near the poles than near the equator, so a larger grid would be needed
to represent the equator in an adequate manner. Second, there are two singularities
at the poles, where longitude has no longer a meaning.

Therefore, a grid is generated by the iterative subdivision of an icosahedron (a
polyhedron with 20 faces). Each triangle can be split into 4 new triangles in each
iteration, giving shape to a new figure each time, iteration number one receives the
name of 2v (1v would be the icosahedron itself), iteration number two receives the
name of 3v and so on. Two iterations are made, that can be seen in figure 5.8,
creating at the end a 3v polyhedron with 320 faces.

This iteration was chosen so the distance from the farthest angle of the face of
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(a) Icosahedron view from top (b) Icosahedron view from side

Figure 5.7: Icosahedra shown from different angles

interest, to the nearest external side of an adjacent triangle will be equal or greater
than the radius of the FOV. This will guarantee that any triangle whose center is
in the face of interest, will have all of its stars in the area that comprises the face of
interest plus all its adjacent faces.

(a) A 2v geodesic sphere (b) A 3v geodesic sphere

Figure 5.8: Geodetic spheres iteratively produced from an icosahedron

Every triangle in the database of star triangles (not to be confused with the trian-
gles of the Dymaxion Map) is tagged with the number of the face of the iteratively-
divided polyhedron in which its unitary vector falls. Once a first approach of attitude
is obtained from the coarser satellite sensors, the system evaluates on which of the
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320 faces this vector falls in. It will then exclude any triangle whose center is located
outside this face or its directly adjacent faces.

In figure 5.9, the face in which a coarse measurement fell, and the adjacent faces
are highlighted.

Figure 5.9: Geodetic sphere showing the area of interest upon reception of the coarse
attitude measurement

This method, other than helping avoid identifying a triangle that is very far
away from the zone of interest, would also reduce the probability of mistakingly
identifying a triangle formed by false stars (planets, whose ephemeris data would
add too much unnecessary complexity if its use was intended; or SEUs), as the initial
pool of triangles will be much smaller, and the chances of finding a database triangle
that resembles in area and polar moment the acquired one, decrease considerably.

The polyhedron for the tagging of the database triangles and the on board soft-
ware uses a file containing the 3D coordinates of the vertexes, the vertexes of each
face, and a file that defines for each face, which sides are adjacent to it.

The tags that are created in compilation phase are a new vector of values that
complement the database shown in figure 5.5, or triplette variable in the matlab
code.
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Chapter 6

Attitude Determination

Up to now, an image of the star field has been captured, the position of the stars in
the imager plane have been identified, the properties of a planar triangle formed by
the three individual vectors were measured, and with the help of a triangle database,
a star catalog and the coarse approximation of the attitude from other sensors, the
Harvard Reference Number and coordinates of the three stars have been determined.

The last step in the process, other than communicating the measurements to the
other subsystems, is actually provide a useful measurement of the attitude.

There is more than one way to do this, some Star Trackers (mostly the older
ones) have as an output only the position of the stars, as there was a time when
there were not so powerful microcomputers to process this data, and this had to be
done by the Spacecraft main computer.

6.1 Attitude Representation

Attitude can be represented by Star Trackers in a variety of ways. The most used
are Direction Cosine Matrixes (DCMs), Euler Angles and Quaternions. They all
have in common that they represent a rotation, and rotating the three axes of the
inertial frame with one of these transformations will yield the attitude with respect
said inertial frame.

6.1.1 Direction Cosine Matrix

Rotation matrixes are matrixes that applied to a vector, rotate it, preserving its
length. The three unit vectors that result in the current attitude can be expressed
as the elements of a 3 × 3 matrix, called the Direction Cosine Matrix.

If the initial axes, that is, the axes of the inertial frame are (x,y,z) and the local
axes are (x′,y′,z′) , and θx′,z is the angle between the x′ axis and the z axis, the
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rotation matrix can be expressed as in equation 6.1.

R =





cos(θx′,x) cos(θx′,y) cos(θx′,z)
cos(θy′,x) cos(θy′,y) cos(θy′,z)
cos(θz′,x) cos(θz′,y) cos(θz′,z)



 (6.1)

The elements of the DCM are not completely independent, as Euler’s theorem
states that a rotation can have three degrees of freedom. [32]

This method is intuitive and straightforward. The disadvantage lies in the burden
added by having 9 elements with a great deal of redundancy. [33]

6.1.2 Euler Angles

Euler angles are a way of representing the rotation by the means of three successive
rotations. The angles that describe thsese rotations are called Euler Angles. There
are a variety of conventions, the most common is the rotation about the z axis, then
a rotation in [0,pi]about the x axis and finally a rotation about the z′ axis. [34]

Figure 6.1: Euler Angles rotation in the z-x-z convention. Source: Mathworld

This convention is referred to as the z-x-z However, other conventions are also
widely used, such as x-y-z and z-y-x. The latter, because of its relationship with
Tait-Bryan rotations, is commonly denoted as roll, pitch and yaw rotation.

• Roll, or rotation about the x axis is often denoted as φ

• Pitch, or rotation about the y axis is often denoted as θ

• Yaw, or rotation about the z axis is often denoted as ψ

In this text, Tait-Bryan angles or rotations and Euler angles or rotations are
used interchangeably, and they refer to the z-y-x Euler angles or rotations.
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6.1 – Attitude Representation

Figure 6.2: Roll, Pitch and Yaw on the SOHO spacecraft. Source: ESA

6.1.3 Quaternions

Quaternions are an extension of complex numbers. They are a way to note mathe-
matically orientations and rotations. Their advantage over Roll Pitch and Yaw or
Euler angles, is that they avoid the problem of gimbal lock, the singularity that
occurs when two of the axes coincide and one degree of freedom is lost [35].

They are also advantageous if compared with DCMs, since their computational
efficiency is superior, and are more stable from a numerical point of view [36].

A unit quaternion is essentially:

q =
[

q0 q1 q2 q3
]T

|q|2 = q2
0 + q2

1 + q2
2 + q2

3 = 1

A quaternion can be interpreted as a rotation around an axis with equation 6.2.

q0 = cos(α/2)

q1 = sin(α/2) cos(βx)

q2 = sin(α/2) cos(βy)

q3 = sin(α/2) cos(βz)

Where βx,βy,βz represent the axis of rotation (direction cosines), and α is an
arbitrary angle of rotation.

They can also be calculated from the Tait-Bryan angles as described by formula
6.2.
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6 – Attitude Determination

q =









cos(φ/2) cos(θ/2) cos(ψ/2) + sin(φ/2) sin(θ/2) sin(ψ/2)
sin(φ/2) cos(θ/2) cos(ψ/2) − cos(φ/2) sin(θ/2) sin(ψ/2)
cos(φ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) sin(ψ/2)
cos(φ/2) cos(θ/2) sin(ψ/2) − sin(φ/2) sin(θ/2) cos(ψ/2)









(6.2)

6.2 QUEST Algorithm

The least-square cost function

JA(A) =
1

2

n
∑

k=1

|Ŵk − AV̂K |2 (6.3)

is Wahba’s cost equation, where n = 2 and a1 = a2. A is the attitude matrix,
Ŵk,k = 1,...,N , are the measured directions in the body frame and V̂k,k = 1,...,N ,
the corresponding reference directions in the Inertial frame. This equation is the
cornerstone of modern attitude determination.

Wahba’s problem can be rewritten as:

JA(A) =
n
∑

k=1

ak −





(

n
∑

k=1

akŴkV̂k

)T

A





= λo − tr[BTA]

= λo − ga(A)

The matrix B is called the attitude profile matrix. The function ga(A) is alled
the Wahba gain function and it is a maximum when JA(A) is a minimum.

Davenport showed that the Wahba gain function could be written in terms of
the quaternion q̄ in the following manner:

gq̄(q̄) = gA(A(q̄)) = q−TKq̄ (6.4)

where

K =

[(

S − sI Z
ZT s

)]

(6.5)

and S = B +BT , s = trB, Z = [B23 −B32,B31 −B13,B12 −B21]
T

The minimization of JA(A) can be done through the solution of the eigenvalue
problem:
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6.2 – QUEST Algorithm

Kq̄∗ = λmaxq̄
∗ (6.6)

where λmax is the largest eigenvalue for the 4X4 matrix K.
The QUEST algorithm was developed by Malcolm D. Shuster and it is regarded

as an important discovery, as it provides a solution that at the time was 1000 times
faster than any other method. In it, the characteristic polynomial for K:

ψ(λ) ≡ det[λI4x4 −K] (6.7)

is defined as

ψQUEST = λ4 − (a+ b)λ2 − cλ+ (ab+ cd− d) (6.8)

where

a = s2 − tr(adj)S

b = s2 + ZTZ

c = det(S) + ZTSZ

d = ZTS2Z

Then the attitude quaternion is calculated with Rodrigues’ parameters:

qopt =
1

√

1 + |yopt|2

[(

yopt

1

)]

(6.9)

yopt = [(λ+ s)I − S]−1Z (6.10)

Shuster proposed that a good enough initial value to calculate the eigenvalue
with the Newton-Raphson method is λ = 1. However, simply by inserting λ = 1
into equation , a very good precision is achieved [37].

After obtaining the attitude, a Kalman filter may be needed to smooth the
output.
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Chapter 7

Code Usage and Description

So far, a set of algorithms was chosen from the pool of available image processing
and pattern recognition algorithms and coded into m-files. The process in order to
optimize a catalog, and to create a pattern catalog for the chosen algorithm was also
described. All of them were coded into mostly m-files, but also C files and celestia
celx files that can be found in the thesis CD. The main files can be found in the
appendix.

