POLITECNICO DI TORINO

[l Facolta di Ingegneria

Corso di Laurea in Ingegneria dell'Informazione

Tesi di Laurea Specialistica

UHF Communication System Development
for Nanosatellite

Supervisor:

Prof. CLAUDO SANSOE'
Prof. DANTE DEL CORSO
Prof. LEONARDO REYNERI

Candidate:
Lv Shuai

September 2010

Acknowledgement

During the last 10 months, while working on this thesis, I had the opportunity to work
in the Nanosatellite group in Politecnico di Torino with many talented people and now
I had the chance to acknowledge them.

First of all, I should thank my supervisors, Prof. Sansoe' Claudio, Prof. Del
Corso Dante and Prof. Reyneri Leonardo, who introduced me to this project and gave
me so many guidances. Also, special thanks should go to Doc. Stefano Speretta, Doc.
Maurizio Tranchero and other kind doctors. They gave me so many practical
instructions.

In addition, I should thank my companions, Qiu Longjia, Yu Jian, Zhao Yingjie
and Duan Wenjie, who ever gave me suggestions and encouragements when I

encountered problems.
Torino, September 2th, 2010

Lv Shuai

Summary

Avionics for satellites is a market which is continuously growing in these years. The
cost reduction enables many institutions to develop their own satellites. To evaluate
the feasibility of COTS components in space projects, some departments of
Politecnico di Torino developed a nanosatellite named PiCPoT. In order to greatly
reduce cost for further, the group began to develop a true modular satellite—AraMisS,
which allows a number of missions to share the same design.

A primary mission requirement of any satellite is the ability to exchange
information with a ground based command station. Similar as PiCPot, AraMiS has
two radio-frequency communication subsystems. One subsystem works in UHF
(437MHz) band, the other one works in S (2.4GHz) band. The two communication
subsystems are independent and their functions are interchangeable. Both channels
implement a half-duplex protocol, sharing the same frequency for downlink and
uplink.

The duty of this thesis is to develop the UHF communication subsystem. To get
the compatibility with amateur radios, this communication subsystem needs realize
AX.25 communication protocol. It consists of a micro-controller performing a TNC, a
transceiver, a power amplifier and an antenna. The micro-controller is TI
MSP430F149, which is low cost, low power and easy to operate. The transceiver is
CC1020, which is true narrowband, low voltage and power and easy to configure.
And it only needs a few external passive components. Still choose to use RFMD
RF2175 as the power amplifier, which can provides an +34dBm output power, while
using a helical antenna.

This paper copes with all the details to develop and verify the UHF
communication subsystem. Chapter 1 is an introduction of this final project,
addressing an general idea of the whole development process. In chapter 2, a brief

description of a space radiation environment, which largely affects the satellites'

II

normal functionalites, is presented. From chapter 3 to chapter 5, development details
are exactly described. In chapter 3, detail the hardware development. After evaluating
several exiting solutions, our choice is addressed, including components selections,
circuits realizations and interface descriptions. Software development is shown in
chapter 4. The AX.25 protocol is firstly introduced, which involves how to transmit
and receive packets based on this protocol. Thereafter, softwares performing hardware
modules' functionalities and their relations to exchange information are interpreted in
details. Since both hardware and software are designed, realization and test processes
are demonstrated in chapter 5. The PCB realization procedures are addressed and
experiments for test are established, while results are also reported. In chapter 6, a

conclusion is given to conclude this final project.

I

Contents

ACKNOWIEAZEMENL........oiiiiiiiieiieie ettt ettt e e enaeens I
SUMIMATY ..ot e e e e e e ettt e e esaba e e e s ataaeesensaeeeensseeeens II
COMLENLS. ...ttt ettt ettt sbe e st e st e e e e IV
List of Figures and Tables...........ccccuvieiiiiiiiieiiieceeeee e VI
LSt OF ACTOMYMIS.......viiiiiiiiieeiiieiie ettt ettt et e iaeebeesaaeebeeesseenseesnaeenne IX
INEPOAUCTION. ...ttt 2
Space Radiation EffECtS.........cocouiiiiiiiiiiiiiiiciiee e 5
2.1 Space Radiation Environment [2].......cccccccvieriiiienciieeniieeiee e 5
Interplanetary SPACE........cceevuieriieiiieiieeieeee et 6

Solar WIN.......eiiiiiee e 6

Solar Energetic PartiCles..........oocuieviiiiieiieiiieiiecieeiece e 6

Galactic CoSMIC RAYS.......ccccviiiiiiiiiieiieecee e 7

Earth's Magnetosphere..........ccoocvieiiiiiieiieiieeiece e 7

2.2 Space Radiation Effect..........ccccooiiieiiiiiiiiiieeceeeeeeeeee e 9
Total Ionizing DOSE........eeviiiiieiieeiieie ettt 9