The code of the Star Tracker is divided into 3 sections. The first, deals with the
code that must be run on the ground, while preparing the system. A second part of
the code corresponds to the Celestia scripts that are used to capture images from
the simulator, and finally a third part of the code are the m-files that simulate the
code on board the spacecraft.

Since the MATLAB code was created using procedural programming, it doesn’t
translate quite well into UML Objects and Classes. Therefore, a linear description
of the main files will be done in this chapter, as well as of the functions they call.
The procedures required to use the algorithms are included in this description. A
scheme of the file inputs and outputs of each m-file is given in figure 7.1.

7.1 Ground Software

7.1.1 Star Compilation

The application scanning.exe (source at scanning.cpp) must be run in order to
process the file catalog.dat (complete YBSC). It converts it to a format MATLAB
can read and saves it as catalogy.dat. catalog.dat must be in the same directory
of scanning.exe. catalogy.dat can be now read by MATLAB.

compilastelle.m is the m-file that generates the catalogs of the star tracker.
At its beginning, important factors are defined such as the dimmest star it will take
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7 – Code Usage and Description

Figure 7.1: Scripts and files used as an input and output for each script

into account (variable magnitude filter), the number of stars per FOV (variable
StelleXFOV) and the FOV itself (variable FOV).

compilastelle.m calls function getstars(magnitude filter), which loads the
stars from catalogy.dat, taking away the stars dimmer than magnitude filter. It
obtains a list of Harvard Revised Numbers, visual magnitudes, RAs and DECs.

This list is passed to pulisci (hrnyale, vis magyale, iyale, jyale, kyale,

FOV, StelleXFOV) which returns a list of only the StelleXFOV brightest stars per
FOV. Note: This proccess can take several hours (up to one day) to complete on an
average desktop computer. The list of stars are saved to file hrn vis mag i i j k.mat

Following this, a plot of the optimized and unoptimized stars is displayed.
Then, a sparse matrix with all the angles between stars (this was used to do

various tests but not is not required by the planar triangle algorithm) is created in
variable angoli, where angles can be addressed as angoli(hrn1,hrn2) where hrn1

is the HRN of the first star and hrn2 is the HRN of the second star.
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7.2 – Simulation scripts for Celestia

At this point, a database of the planar triangles is built. A loop is run, and for
each cycle it checks the neighbors of every star, that are within the limits specified
for the FOV, with the help of function getneighbors2 ([double(hrn), i, j,

k], FOV, hrn(p), angoli). Then it checks whether each possible triangle of this
star and its neighbors has been already added, and if not, it calculates the necessary
planar triangle algorithm values and adds the triangle, the two values (aea and polar
moment), and the three identities of the stars to a list named triplette. triplette
is saved in file triplettenuove.mat.Note: this process can take many hours (up
to three days) to perform.

As these processes can take long and overwrite previous versions of the catalogs, it
is advisable to make backups of catalog.dat and triplette.mat before executing
the code.

7.1.2 K-vectors generation

curvefitting.m receives triplettenuove.mat, hrn vis mag i j k.mat, bound coef.mat,
hrnLUT.mat and angoli.mat.

It calculates the parabolas for the area and polar moment vectors with MATLAB
routines, making the curve that describes the ordered planar moments or areas
coincide with the generated cuve at a) the lowest value b) the highest value.

It then saves the parameters that describe the curves in kvectors.mat.

7.1.3 Buckminster Fuller polyhedron tags generation

compilasphquad.m is an m-file that receives triplettenuove.mat, hrn vis mag i j k.mat,
bound coef.mat, hrnLUT.mat and angoli.mat as an input.

With the aid of function sphere tri (GNU GPL code by J. Leech) an 2v poly-
hedron originated from an icosahedron is created in variable FV. FV contents are the
vertices FV.vertices and faces FV.faces. Then the centers of each face are deter-
mined and all the triangles from triplettenuove.mat are tagged with the number
of the faces that is the nearest to the centroid of said triangle.

The list of ordered HRN triplet indexes, organized in base to the face they are
located (finaltags), plus a vector with delimiting markers for this list, to know
where a face starts and ends (tagmarkers), are saved in taglists.mat.

7.2 Simulation scripts for Celestia

Image capture is done through scripts that tell Celestia how to move the camera in
the 3D environment and take screenshots with certain intervals.
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7.2.1 Celestia initialization

The file init.cel sets the desired magnitude limit and Field of View. Then, it
weights for some time, selects an arbitrary star, and stars a rotation around the
three axes one after another, with given parameters of duration and angle rate in
degrees per second. For example, parameters duration 3, rate 10, axis [0 1

0] give a rotation of 3 seconds at 10 degrees per second, around the y axis.

7.2.2 Image captures and attitude reference files

During the 5 (extendable) seconds that precede the rotation, function quaternion

WriteFile.celx must be called. It records the unitary vector that describes the
current attitude with two degrees of freedom in the file xyzlive.txt. It also calcu-
lates saves a file with the attitude quaternion.

Finally, its most important function is grabbing the screenshots and saving them
as png files that are recorded in the Celestia main directory (no way to overcome
this inconvenient was found).

If one wants only to visualize the information on the current attitude and euler
angle, it is possible to use the file quaternionWatch.celx.

7.3 In-flight Software

The m-file centroiding.m is the core of the simulator (the name may be misleading
since it refers to a single part of the process, but it really performs all the algorithms).
It grabs all the produced catalogs and loads the image frames.

These frames must be moved from the Celestia directory into the base directory.
One also must be careful, because at the beginning of the sequence frames, there
may be frames with written characters that can affect the measurement. They must
all be deleted before feeding the frames to centroiding.m.

While loading, it uses MATLAB’s function imnoise() to add the desired gaus-
sian noise to each frame before storing it into memory.

A circular mask is applied in order not to see stars that are out of the FOV.

A loop is started, which scans every frame to process relevant attitude informa-
tion.

Function avgthreshold (sample, accufrms, imsize) makes an average of
the threshold over the last 5 samples and returns a mask with the pixels that are
above the threshold.

After this, the m-file will pass the mask and the image size to, and call either
spikeremoval1(mask,imsize) or spikeremoval1(mask,imsize). This functions
can filter away the remaining noise peaks.
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7.3 – In-flight Software

Then, locatestars(sample) is called. Sample is the image of the stars after
the final mask has been applied to it, that is, the stars with noise removed. This
function performs the weighted sum technique and returns the location of the star
centroids in the imager plane.

Function identifyFace(xyzlive(fri,:),centers,adjacent) takes the mea-
surement from the sun sensor attitude (xyzlive) and identifies the faces of the
Buckminster Fuller Polyhedron in which the vector falls, along with the adjacent
faces.

The triangles produced by the centroids are then analyzed with function planart

(sample, pos(1:3,:), FOV, sensorsz, pp, varang);. As can be seen, the func-
tion is passed the positions of the stars in the imager plane, the FOV, the sensorsize,
the pixel pitch and the angular variance.

Function idtriplet3(triplette, areat(1), areaMaxOffset(1), ipmt(1),

momMaxOffset(1), tvectorarea,tvectormoment, indarea, indmoment, pm, hm,

km, ka,pa, ha,faces2look4, finaltags, tagmarkers) is in charge of perform-
ing the k-vector search and identify a set of triplets that include the solution. This
function is called for each pivot triangle too, and the results are intersected in order
to reduce the pool of candidates.

When a unique solution is found for a triangle, the voting matrix score is cre-
ated, it contains the 3 stars to be identified in the vertical axis, and the catalogue
counterparts in the horizontal axis. A score is applied based on the angle and bright-
ness criteria. Finally, unique star of the catalog, is assigned to each of the three stars
that are being measured.

The image and overlays with the centroids and lines showing the triangles are
then displayed using MATLAB native functions.
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Chapter 8

Algorithm Performance

The basic data flow in the device can be summarized with figure 8.1. These func-
tionalities will be assesed, up to the identification of the single stars and the vectors
associated to each one of them (that is, no quaternions are obtained).

8.1 Dynamic Image Thresholding and Centroid-

ing

An image sequence in figure 8.2 depicts the results of the thresholding and centroid-
ing algorithms on a Celestia image sequence imported into MATLAB.

There are 8 subfigures, each one depicting one frame of the sequence. Each
subfigure, on its topmost, left area, shows the noisy simulated image of the sky. On
the upper right, the mask that takes away most of the noise thanks to the averaging
technique is visible. Below, on the left of each subfigure there’s the mask used to
remove noise peaks and do the image segmentation, in order to do the centroiding.

8.2 Results with pivoting (LIS)

Figure 8.3 depicts the results of the centroiding, planar triangle calculation and
pivoting, and the use of k-vectors to accelerate search time.

A noisy simulated image of the sky is shown. The simulation was done using Ce-
lestia with an appropriate script that initiated with the Canis Majoris constellation,
particulary, Sirius, Adhara and Wezen, in the FOV.

The FOV corresponds to the inner part of the blue circle in the image. Every
star outside of the FOV was taken out this time, since this showed an increase of
performance in the algorithm: with stars outside the FOV, triangles greater than the
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Figure 8.1: Star Tracker data flow

FOV were generated, triangles which obviously couldn’t be found in the database.
Besides, in the actual hardware, the shade will cover the zones outside this circle.
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8.3 – Results with pivoting (aided mode)

The main triangle is depicted in red color. This will be the triangle of which we
will verify validity through the use of pivot triangles. Blue triangles show the pivots
used.