Single Event Effects........cooviieiiieiiieceeeeeeeeee e 10
Displacement Damage..........c.eevveeeiierieeiiienieeiienie et eseee e 11

2.3 Mitigation Methods.........ccuvieiiiieiiieiiiiecie e 12
Hardware Development...........ccuiiiiiiieeiiieiie ettt 13
3.1 EXisting SOIUtiONS [S]..ccuviieiiiieiiieeiiee ettt 13

3.2 OUE SOIULION.eiiiiiieiiciieeeee et 14

3.3 Components, Circuits and Interfaces............cceccveereiiencieenceeeciee e, 15
3.3.1 Components SEleCtiON..........ccueeeuierieeieeiieeieeiie e 15

3.3.2 Circuits Realization..........cccceeviiiiiieiiiiiiiieeicee e 18

3.3.3 INLEITACES. c.veeueieeetieiei e e 23

Software Development............coocviieiiieiiiiece et 30
4.1 AX.25 protocol and G3RUH standard.............cccoeveieiienienciianieeieeie. 30

v

4.1.1 AX.25 PIOtOCOL....iiieiieeiiecieeeee et e 30

4.1.2 HDLC encoding Polynomial scrambling/descrambling.............. 35

4.2 Software MOdUIES.........cooiiiiiiiiiiiii e 38

4.3 Functionality deSCIIPtiON..........ecueeiuierieeiiienieeiteeie ettt 39
4.3.1 Main communication Control (Main.c)........ccceeeevveercvveercreeenneenns 39

4.3.2 Transceiver interface (CC1020.C)...cecuviieiiiieiiieeiieeeieeeeiee e 40

4.3.3 Software TNC (AX25.C).ueceerieieiieiieieseesie et 42

4.3.4 TIMET (HIMET.C)..uvrreenrieeeiieeeieeeeiee et e eetteeeeereeeeareeeaaeesreeeeeneeeeenes 47

4.3.5 Data interface (Uart.C)......ceevuveeriueieerieeeieeerieeereeeeeeeeeveeeevee e 47

4.3.6 Configuration interface (SPL.C)......cceovieviiienieniiiiieeieeeeeeeeeen 48
Realization and TeSt......cc.eiiuiiiiiiiiiiieee e 49
5.1 PCB 1@aliZation.cc.eevuieiiriiiiieieeiiesieeieeteicee et 49

5.2 EXPeriments fOr teSt........uieriiieiiieeiieciie ettt 51
EXPeriment # L......cooieiiiiiiieiieieee ettt 52
EXPEriment # 2......cveiiiiiiiiie ettt et 54
EXPeriment # 3......ooouiiiiieieeie et 55
CONCIUSION. ...ttt ettt ettt e bt e st eebeesateens 59
APPendixX A SOUICE COAES.......eeruiiiiiiiieeiieiieeieeriie et site et et eereesaeeereeseesnee s 60
RETEIEICE. ...t 77

List of Figures and Tables

Figure 1.1 Model of ATaMIS.......cccuiiiiiiiieiieiee ettt 3
Figure 1.2 Model of telecommunication tile............cccccuvervieeriieenciieeiieeeiee e 3
Figure 2.1 Earth's teardrop-shaped magnetosphere............ccccccvevieriienienieenieennee. 6
Figure 2.2 Diagram of Van Allen radiation belts............ccccceeeeiiinciiinciiinieeee 8
Figure 2.3 The Van Allen radiation belts and typical satellite orbits..................... 8
Table 2.1 Types of radiation effects and the corresponding originsPl.................... 9

Figure 2.4 Schematic of an n-channel MOSFET illustrating the basic effect of
total ionization induced charging of the gate oxide. Normal operation
(a) and post irradiation (b) show the residual trapped positive charge
(holes) that produces a negative threshold voltage shift.................... 10
Figure 2.5 Schematic of a heavy ion strike on the cross-section of a bulk CMOS
10005200 10) 0 A o151 | BRI 11
Figure 2.6 Bulk CMOS inverter architecture cross-section showing the parasitic

bipolar SCR structure that forms, making it susceptible to SEL....... 11

Figure 2.7 schematic of atomic displacement damage in crystal solid................ 12
Table 3.1 Summary of communication SUbSYSteM............cccvveeeerreeririeerieeenreeenne, 14
Figure 3.1 Diagram of UHF communication subsystem..........c..ccccceeeerueruennnene 15
Figure 3.2 Functional block diagram of MSP430x14x!)...........ccooviiiiieiiran. 16
Figure 3.3 Interface between CC1020 and micro-controller...........c.ccceeevuennnenne. 17
Figure 3.4 SmartRF® Studio user interface..........cccceeeveevvieencieencieeeie e, 17
Figure 3.5 LM317 application CIrCUIL.........cccueeiuieriieeiienieeieerieeeie e eve e 18
Figure 3.6 Connections between MSP430F149 and CC1020.............cccveeennennnee. 19
Figure 3.7 Configuration registers Write Operation.........c..cceceeveereerueeruereenuennnn 20
Figure 3.8 Configuration registers read Operation...........cccveeevveeerveeecrveesveeenene 20
Figure 3.9 Synchronous NRZ mode Transmit & Receive processes................... 21
Figure 3.10 CC1020 application CITCUIL......cueeeruvreerereeeiireeeiieeeieeeereeesveeeeevee e 22