When three pivot triangles are generated and no conclusive result is found, we
call it an ”ambiguous result”, and it is displayed in yellow on the top right corner
of the image. When less than 3 pivot triangles are needed, we display a green sign
indicating it, and a list of the 3 Harvard Revised Numbers for the identified triplet.

If no result is found within three pivot triangle iterations, a red sign is displayed
indicating it.

A non ambiguous result was found 60% of the time. Many of these results though,
were found to be wrong. Figure 8.3 shows the initial frames of the sequence.

8.3 Results with pivoting (aided mode)

The simulation sequence, when the aided mode was enabled, gave only true con-
clusive results as opposed to when the LIS mode was active. It helped increase the
reliability of the algorithm, as it automatically rejected results that are blatantly
far from reality. The distribution of results can be seen in figure 8.4.
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Figure 8.2: Dynamic Image Thresholding and Centroiding on a Simulated Sequence
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8.3 – Results with pivoting (aided mode)

Figure 8.3: A sequence of identified stars. In this sequence, Adhara, Wezen and
Sirius of Canis Majoris are all correctly identified
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Figure 8.4: Distribution of the simulation results
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Chapter 9

Conclusions and Future Work

A low cost, low mass and low power consuming Star Tracker design was proposed
and compared with the state of the art. A preliminary schematics design was pro-
duced, and components were chosen based on radiation tolerance, performance and
commercial off-the-shelf availability criteria.

Radiation effects on the imager can be mitigated by data encoding and unused
pattern exclusion by the means of an operative mode (aided mode) in which data
from coarser Aramis sensors is used. This allows to have a smaller pool of patterns,
so the likelihood of identifying a triangle that contains a false star

Different available algorithms were analyzed and a set was picked from them. The
thresholder, centroider and pattern recognition algorithms were first tested with the
use of the Celestia 3D planetarium.

A set of m-files was produced and documented in order to support the future
development of this project.

A star database filterer that can generate a new database with the x brightest
stars per FOV was developed and used to make a 6 stars per FOV list with all the
necessary data for each star. Along with it, a pattern database generator for the
planar triangle was made and used to produce a database of 265292 triangles with
their correspondant HRNs, areas and polar moments.

The algorithms were first tried on carefully configured screenshots and then on
image sequences.

The simulation sequence, when aided mode was enabled, gave less seemingly
correct results than when the LIS mode was active. Aided mode helped increase the
reliability of the algorithm, as it automatically rejects results that are blatantly far
from reality. This is why the ”positive” matches are less but more reliable.

In a parallel test, specifically the centroiding algorithm was tested on real night
time sky imagery taken from a photography website, performing flawlessly on images
fairly free of compression artifacts.

In the future, work should focus in improving the throughput of correct results
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in order to lower the processor load. It is believed that OpenGL (the API Celestia
uses to display graphics) adds some sort of distortion that might have lowered the
real success rate, increasing the number of shots necessary to get one successful
measurement. Therefore, the next step should include building a prototype based
on the provided schematics and use the generated algorithms and databases to do
real night-sky shots with known optics assembly parameters.
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Appendix A

SPU Miscellaneous Parts

This memory devices were considered during the initial development of the project.
However, the size of the software is yet to be determined, therefore they will most
likely be replaced and they are provided for reference purposes only.

A.1 SDRAM Memory

SDRAM will be used since the mapping of the BF533 allows having glueless ex-
ternal memory from 16MB to 128MB memory sizes, as opposed to only 4MB of
possible SRAM, which would be probably not enough to hold image data and the
star catalogues.

The part of choice is the Micron MT48LC16M16A, a 4 Meg x 16 x 4 banks
synchronous dynamic memory [18] which has also been tested by JPL and has a LET
of ∼ 25MeV · cm2/mg, a saturated cross-section of 1E-4%cm2, and a probability of
failure of 1E-4% for a 6 month, 14-hour operation LEO mission. [17]

A.2 Flash Memory

Different options were explored for the flash memory component. All the Parallel
access Flash memories have a size of 4 MB, that, is the size of the Async addressable
memory block of the BF533 DSPs.

STMicro M29W320DB 32 Mbit
32 Mbit (4Mb x8 or 2Mb x16) automotive-rated memory based on NOR gates

which, from a study by the Jet Propulsion Lab (CA, USA) [38], we know less prone
to failure from radiation doses than their NAND counterparts. [39]

STMicro PSD4256G6V
PSD4256G6V is a parallel port-programmable memory which would offer the

advantage of simplifying the programming process, as it can be done directly without
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the intervention of the microprocessor through a JTAG interface. [40]
This memory has been tested for SEL by the JPL. It showed a threshold LET

of ∼ 11MeV · cm2/mg, saturated cross-section ∼ 1E − 5 cm2and a SEL likelihood
of 0.01% for a 6 month mission and 14 hours of operation in polar LEO. [17]

A.3 Alternative embedded option

One of the options considered, apart from the memories, was an all-inclusive com-
ponent has been developed by Cambridge Signal Processing,the Minotaur BF537,
sub miniature Computer On Module which features [41]

• Solderless/connectorless baseboard mating

• 600 MHZ BF537

• 32MByte PC133 SDRAM. This RAM module is the Micron MT48LC16M16
whose properties we discussed previously.

• 4MByte SPI Flash

• 10/100 Ethernet MAC and PHY onboard

This item could offer a great advantage in the Star Tracker, offering large space
savings and quicker prototyping. Nevertheless, just a few of its components have
undergone a SEE test.

Figure A.1: Minotaur
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A.3 – Alternative embedded option

Figure A.2: Aramis Star Tracker HW Block Scheme
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Appendix B

Schematics

B.1 Star Tracker Camera Unit
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B.2 – Star Tracker Processing Unit

B.2 Star Tracker Processing Unit
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Appendix C

Ground Code

The main functions of ground and in-flight software are provided. For information
on the specialized functions, please refer to the attached CD.

C.1 Catalogue reader.

Converts the catalogue to a format Matlab can read.

#include <s t d i o . h>

int main ( )
{

char f ;
int l o l ;
int temp ;
int j ;
int i ;
int s ;

FILE ∗ pFi l e ;
FILE ∗ po i n t f ;

pF i l e = fopen ( ” ca ta l og . dat” , ” r ” ) ; // ca ta l o gue input data
// ( Yale Br igh t Star Cata logue )

po i n t f = fopen ( ” cata logy . dat” , ”w+” ) ; // output f i l e

99



C – Ground Code

f =0;

for ( j =1; j <=9110; j++) // scan a l l the s t a r s
{
i =1;
do
{

f s c a n f ( pFi le , ”%c” , &f ) ; // scan each charac t e r
// o f the s t a r l i n e

f p r i n t f ( po int f , ”%c” , f ) ; // copy charac t e r s
// in t o the second f i l e

// p r i n t f (”%c ” , f ) ;
l o l=i ;
i++;
}while ( ( i < 197)&&( f !=10 ) ) ; // u n t i l maximum number o f

// charac t e r s or EOL i s reached

for ( s =1; ( s<=(197− l o l ) ) ; s++)
{
f p r i n t f ( po int f , ”%c” , ’ ’ ) ;
}

f s c a n f ( pFi le , ”%c” ,&temp ) ;
f p r i n t f ( po int f , ”\n” ) ;

}

f c l o s e ( pF i l e ) ;
f c l o s e ( po i n t f ) ;
return 0 ;
}

C.2 Star reading and filtering

100
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%This script loads the totality of stars of the Yale Bright Star

%catalogue. It then leaves only the StelleXFOV brightest stars

%for each field of view, and saves them in 6starsxfov.mat .

%Then it calculates the angle between each couple of stars

%that lie at a distance less than that of the FOV, saving the

%results to angoli.mat.

%Finally, every possible triangle of stars is calculated and

%the results are stored in triplettenuove.mat

clear all;

dofiltering=1;%To bypass star filtering

doangles=1;%to bypass angle calculation

dotriangles=1;%to bypass triangle creation

% dofiltering = input('Do star filtering? 1=yes/0=load from file [1]: ');

% if isempty(dofiltering)

%     dofiltering=1;

% end

%

% doangles = input('Do angle calculation? 1=yes/0=load from file [1]: ');

% if isempty(doangles)

%     doangles = 1;

% end

%

% dotriangles = input('Do triangle creation? 1=yes/0=load from file [1]: ');

% if isempty(dotriangles)

%     dotriangles=1;

% end

magnitude_filter=6;%faintest star to take into account

StelleXFOV=6;%minimum number of stars per FOV

FOVtemp=dms2degrees([21 32 4.7]); 

FOV=deg2rad(FOVtemp);

fprintf('Loading stars from file...\n')

[hrnyale, vis_magyale, rayale, decyale]=getstars(magnitude_filter);

fprintf('Done.\n')

subplot(2,2,1);

plot(rad2deg(rayale),rad2deg(decyale),'LineStyle','none','Marker','+');

xlabel('Right Ascension');

ylabel('Declination');

title('Stelle del Bright Star Catalog')

[iyale,jyale,kyale]=sph2cart(rayale,decyale,1);
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if (dofiltering) 

  fprintf('Filtering best stars...\n')

  [hrn, vis_mag, i,j,k]=pulisci(hrnyale, vis_magyale, iyale, jyale, kyale, FOV, 

StelleXFOV);

  hrn=hrn';

  vis_mag=vis_mag';

  i=i';

  j=j';

  k=k';

  fprintf('Done.\n')

else

  fprintf('Filtering skipped. Loading best stars from file...\n')

  load ('6starsxfov.mat');

  fprintf('Done.\n')

end

[ralol,declol,rlol]=cart2sph(iyale,jyale,kyale);