VI

Figure 3.11 SWItCh CITCUIL......cuviiiiiieeieece e 23

Figure 3.12 USART block diagram (UART mode)........cccccvvevveeriieniieniienieeene 24
Figure3.13 Date format of UART mode..........cccvveeiiiieiiieiiieeieeeeeeeee e 24
Table 3.2 USARTO control and status regiSters........ccuverrerrieereeeiieeniieeieeriieeneeans 25
Figure 3.14 USART1 Slave and SPI mode..........ccceevviieiiieeiieeieeeeeeeeeeen 27
Figure 3.15 USART SPItiMing.........cccouieiieiiieniieiieeiieeie et sve e sveeiee s 28
Table 3.3 UARTT1 control and status regiSters..........cceevveerrreeeirieenirieenveeervee e 28
Figure 4.1 U and S frame CONStruCtioN.cceevveeriiieiieniieeiierieeieeiee e 31
Figure 4.2 Information frame ConStrucCtion...........ccceeeeveeerveeerieeenieeeieeeieee e 31
Figure 4.3 Control field formats (modulo 8)..........ccccveriiiiiiiiiiiiiiieeieeeeee 33
Figure 4.4 Control field formats (modulo 128)..........ccevvveeiiieeniieeiieeieeeee e 33
Figure 4.5 PID definition........c.ccoieriiiiiienieeiiesiie ettt 34
Figure 4.6 NRZI enCOAING.......cccviiiiiiieiiiieeiie ettt e 35
Figure 4.7 bit Stuffing ProCeSS.....ccccviiiiieriieiieeieeiteee e 36
Figure 4.8 polynomial scrambler in G3RUH modem...........c.cccovvveecvieicieennnens 37
Figure 4.9 polynomial descrambler in the G3RUH modem.............ccccevvenennen. 37
Table 4.1 software module brief desCription..........cccuveevcveeerieeeiiieeie e 38
Figure 4.10 relations between each software module...........cccocevieniiiinicnenne. 38
Figure 4.11 main.c 1loop behaviour............ccccvieiiieeiiieecieeceeee e 40
Figure 4.12 software TNC tranSmiSsion PrOCESS..........eeveerueerreerirerueerreesueenenens 43
Figure 4.13 software TINC 1reception PrOCESS.......ccueeerrvreriureerireeerreeesreeesreeennnens 44
Figure 4.14 CRC calculation hardware of PK96...........ccccoceviiiiniiniiniiiinne 45
Table 4.2 look-up table for CRC calculation............ccceeeveeeeieeeiieenciieeciie e, 46
Figure 5.1 PCB LayOuL........coociiiiiiiiiiiiiecieeee et 50
Figure 5.3 a realization of [ayout..........ccceeeviiiiiiiieniiii e 51
Table 5.1 brief description of eXperiments............ccceeevveereeeiieenienieenieeieeiee e 52
Figure 5.2 experiment 1 CONSIIUCHION.eeeruieeriieeriieeieeeeee e eaee e 52
Figure 5.3 spectrum analyzZer...........ccccveriieiiienieeiiienie ettt 53
Figure 5.4 experiment 3 CONSIIUCION.eeeevieeriieeriieerieeeieeeireeereeeeareeeaee e 55
Figure 5.5 windows Of SOftWare.........ccoeeiieiiiiiiiiiiecieeee e 56

Table 5.2 special characters in KISS protocol..........c.cceevveeeiiieniieiniieciieeee e,
Figure 5.5 amateur radio T€CePHION.eecvieriieiieiieeieeiie ettt ettt

Figure 5.6 amateur radio tranSmiSSION........ccueeeruvreeruieeriieeeiieeeieeeeieeeereeeeeree e

Vil

List of Acronyms

AraMiS
SME
COTS
UHF
LEO
MOS
SEE
SEU
BJT
PCB
PA
MCU
OBC
USART

ISM
SRD
PLL
SPI
NRZ
DCE
DTE
TNC
HDLC
FCS
CRC

Modular architecture for Satellites
Small Medium Enterprise
Commercial Off The Shelf