[ra2,dec2,r2]=cart2sph(i,j,k);

subplot(2,2,1);

plot(rad2deg(ralol),rad2deg(declol),'LineStyle','none','Marker','+');

xlabel('Right Ascension')

ylabel('Declination')

title('Stelle Catalogo')

subplot(2,2,2);

plot(rad2deg(ra2),rad2deg(dec2),'LineStyle','none','Marker','+');

xlabel('Right Ascension')

ylabel('Declination')

title('Stelle ottimizzate')

figure;

plot3(rad2deg(ra2),rad2deg(dec2),vis_mag,'LineStyle','none','Marker','+')

save('6starsxfov.mat', 'hrn', 'vis_mag', 'i','j','k');

lookupt=zeros(max(hrn),1);

for lc=1:1:max(hrn)

    lol=find(hrn==lc);
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if (any(lol))

        lookupt(lc)=find(hrn==lc);

end

end

vectors=[i,j,k];

if(doangles)

fprintf('Building angle database...\n')

% for hrnscan1=1:1:int16(max(hrn))

%

%     if (lookupt(hrnscan1)) 

%         for hrnscan2=1:1:int16(max(hrn))

%             if (hrnscan1~=hrnscan2)&&(lookupt(hrnscan2))

% %                  if (hrnscan1==2491)

% %                     hrnscan1

% %                 end

% %

% %                 if ((hrnscan1==2491)&&(hrnscan2==2618)) %Debug

% %                     hrnscan1

% %                 end

%

%                 angolia(hrnscan1,hrnscan2)=acos( dot(vectors(lookupt(hrnscan1),:),

vectors(lookupt(hrnscan2),:)) );

%

%             end

%         end

popul=zeros(int16(max(hrn)),3);

%populate list of vectors

[len,dummy]=size(vectors);

angolistg1=zeros(len,len); %matrix with no meaningful index

for scan1=1:1:len

    factor=repmat(vectors(scan1,:),len,1);

    angolistg1(:,scan1)=acos( dot(vectors,factor,2));

end

angolistg1=~eye(len,len).*angolistg1;

angolistg2=sparse(max(hrn),len);%matrix with hrn index in rows

for scan1=1:1:int16(max(hrn))

if (lookupt(scan1))
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        angolistg2(scan1,:)=angolistg1(lookupt(scan1),:);

end

    scdoub=double(scan1);

if (scdoub./1000==round(scdoub./1000))

        fprintf('*')

end

end

angoli=sparse(max(hrn),max(hrn));%matrix with hrn index in rows and columns

for scan1=1:1:int16(max(hrn))

if (lookupt(scan1))

        angoli(:,scan1)=angolistg2(:,lookupt(scan1));

end

    scdoub=double(scan1);

if (scdoub./1000==round(scdoub./1000))

        fprintf('*')

end

end

fprintf('*\n')

%

%   if (hrnscan1==round(20*max(hrn)/100))

%       fprintf('*\n')

%   end

%   if (hrnscan1==round(40*max(hrn)/100))

%       fprintf('**\n')

%   end

%   if (hrnscan1==round(60*max(hrn)/100))

%       fprintf('***\n')

%   end

%   if (hrnscan1==round(80*max(hrn)/100))

%       fprintf('****\n')

%   end

%   if (hrnscan1==round(100*max(hrn)/100))

%       fprintf('***** Done.\n')

%   end

save('angoli.mat', 'angoli');

else

    load('angoli.mat');

end

if (dotriangles)

count=1;
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taccu=0;

triplette=zeros(10000,5);

tripsum=zeros(10000,1);

fprintf('Building planar triangle database...\n')

for p=1:1:size(hrn)

    tic;

    p./size(hrn);

    primolvl=zeros(100,4); %cambiare 100

    primolvl=getneighbors2([double(hrn),i,j,k],FOV,hrn(p),angoli); %ottieni lista di 

elementi con angolo minore di FOV/2 (tranne la posz p)

    [plm,pln]=size(primolvl);

for q=1:1:plm

%         q./plm

        secondolvl=getneighbors2(primolvl,FOV,primolvl(q,1),angoli);%ottieni sottolista 

di elementi con angolo minore di FOV/2 (tranne q)

        [slm,sln]=size(secondolvl);

for s=1:1:slm

if (~checktrip2(triplette,hrn(p),primolvl(q,1),secondolvl(s,1),tripsum)) %

controlla presenza della tripletta

                ip=i(p);

                jp=j(p);

                kp=k(p); %il livello 0 ha l'indice p che si riferisce all'elenco 

principale

                indexq=lookupt(primolvl(q,1));

                indexs=lookupt(secondolvl(s,1));

                iq=i(indexq); 

                jq=j(indexq);

                kq=k(indexq); %i livelli 1 e 2 devono cercare l'indice attraverso l'hrn

                is=i(indexs); 

                js=j(indexs);

                ks=k(indexs);

%calcolo del momento e l'area

                a=norm([ip,jp,kp]-[iq,jq,kq]);

                b=norm([iq,jq,kq]-[is,js,ks]);

                c=norm([is,js,ks]-[ip,jp,kp]);

                esse=0.5*(a+b+c);

                area=sqrt(esse*(esse-a)*(esse-b)*(esse-c));

                momentum=area*(a^2+b.^2+c^2)/36;
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                triplette(count,:)=[area, momentum, double(hrn(p)),double(hrn(indexq)),

double(hrn(indexs))];

                tripsum(count)=double(hrn(p))+double(hrn(indexq))+double(hrn(indexs));

                count=count+1;

end

end

end

    perc=p./size(hrn);

    perc(1)=perc(1)*100

    fprintf('percent of stars scanned.\n')

    taccu=taccu+toc

    eta=((100-perc(1)).*taccu./perc(1))./(60.*60)

    pause(0.1)

end

fprintf('Done.\n')

save('triplettenuove.mat', 'triplette');

else

    load('triplettenuove.mat')

end
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%This file generates the k-vectors for both the areas and moments of

%the planar triangles. Vector tvector--- are the indexes to reach vector

%ind--- from the curve.

clear all;

load triplettenuove.mat;

load hrn_vis_mag_i_j_k.mat;

load bound_coef.mat;

load hrnLUT.mat;

load angoli.mat;

%make an indexed version of the values and order them

supindxd=sortrows([triplette(:,1),(1:1:size(triplette(:,1),1))'],1);

%separate the values from the indexes

sup=supindxd(:,1);

indarea=supindxd(:,2);

%get x vector

xa=(1:1:size(sup,1));

%assign known values (lowmost, uppermost) for the approximation function

y1a=sup(1);

x1a=1;

ka=max(sup);

ha=size(xa,2);

%get p(distance of focus)

pa=subs(solve('(y1a-ka)^2=4*pa*(x1a-ha)','pa'));

%solve the generic parabola equation for y, just to plot the graph

eqyarea=solve('(ya-ka)^2=4*pa*(xa-ha)','ya')

%and substitute, just to plot the graph too

yareas=subs(eqyarea);

%now solve and substitute to get the vector of tees

eqxarea=solve('(ya-ka)^2=4*pa*(xa-ha)','xa')

%result: x=1/4*(y^2-2*y*k+k^2+4*p*h)/p

%wrong%ya=sup(1:1:size(sup,1));

ya=sup;

%we take the runded value of the evaluation of x in the function as an

%index. Then we obtain the y value for the approx. function. We look for

%this value in the real function (sup), to obtain the index into ind

tic;

tvectorindexes=round(subs(eqxarea));

tvectormoment( tvectorindexes )=   bsearch ( sup, yareas(2, tvectorindexes )' ); 

toc;
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plot(1:1:size(xa,2),sup,1:1:size(xa,2),yareas(2,:));

legend('Planar Triangle Areas','K-Vector curve approximation')

hold off;

%%%%

figure

%make an indexed version of the values and order them

supindxd=sortrows([triplette(:,2),(1:1:size(triplette(:,2),1))'],1);

%separate the values from the indexes

sup=supindxd(:,1);

indmoment=supindxd(:,2);

%get x vector

xm=(1:1:size(sup,1));

%assign known values (lowmost, uppermost) for the approximation function

y1m=sup(1);

x1m=1;

km=max(sup);

hm=size(xm,2);

%get p(distance of focus)

pm=subs(solve('(y1m-km)^2=4*pm*(x1m-hm)','pm'));

%solve the generic parabola equation for y, just to plot the graph

eqymoment=solve('(ym-km)^2=4*pm*(xm-hm)','ym')

%and substitute, just to plot the graph too

ymoments=subs(eqymoment);

%now solve and substitute to get the vector of tees

eqxmoment=solve('(ym-km)^2=4*pm*(xm-hm)','xm')

%result: x=1/4*(y^2-2*y*k+k^2+4*p*h)/p

%wrong%ym=sup(1:1:size(sup,1));

ym=sup;

%we take the runded value of the evaluation of x in the function as an

%index. Then we obtain the y value for the approx. function. We look for

%this value in the real function (sup), to obtain the index into ind

tic;

tvectormoment( round(subs(eqxmoment)) )=   bsearch ( sup, ymoments(2, round(subs

(eqxmoment)') ) ); 
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toc;

plot(1:1:size(xm,2),sup,1:1:size(xm,2),ymoments(2,:));

legend('Planar Triangle Moments','K-Vector curve approximation')

%save kvectors, equation of the curves and necessary curve parameters

save('kvectors.mat', 'indarea', 'tvectorarea','indmoment', 'tvectormoment',

'eqxarea', 'eqxmoment', 'km', 'pm', 'hm','ka','pa','ha')
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clear all;

load triplettenuove.mat;

load hrn_vis_mag_i_j_k.mat;

load bound_coef.mat;

load hrnLUT.mat;

load angoli.mat;

FV=sphere_tri('ico',2,1,0);

lighting phong; shading interp;

 figure;

patch('vertices',FV.vertices,'faces',FV.faces,'facecolor',[1 0 0],'edgecolor',[.2 .2 

.6]);

axis off; camlight infinite; camproj('perspective');

alpha(.7);

hold on;

ang=rad2deg (acos (dot(FV.vertices(FV.faces(1,1),:),FV.vertices(FV.faces(1,2),:))))

maximumFOV=sqrt(ang^2-(ang/2)^2)+sqrt(ang^2-(ang/2)^2)/2

added=zeros(80,2);

v1=FV.vertices(FV.faces(:,1),:);

v2=FV.vertices(FV.faces(:,2),:);

v3=FV.vertices(FV.faces(:,3),:);

mean([v1(1,:);v2(1,:);v3(1,:)],1)

FV.facecenters=mean(cat(3,v1,v2,v3),3);

for contafaccia=1:1:size(FV.facecenters,1)

    FV.facecenters(contafaccia,:)=FV.facecenters(contafaccia,:)./norm(FV.facecenters

(contafaccia,:));

end

%create the list of adjacent faces

for contafaccia=1:1:size(FV.facecenters,1)

    adjcount=1;

for contafaccia2=1:1:size(FV.facecenters,1)

if contafaccia~=contafaccia2

            sizeinter=size(intersect(FV.faces(contafaccia,:),FV.faces

(contafaccia2,:)),2);

if(sizeinter~=0)
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                commonvert(contafaccia,adjcount)=sizeinter;

                adjacent(contafaccia,adjcount)=contafaccia2;

                adjcount=adjcount+1;

end

end

end

    localadj=adjacent(contafaccia,:)';

    localadj=localadj(localadj~=0);

    clf;

    lighting phong; shading interp;

    patch('vertices',FV.vertices,'faces',FV.faces,'facecolor',[1 0 0],'edgecolor',[.2

.2 .6]);

    alpha(.5);

    patch('vertices',FV.vertices,'faces',FV.faces(localadj,:),'facecolor',[0 0 

1],'edgecolor',[.2 .2 .6]);

    axis off; camlight infinite; camproj('perspective');

end

for count=1:1:size(triplette,1)

%calculate the centroid of the triangle

    xx=mean([i(lookupt(triplette(count,3))),i(lookupt(triplette(count,4))),i(lookupt

(triplette(count,5)))]);

    yy=mean([j(lookupt(triplette(count,3))),j(lookupt(triplette(count,4))),j(lookupt

(triplette(count,5)))]);

    zz=mean([k(lookupt(triplette(count,3))),k(lookupt(triplette(count,4))),k(lookupt

(triplette(count,5)))]);

%normalize the vector

    centroid_vector=[xx,yy,zz]/norm([xx,yy,zz]);

%calculate the angle of the vector against all the possible half-points

    angles=acos(FV.facecenters*centroid_vector');

%index and then order the angle list

    indexed_angles=[angles,(1:1:size(angles,1))'];

    indexed_angles=sortrows(indexed_angles,1);

%take the nearest vector

    face=indexed_angles(1,2);

%     clf;

%     patch('vertices',FV.vertices,'faces',FV.faces,'facecolor',[1 0 0],'edgecolor',

[.2 .2 .6]);

%     axis off; camlight infinite; camproj('perspective');
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%     alpha(.7);

%     hold on;

%     vectarrow([0,0,0],FV.facecenters(face,:));

%     hold on; 

%     vectarrow([0,0,0],centroid_vector);

%     hold off;

if ((count/1000)-round(count/1000))==0 

        count

end

    tag(count)=face;

end

%load isocahedrontag.mat;

indexedtag=sortrows([tag',(1:1:(size(tag,2)))'],1);

finaltags=[];

for contafac=1:1:max(tag)

    localtags=indexedtag(indexedtag(:,1)==contafac,2);

    finaltags=[finaltags;localtags]; %the list of ordered triplet indexes for each 

face

    tagmarkers(contafac)=size(finaltags,1); %the list of delimiting markers for each 

face

end

vert=FV.vertices;

faces=FV.faces;

centers=FV.facecenters;

save ('isocahedron.mat', 'vert', 'faces', 'centers', 'adjacent');

save('isocahedrontag.mat', 'tag');

save ('taglists.mat', 'finaltags', 'tagmarkers');



Appendix D

Simulator scripts

D.1 Celestia Initializer

init.cel

{
unmarkall {}

#s e l e c t { ob j e c t ”hubble ”}
#f o l l ow {}

#goto{}
lookback {}
s e t v i s i b i l i t y l i m i t {magnitude 6 .0}
s e t {name ”FOV” value 21.534638888888890}

#s e t p o s i t i o n {

# base [ −1.323515988135877e−005
−1.270447054050724e−009 8.750235516536438 e−006 ]
# o f f s e t [ −2.606422022655153e−016
5.421010862427522 e−020 −4.954261827172513e−016 ]
#}

s e l e c t { ob j e c t ”HIP 33316” }
c en te r { }
wait {durat ion 5}
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r o t a t e {
durat ion 3
ra t e 10
ax i s [ 0 1 0 ]

}

r o t a t e {
durat ion 3
ra t e 10
ax i s [ 1 0 0 ]

}

#wait {durat ion 5}

r o t a t e {
durat ion 3
ra t e 10
ax i s [ 0 0 1 ]

}

#wait {durat ion 10}

}

D.2 Image reader/attitude reference obtainer

quaternionWritefile.celx

−− Ti t l e : Display cur rent RA/Dec for obse rve r

KM PER LY = 9460730472580.8
KM PER AU = 149597870.7
PI = math . p i
degToRad = PI / 180 ;
J2000Obl iquity = 23.4392911 ∗ degToRad
fov=math . rad (21 .534638888888890) ;
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LOOK = c e l e s t i a : newvector (0 , 0 , −1)
earth = c e l e s t i a : f i nd ( ” Sol /Earth” )

−− Convert coo rd ina t e s from ca r t e s i a n to po la r :
xyz2rtp = func t i on (x , y , z )

l o c a l r = math . s q r t ( x ∗ x + y ∗ y + z ∗ z )
l o c a l phi = math . atan2 (y , x )
l o c a l theta = math . atan2 (math . s q r t ( x ∗ x + y ∗ y ) , z )

return r , theta , phi
end

−− Return cur rent d i s t anc e o f obse rve r from Earth :
getR = func t i on ( obs )

return earth : g e t p o s i t i o n ( ) : d i s t anc e t o ( obs : g e t p o s i t i o n ( ) )
end

−− Return cur rent RA, Dec for obse rve r :
getRADec = func t i on ( obs )

l o c a l ba s e r o t = c e l e s t i a : newrotat ion
( c e l e s t i a : newvector (1 , 0 , 0 ) , −J2000Obl iquity )

l o c a l s t a r t r a c k e r r o t =
c e l e s t i a : newrotat ion ( c e l e s t i a : newvector (0 , 1 , 0 ) , −1.5708)

l o c a l ro t = obs : g e t o r i e n t a t i o n ( ) ∗ ba s e r o t
l o c a l a t t i t u d e r o t = rot ∗ s t a r t r a c k e r r o t
l o c a l look = rot : trans form (LOOK) : normal ize ( )
l o c a l r , theta , phi = xyz2rtp ( look . x , look . z , look . y )
l o c a l phi = math .mod(720 − math . deg ( phi ) , 360)
l o c a l theta = math . deg ( theta )
i f theta > 0 then

theta = 90 − theta
else

theta = (−90 − theta )
end
return phi , theta , a t t i t ud e r o t , look . x , look . y , look . z

end

km2Unit =
func t i on (km)

l o c a l s ign , value , un i t s
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i f km < 0 then s i gn = −1 else s i gn = 1 end
km = math . abs (km)
i f km > 1e12 then

value = km / KM PER LY
un i t s = ” ly ”

e l s e i f km >= 1e8 then
value = km/KM PER AU
un i t s = ”AU”

else
value = km
un i t s = ”km”

end ;
return s t r i n g . format ( ”%.2 f ” , s i gn ∗ value ) . . ” ” . . un i t s

end

deg2dms = func t i on ( deg )
l o c a l a = math . abs ( deg )

l o c a l d = math . f l o o r ( a )
l o c a l r = ( a − d) ∗ 60
l o c a l m = math . f l o o r ( r )
l o c a l s = ( r − m) ∗ 60
i f deg < 0 then d = −d end
return s t r i n g . format ( ”%0.0 fd %02.0 f ’ %2.0 f ’ ’ ” ,d ,m, s )

end

deg2hms = func t i on ( deg )
l o c a l a = math . abs ( deg / 15)

l o c a l d = math . f l o o r ( a )
l o c a l r = ( a − d) ∗ 60
l o c a l m = math . f l o o r ( r )
l o c a l s = ( r − m) ∗ 60
return s t r i n g . format ( ”%0.0 fh %02.0fm %2.0 f s ” , d , m, s )

end

quat2eu l e r = func t i on ( qtrn )
l o c a l q4 = qtrn .w
l o c a l q2 = −qtrn . x
l o c a l q3 = qtrn . y
l o c a l q1 = qtrn . z
l o c a l yaw =

math . atan2 (2∗ ( q1∗q2+q4∗q3 ) , ( ( q4ˆ2 + q1ˆ2 − q2ˆ2− q3 ˆ2 ) ) )
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l o c a l p i t ch=
math . a s in (−2∗(q1∗q3−q4∗q2 ) )

l o c a l r o l l=
math . atan2 (2∗ ( q4∗q1+q2∗q3 ) , ( q4ˆ2 − q1ˆ2 − q2ˆ2+ q3 ˆ2))

yawdeg = yaw/degToRad
pitchdeg = pi t ch /degToRad
r o l l d e g = r o l l /degToRad

return yawdeg , pitchdeg , r o l l d e g
end

while t rue do

obs = c e l e s t i a : g e tobs e rve r ( )
obs : s e t f o v ( fov )
obsR = getR ( obs )
obsRA , obsDec , quat , xobs , yobs , zobs = getRADec ( obs )
yaw , pitch , r o l l = quat2eu l e r ( quat )
c e l e s t i a : p r i n t ( obsR . . ’ ’ . . obsRA . . ’ ’ . . obsDec )
i f obsR >= 0 then

−− Display g e o c en t r i c coo rd ina t e s for obse rve r :
obsRStr = km2Unit ( obsR )
obsRAStr = deg2hms (obsRA)
obsDecStr = deg2dms ( obsDec )

c e l e s t i a : p r i n t
( ”\nRA: ” . . obsRAStr . . ”\nDec : ” . . obsDecStr . . ”\nq4 :
” . . quat .w . . ”\nq1 : ” ..− quat . z . . ”\nq2 : ” ..− quat . x . . ”\nq3 :
” . . quat . y . . ”\nRol l : ” ..− r o l l . . ”\nPitch : ” . . p i t ch . . ”\nYaw:

” . . yaw . . ”\nX: ” . . xobs . . ”\nY: ” ..− zobs . . ”\nZ : ” . . yobs . . ”\nCelX :
” . . xobs . . ”\nCelY : ” . . yobs . . ”\nCelZ : ” . . zobs , 1 , −1, −1, 1 , 19)

−−c e l e s t i a : p r i n t ( ”\nRA: ” . . obsRAStr . . ”\nDec :
” . . obsDecStr . . ”\nq4 : ” . . quat .w . . ”\nq1 : ” . . quat . z . . ”\nq2 :
” ..− quat . x . . ”\nq3 : ” . . quat . y . . ”\nRol l : ” . . r o l l . . ”\nPitch :
” . . p i t ch . . ”\nYaw: ” . . yaw . . ”\nx : ” . . xobs . . ”\ny : ” . . yobs . . ”\nz :
” . . zobs , 1 , −1, −1, 1 , 20)
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−−c e l e s t i a : p r i n t ( ”\nRol l : ” . . r o l l . . ”\nPitch :
” . . p i t ch . . ”\nYaw: ” . . yaw , 1 , 1 , −1, 1 , 8)

end

wait (0 )
end
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%This code analyzes an sequence of images, finding an identifiable triangle

%of stars.

%% Load required databases and constants

clear all;

load triplettenuove.mat;

load hrn_vis_mag_i_j_k.mat;

load bound_coef.mat;

load hrnLUT.mat;

load angoli.mat;

load kvectors.mat;

load isocahedrontag.mat;

load xyzlive.mat;

load taglists.mat;

load isocahedron.mat;

global isocahedron;

global vert;

global faces; 

global centers; 

global adjacent;

global tag;

sensorsz=582;%688;%6.8608; %sensor or celestia screenshot size (short side)

pixelradapprox=0.3759/sensorsz;

%pixelradapprox=0.3759/603;

firstValidFrame=2; %just because Celestia takes useless shots on the first few frames

imload=2;

%% Load image sequences

if imload==1

    fprintf('Loading Sequence.\n')

    obj = mmreader('vidverysmall.avi');

%obj = mmreader('3vid1xscript21_32_47.avi');

%obj = mmreader('vidfull2.avi');

%obj = mmreader('1vid8xSyncWithISS2538162.avi');

%obj = mmreader('060901_Startracker_Auto_Imaging_v4.wmv');

    numFrames = get(obj, 'numberOfFrames');

    FrameRate = get(obj, 'FrameRate');

    loadingframe=1;

for loadingframe=1:1:numFrames

        imagen =rgb2gray( read(obj,loadingframe));

%imagen(510:576,180:530)=zeros(67,351); %to cover the celestia text output
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        imagen=imnoise(imagen, 'gaussian',0,0.0001);

        images(:,:,loadingframe)=imagen(:,:);

%         count=count+1

        loadingframe

end

    save ('preloadedimages.mat','images','numFrames','FrameRate','obj');

elseif imload==2 %load screenshots from the celestia dir

    fileFolder = fullfile('C:', 'Programmi', 'Celestia');

    dirOutput = dir(fullfile(fileFolder,'screenshot-skyscan-*.png'));

    fileNames = {dirOutput.name}';

    numFrames = numel(fileNames);

for p = 1:numFrames

        images(:,:,p) = rgb2gray(imread(fileNames{p})); 

        images(:,:,p)=imnoise(images(:,:,p), 'gaussian',0,0.0001);

end

%overides the default values (we know that the size of the screenshot==

%==full FOV

    sensorsz=size(images(:,:,1),1);

    pixelradapprox=0.3759/sensorsz;

else

    load preloadedimages.mat

end

sampno=0;

accufrms=[0,0,0,0,0];

%Test with one image

%imagen =imnoise(rgb2gray( imread('canismajorsans.jpg')), 'gaussian',0,0.0001);

%imagen =rgb2gray( imread('canismajorsans.jpg'));

fprintf('Done.\n')

%statistics variables

averagingtime=zeros(numFrames,1);

finalfilteringtime=zeros(numFrames,1);

tripletidtime=zeros(numFrames,1);

variancestime=zeros(numFrames,1);

triangleanalysistime=zeros(numFrames,1);

dimstarremovaltime=zeros(numFrames,1);

spikeremovaltime=zeros(numFrames,1);

pivotingtime=zeros(numFrames,1);

whoiswho=zeros(numFrames,1);

pivotcount=zeros(numFrames,1);
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% ambiguous=0;

% nothing=0;

% unique=0;

% total=0;

ambiguous=zeros(500,1);

nothing=zeros(500,1);

unique=zeros(500,1);

correct=zeros(500,1);

total=zeros(500,1);

 last=zeros(3,1);

sampletemp=images(:,:,1);

imsizetemp=size(sampletemp);

[x y] = meshgrid(1:imsizetemp(2), 1:imsizetemp(1));

FOVmask=sqrt((x-imsizetemp(2)/2).^2 + (y-imsizetemp(1)/2).^2)<sensorsz/2; %mask the 

stars not belonging to the FOV

for (tweakcount=10:1:10) 

%% Begin Loop

for fri=1:1:numFrames

    showCorrectFlag=0;

    clear hrntripletta;

    sample=images(:,:,fri);

    imsize=size(sample);%absolute size of image

    noisysample2show=sample;

    tic

    [mask,accufrms]=avgthreshold(sample,accufrms,imsize);%% Averaging to find threshold 

and mask noise away

    averagingtime(fri,1)=toc;

    tic

    mask2=spkremoval1(mask,imsize);%% Spike removal Method 1

%mask2=spkremoval2(mask,imsize);%% Spike removal Method 2 (faster)

    mask2=mask2.*FOVmask;

    sample(~mask2) = 0;%apply spike removal mask first

    spikeremovaltime(fri,1)=toc;

    tic

    pos=locatestars(sample);% Dim star removal and bright star determination 

    dimstarremovaltime(fri,1)=toc;
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%% Reference (sun sensor) face

    faces2look4=identifyFace(xyzlive(fri,:),centers,adjacent); %identifies all the 

adjacent faces

%% Planar triangle analysis

    tic

    FOV=deg2rad(dms2degrees([21 32 4.7]));

    pp=1;%6.7E-3;%pixel pitch

%variance of the angle???

%varang=((0.13)*pixelradapprox)^2;%best one so far: 0.13 

    varang=((0.01+2.5*tweakcount*0.01)*pixelradapprox)^2;

%varang=((0.01+16*0.01)*pixelradapprox)^2;

%varang=5.3291e-015

    [ipmt(1),varmom(1),areat(1),vararea(1),swt(1),sat(1),wat(1),il(:,1),jl(:,1),kl(:,

1)]=planart(sample,pos(1:3,:),FOV,sensorsz,pp,varang);

    triangleanalysistime(fri,1)=toc;

    tic

    areaMaxOffset=3*sqrt(vararea(1));

    momMaxOffset=3*sqrt(varmom(1));

%% Identify triplet

%triplette --is-> area momentum hrn1 hrn2 hrn3 (CHANGE THIS FOR A

%K-VECTOR

%ALGORITHM!!!)

    tic

%k-vector algorithm

%this function works WITHOUT sun reference:

%hrntripletta(:,:,1)=idtriplet2(triplette,areat(1),areaMaxOffset(1),ipmt(1),

momMaxOffset(1),tvectorarea,tvectormoment,indarea,indmoment, pm, hm, km, ka,pa, ha);

%this function works WITH the sun reference:

    hrntripletta(:,:,1)=idtriplet3(triplette,areat(1),areaMaxOffset(1),ipmt(1),

momMaxOffset(1),tvectorarea,tvectormoment,indarea,indmoment, pm, hm, km, ka,pa, ha,

faces2look4, finaltags, tagmarkers);

%slow, non k-vector algorithm

%[hrntripletta(:,:,1),absmags]=idtriplet1(triplette,areat(1),areaMaxOffset(1),ipmt

(1),momMaxOffset(1),lookupt,vis_mag);
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    tripletidtime(fri,1)=toc;

%% final filtering method 3 

    pivotlimit=3;

    starXYPositions=zeros(3,2,pivotlimit+1);

    starXYPositions(:,:,1)=pos(1:3,2:3);

    uniquefound=0;

    extpivot=4;

    count=2;

    notfound=0;

    hrntriplettaaccu=hrntripletta(:,:,1);

while (~uniquefound)&&(count-1<=pivotlimit)

if count-1==1

            [ipmt(count),varmom(count),areat(count),vararea(count),swt(count),sat

(count),wat(count),il(:,count),jl(:,count),kl(:,count)]=planart(sample,[pos(1:2,:);pos

(extpivot,:)],FOV,sensorsz,pp,varang);

            starXYPositions(:,:,count)=[pos(1:2,2:3);pos(extpivot,2:3)];

elseif count-1==2

            [ipmt(count),varmom(count),areat(count),vararea(count),swt(count),sat

(count),wat(count),il(:,count),jl(:,count),kl(:,count)]=planart(sample,[pos(1,:);pos

(3,:);pos(extpivot,:)],FOV,sensorsz,pp,varang);

            starXYPositions(:,:,count)=[pos(1,2:3);pos(3,2:3);pos(extpivot,2:3)];

else

            [ipmt(count),varmom(count),areat(count),vararea(count),swt(count),sat

(count),wat(count),il(:,count),jl(:,count),kl(:,count)]=planart(sample,[pos(1:2,:);pos

(extpivot,:)],FOV,sensorsz,pp,varang);

            starXYPositions(:,:,count)=[pos(1:2,2:3);pos(extpivot,2:3)];

%             [ipmt(count),varmom(count),areat(count),vararea(count),swt(count),sat

(count),wat(count)]=planart(sample,[pos(2:3,:);pos(extpivot,:)],FOV,sensorsz,pp,

varang);

%             starXYPositions(:,:,count)=[pos(2:3,2:3);pos(extpivot,2:3)];

end

        areaMaxOffset(count)=3*sqrt(vararea(count));

        momMaxOffset(count)=3*sqrt(varmom(count));

%k-vector algorithm

%this function works WITHOUT sun reference:

%triptemp=idtriplet2(triplette,areat(count),areaMaxOffset(count),ipmt(count),

momMaxOffset(count),tvectorarea,tvectormoment,indarea,indmoment, pm, hm, km, ka,pa, 

ha);

%this function works WITH sun reference:

        triptemp=idtriplet3(triplette,areat(count),areaMaxOffset(count),ipmt(count),

momMaxOffset(count),tvectorarea,tvectormoment,indarea,indmoment, pm, hm, km, ka,pa, ha,

faces2look4,finaltags,tagmarkers);
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%slow, non k-vector algorithm

%[triptemp,dummy]=idtriplet1(triplette,areat(count),areaMaxOffset(count),ipmt

(count),momMaxOffset(count),lookupt,vis_mag)

%if triptemp~=[0,0,0,0,0]

            hrntriplettaaccu=searchtree2(hrntriplettaaccu,triptemp);%look for triplets 

that have at least one common pair (binary search)

if any(hrntriplettaaccu,1)

if size(hrntriplettaaccu,1)==1

                    uniquefound=1;

end

else

                notfound=1;

end

%end

        extpivot=extpivot+1;

        count=count+1;

end

if (~uniquefound)&&(~notfound)

%ambiguous result!

       ambiguous(tweakcount)=ambiguous(tweakcount)+1;

end

if (uniquefound)&&(~notfound)

        unique(tweakcount)=unique(tweakcount)+1;

        pivotcount(fri,1)=count-2;%pivot stats

end

if (notfound)

%no results found

        nothing(tweakcount)=nothing(tweakcount)+1;

end

    total(tweakcount)=total(tweakcount)+1;

    pivotingtime(fri,1)=toc;

%% final filtering method 2
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% %change this for a pivot algorithm!!!

%     tic

%     [finstars,poll]=selecttriplet(hrntripletta,angoli,lookupt,swt,sat,wat,vis_mag);

%     finalfilteringtime(fri,1)=toc;

    %% Find stars coordinates from the database

%(CHANGE THIS FOR A K-VECTOR ALGORITHM!!!)

%     stindex=[0,0,0];

%     for triploop=1:1:3

%         stindex(triploop)=find(hrn==hrntripletta(:,triploop)); %find the indexes for 

the three hrns

%     end

%starone=find

    tic

      %% Identify individual stars

if (uniquefound)&&(~notfound) %only if we have identifyied one triplet

        score=zeros(3); %initialize score array

        brSortCat3=zeros(3,2); %initialize the 

%now order HRNs by brightness

        brSortCat3(1:3,1)=[hrntriplettaaccu(3);hrntriplettaaccu(4);hrntriplettaaccu

(5)];

        brSortCat3(1:3,2)=[vis_mag(lookupt(hrntriplettaaccu(3)));vis_mag(lookupt

(hrntriplettaaccu(4)));vis_mag(lookupt(hrntriplettaaccu(5)))];

        sortrows(brSortCat3,-2);

%we will work more confortably by giving a name to the catalogue stars

        cb=brSortCat3(1,1); %brightest

        cm=brSortCat3(2,1); %medium brightness

        cd=brSortCat3(3,1); %dimmest

%now, who is who? : voting algorithm

%1) Brightness criterium

%the weight given by a brightness correspondance will depend on the

%variation coefficient, which is the standard deviation divided by

%the average of the brightness. It will be the same for every star, so

%it doesn't have a meaning right now, but it will, when we have the

%votes from the angle comparison

%get variation coeff.

        bVrtCff=std(pos(1:3,1))/mean(pos(1:3,1));

        score=eye(3).*bVrtCff; %assign votes
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        bVrtCff1=min( [abs(pos(2,1)-pos(1,1)),abs(pos(3,1)-pos(1,1))])/mean(pos(1:

3,1));

        bVrtCff2=min( [abs(pos(1,1)-pos(2,1)),abs(pos(3,1)-pos(2,1))])/mean(pos(1:

3,1));

        bVrtCff3=min( [abs(pos(1,1)-pos(3,1)),abs(pos(2,1)-pos(3,1))])/mean(pos(1:

3,1));

        score(1,1)=bVrtCff1;

        score(2,2)=bVrtCff2;

        score(3,3)=bVrtCff3;

%2) Angle criterium

%retrieve the vectors of each catalogue star

        bVect=[i(lookupt(cb)),j(lookupt(cb)),k(lookupt(cb))];

        dVect=[i(lookupt(cd)),j(lookupt(cd)),k(lookupt(cd))];

        mVect=[i(lookupt(cm)),j(lookupt(cm)),k(lookupt(cm))];

%get the angles between catalogue stars

        bmAng=acos(dot(bVect,mVect));

        bdAng=acos(dot(bVect,dVect));

        mdAng=acos(dot(mVect,dVect));

%luckily, we already have the angles between measured star vectors

%we now substract them from the catalogue angles and obtain the error

        bmErrors=abs(ones(3,1).*bmAng-[sat(1);swt(1);wat(1)]);

        bdErrors=abs(ones(3,1).*bdAng-[sat(1);swt(1);wat(1)]);

        mdErrors=abs(ones(3,1).*mdAng-[sat(1);swt(1);wat(1)]);

%now look for the index of the minimal error, it will tell us

%which the most similar angles are. We don't use matlab's find to

%make it more "embeddable"

        mine=min(bmErrors);

for angcount=1:1:3

if bmErrors(angcount)==mine

                bmInd=angcount;

end

end

        mine=min(bdErrors);

for angcount=1:1:3

if bdErrors(angcount)==mine

                bdInd=angcount;

end

end

        mine=min(mdErrors);

for angcount=1:1:3

if mdErrors(angcount)==mine

                mdInd=angcount;

end

end

%for each possibility of triangle side correspondance

%         example
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%             bm|bd|md|

%         sa   *|  |  |

%         sw    | *|  |

%         aw    |  |* |

%         bmInd==1     bdInd==2  mdInd==3

        ang_score_applied=0;

if bmInd==1 && bdInd==2 && mdInd==3

            meaS=1;%cb;

            meaW=3;%cd;

            meaA=2;%cm;

            ang_score_applied=1;

elseif bmInd==1 && bdInd==3 && mdInd==2

               meaA=1;%cb;

               meaW=3;%cd;

               meaS=2;%cm;

               ang_score_applied=1; 

elseif bmInd==2 && bdInd==1 && mdInd==3

               meaS=1;%cb;

               meaA=3;%cd;

               meaW=2;%cm;

               ang_score_applied=1;

elseif bmInd==2 && bdInd==3 && mdInd==1

               meaW=1;%cb;

               meaA=3;%cd;

               meaS=2;%cm;

               ang_score_applied=1;

elseif bmInd==3 && bdInd==1 && mdInd==2

               meaA=1;%cb;

               meaS=3;%cd;

               meaW=2;%cm;

               ang_score_applied=1;

elseif bmInd==3 && bdInd==2 && mdInd==1

               meaW=1;%cb;

               meaS=3;%cd;

               meaA=2;%cm;

               ang_score_applied=1;

end

if(ang_score_applied) %only if we did find nice, different angles

%to assign star correspondances

            distanze=[bmAng,bdAng,mdAng];

            weight=std(distanze)./mean(distanze);

            score(1,meaS)=score(1,meaS)+weight;

            score(2,meaA)=score(2,meaA)+weight;

            score(3,meaW)=score(3,meaW)+weight;

end

        winner=max(score(1,:));

for candcount=1:1:3

if score(1,candcount)==winner
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                win1=candcount;

end

end

        winner=max(score(2,:));

for candcount=1:1:3

if score(2,candcount)==winner

                win2=candcount;

end

end

        winner=max(score(3,:));

for candcount=1:1:3

if score(3,candcount)==winner

                win3=candcount;

end

end

        winCatalogHRNs=[cb;cm;cd];

        winMeasured=[winCatalogHRNs(win1);winCatalogHRNs(win2);winCatalogHRNs(win3)];

       whoiswho(fri,1)=toc; 

%%     Check validity of the result

if (uniquefound)&&(~notfound)

%one of the detected stars

        samplestar1=[i(lookupt(int16(hrntriplettaaccu(3)))),j(lookupt(int16

(hrntriplettaaccu(3)))),k(lookupt(int16(hrntriplettaaccu(3))))];

        samplestar2=[i(lookupt(int16(hrntriplettaaccu(4)))),j(lookupt(int16

(hrntriplettaaccu(4)))),k(lookupt(int16(hrntriplettaaccu(4))))];

        samplestar3=[i(lookupt(int16(hrntriplettaaccu(5)))),j(lookupt(int16

(hrntriplettaaccu(5)))),k(lookupt(int16(hrntriplettaaccu(5))))];

        samplestaravg=mean([samplestar1;samplestar2;samplestar3],1);

%if the angle between the star and the simulated reference vector<FOV

if (acos(dot(xyzlive(fri+firstValidFrame-1,:),samplestaravg))<=(FOV))

            correct(tweakcount)=correct(tweakcount)+1;

            showCorrectFlag=1;

end

end

    %% Calculate Attitude Quaternion EXPERIMENTAL

%the unitary vectors in the AraMiS body frame

%convert from the left-handed frame to a right-handed, rotated frame. 

%They are unitary vectors, so a simple change of sign and 

%rearranging does the trick

%y->z

%z->x

%-x->y

     wk=[kl(1:3)',-il(1:3)',jl(1:3)']';
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%the target unitary vectors in the catalogue (primary ref reame = celestial 

sphere)

     vk=[i(lookupt(winCatalogHRNs)),j(lookupt(winCatalogHRNs)),k(lookupt

(winCatalogHRNs))]';

     B=wk*ones(3)*vk';

     S=B+B';

     s=trace(B);

     Z=[B(2,3)-B(3,2),B(3,1)-B(1,3),B(1,2)-B(2,1)]';

     K=[S-s.*eye(3),Z;Z',s];

     aq=s.^2-trace(adj(S));

     bq=s^2+Z'*Z;

     cq=det(S)+Z'*S*Z;

     dq=Z'*S^2*Z;

     feq4=1;

     feq3=0;

     feq2=-(aq+bq);

     feq1=-cq;

     feq0=aq*bq+cq*s-dq;

     rooty=roots([feq4,feq3,feq2,feq1,feq0])

     yopt=inv((max(real(rooty))+s).*eye(3)-S)*Z;

     qopt=(1/sqrt(norm(yopt).^2))*[yopt;1];

     [rotaz,rotay,rotax] = quat2angle(qopt')

     rad2deg([rotaz,rotay,rotax])

end

    subplot(2,2,1); 

%  % Show the brightest identified stars

    recordyn=1;

%[framezor,last]=showRecordStarframe(mask,mask2,noisysample2show,recordyn,last,

images,fri,pos,hrntripletta);

    imshow(images(:,:,fri));

    hold on;

    circle([imsize(2)/2,imsize(1)/2],sensorsz/2,1000,'--');

    hold on;

for tricount=1:1:count-1

if tricount==1

           tricolor='r';

else

           tricolor='b';

end

       hold on;
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       showTriangle(starXYPositions(:,:,tricount),tricolor);

%        pause(1);

       hold on;

end

    showTriangle(starXYPositions(:,:,1),'r');

if (~uniquefound)&&(~notfound)

        text(imsize(1)*(18./20),imsize(1)*(1./20),'Unidentifyied planar 

triangle.','FontSize',10,'color','r')

        hold on;

end

if (uniquefound)&&(~notfound)

        text(imsize(1)*(18/20),imsize(1)*(1./20),'Planar triangle fully 

identifyied.','FontSize',10,'color','g')

        hold on;

        text(imsize(1)*(999/1000),imsize(1)*(1./20)+20,'HRNs','FontSize',

10,'color','g')

        text(imsize(1)*(999/1000),imsize(1)*(1./20)+40,num2str(int16(hrntriplettaaccu

(3))),'FontSize',10,'color','g')

        text(imsize(1)*(999/1000),imsize(1)*(1./20)+60,num2str(int16(hrntriplettaaccu

(4))),'FontSize',10,'color','g')

        text(imsize(1)*(999/1000),imsize(1)*(1./20)+80,num2str(int16(hrntriplettaaccu

(5))),'FontSize',10,'color','g')

        hold on;

%show them with their locations

        text(pos(1,3),pos(1,2),strcat(' \leftarrow HR ', num2str(winMeasured(1)) ) 

,'FontSize',10,'color','r')

        text(pos(2,3),pos(2,2),strcat(' \leftarrow HR ', num2str(winMeasured(2)) ) 

,'FontSize',10,'color','r')

        text(pos(3,3),pos(3,2),strcat(' \leftarrow HR ', num2str(winMeasured(3)) ) 

,'FontSize',10,'color','r')

end

if (notfound)

        text(imsize(1)*(18./20)+30,imsize(1)*(1./20),'Ambiguous planar 

triangle.','FontSize',10,'color','y')

        hold on;

end

    %% Show the unitary vectors of reference stars

if (uniquefound)&&(~notfound)

        subplot(2,2,2); 

        vectarrow([0,0,0],[i(lookupt(int16(hrntriplettaaccu(3)))),j(lookupt(int16

(hrntriplettaaccu(3)))),k(lookupt(int16(hrntriplettaaccu(3))))]);

        hold on;

%star2

        vectarrow([0,0,0],[i(lookupt(int16(hrntriplettaaccu(4)))),j(lookupt(int16
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(hrntriplettaaccu(4)))),k(lookupt(int16(hrntriplettaaccu(4))))]);

        hold on;

%star3

        vectarrow([0,0,0],[i(lookupt(int16(hrntriplettaaccu(5)))),j(lookupt(int16

(hrntriplettaaccu(5)))),k(lookupt(int16(hrntriplettaaccu(5))))]);

        hold on;

        vectarrow([0,0,0],[0,0,1]);

        hold on;

%star2

        vectarrow([0,0,0],[0,1,0]);

        hold on;

%star3

        vectarrow([0,0,0],[1,0,0]);

        hold on;

        vectarrow([0,0,0],[0,0,-1]);

        hold on;

%star2

        vectarrow([0,0,0],[0,-1,0]);

        hold on;

%star3

        vectarrow([0,0,0],[-1,0,0]);

        hold off;

end

 subplot(2,2,4); 

        vectarrow([0,0,0],xyzlive(fri+firstValidFrame-1,:));

        hold on;

        vectarrow([0,0,0],[0,0,1]);

        hold on;

%star2

        vectarrow([0,0,0],[0,1,0]);

        hold on;

%star3

        vectarrow([0,0,0],[1,0,0]);

        hold on;

        vectarrow([0,0,0],[0,0,-1]);

        hold on;

%star2

        vectarrow([0,0,0],[0,-1,0]);

        hold on;

%star3

        vectarrow([0,0,0],[-1,0,0]);

        hold off;

if showCorrectFlag 

        pause(1);

end

    fri

%     q1=getframe;

%     qtr1=imresize(q1.cdata, [300 440]);%[241*2 361*2]);

%     framezor(:,:,:,fri)=qtr1;
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    ambiguous(tweakcount)

    nothing(tweakcount)

    unique(tweakcount)

    correct(tweakcount)

    total(tweakcount)

     tweakcount

end

%figure

    subplot(2,1,2);

    plot(1:1:500,ambiguous,1:1:500,nothing,1:1:500,unique-correct,1:1:500,total,1:1:

500,correct)

    legend('ambiguous','no result','wrong result','total frames','correct result')

%     pause(2);

end %tweakcount

%% Record frames

% mov=immovie(framezor,q1.colormap);

% movie2avi(mov,'results2','fps',1);

plot(1:1:numFrames,pivotingtime,1:1:numFrames,tripletidtime,1:1:numFrames,

spikeremovaltime,1:1:numFrames,triangleanalysistime,1:1:numFrames,dimstarremovaltime,1:

1:numFrames,whoiswho)

legend

('PivotingTime','tripletIdTime','spikeRemovalTime','triangleAnalysisTime','dimStarRemov

altime','whichStarIsWhich')

pivotcount=pivotcount(pivotcount~=0);

save('statistics',

'pivotingtime','tripletidtime','spikeremovaltime','triangleanalysistime','dimstarremova

ltime','pivotingtime','whoiswho','pivotcount')
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