Ultra High Frequency

Low Earth Orbiting

Metal-Oxide Semiconductor
Single Event Effects

Single Event Upset

Bipolar Junction Transistors
Printed Circuit Board

Power Amplifier

Micro-Control Unit

On-Board Computer

Universal synchronous and
receiver/transmitter

Industrial, Scientific and Medical
Short Range Device

Phase Locked Loop

Serial Peripheral Interface
Non-Return to Zero

Data Communication Equipment
Data Terminating Equipment
Terminal Node Controller
High-Level Data Link Control

Frame Check Sequence

Cyclic Redundancy Check

IX

asynchronous

LFSR
NRZI
BER
JTAG
KISS

Linear Feedback Shifted Register
Non-Return to Zero Inverse

Bit Error Rate

Joint Test Action Group

Keep It Simple, Stupid

1-Introduction

Chapter 1

Introduction

In current days, the industrial and academic interest in space and space-related
activities is rapidly growing. A cost effective access to space would open a wide range
of new opportunities and markets, especially for SMEs (Small Medium Enterprise)
and Universities.

After developed PICPOT---a small satellite built with low cost Commercial Off
The Shelf (COTS) components, electronic department in Politecnico di Torino
wants to design a nanosatellite with true modular architecture (particularly in
electronic subsystems) to go beyond the CubSat concept.

The project is aimed at:

m proving the feasibility of low-cost satellites using COTS (Commercial Off

The Shelf) devices;

m developing a flight model of flexible and reliable nanosatellite with less than
25,000 Euros;

m training students in the field of avionics space systems;

m developing expertise in the field of low-cost avionic systems, both internally
(university staff) and externally (graduated students will bring their expertise
in their future work activity);

m gathering expertise and resources which were available inside our university
around a common high-tech project.

The main idea of AraMiS (acronym for Modular Architecture for Satellites in
Italian) project is the development of distributed and intercommunicating on-board
units, built with COTS components, in order to increase fault tolerance and allow a
graceful performance degradation, while keeping the costs at acceptable levels. The
satellite can use as many basic modules as needed to perform the tasks of the mission.

Since the same module design is used in several satellites, the AraMiS architecture

2

1-Introduction

achieves an effective cost sharing between different missions ['l. Figure 1 below

shows the model of AraMiS.

Figure 1.1 Model of AraMiS

AraMiS has two types tiles outside: power management and telecommunication

(figure 2).

Figure 1.2 Model of telecommunication tile

The telecommunication tile is mostly composed of: 1) a microcontroller-based
programmable transceiver; 2) a modem; 3) a power amplifier (for transmission) and
low-noise amplifiers (for reception); 4) an antenna system.

In order to achieve fault tolerance, two different channels are used, in the bands
allocated by ITU for satellite communications. The first channel lays in the UHF
437MHz band, and the second in the SHF 2.4GHz band. The data contents of the two

1-Introduction

links are equivalent, thus providing two interchangeable possibilities to communicate
with the satellite. To reduce occupied bandwidth, both channels implement an
half-duplex protocol, sharing the same frequency for downlink and uplink.

To avoid the computational overhead of some of the operations required by
AX.25 (scrambling and bit-stuffing), the transceiver of S-Band link uses a modulation
scheme which is not directly compatible with amateur stations while the UHF
downlink is designed to be compatible with the amateur G3RUH packet radio
standard which uses the UI frame defined in the AX.25 standard, following the subset
for APRS.

The task of this final project is to develop the UHF communication subsystem,
both hardware and software. In the following chapters, this thesis will cope with most
procedures of the UHF communication subsystem development process. In chapter 2,
the space radiation effect, which may induce failures of electronic components, will
be presented including radiation source, effect types and mitigation methods. In
chapter 3, the whole hardware structure will be described in details. In chapter 4, we
focus on software part, describing how to transmit and receive AX.25 protocol
packets. In chapter 5, the test process is addressed. Three experiments were designed
to test all functionalities both in hardware and software. In chapter 6, the conclusion is

presented.

2-Space Radiation Effects

Chapter 2
Space Radiation Effects

Since we choose to use COTS components for low cost aspiration, these components
are not space application dedicated and radiation robust. So we need be aware of the
space radiation environment (in particular, Low Earth Orbiting) and the damage
degree induced by the space radiation effects to our system. In this chapter, we discuss
the space radiation environment, how it affects electronic devices and methods to

mitigate these effects.

2.1 Space Radiation Environment [2]

Satellites operate in conditions that are much different from terrestrial weather. The
space environment, just as any environment on Earth, contains phenomena that are
potentially hazardous to humans and technological systems; however, many of these
hazards involve plasmas and higher-energy electrons and ions that are relatively
uncommon within Earth's atmosphere. These hazards exist in broad spatial regions
that change with time. Typical satellite orbits cross many of these regions and spend a
variable amount of time in each.

The space environment is populated with electrons and ionized atoms (ions). The
unit of kinetic energy for these particles is the electron volt. At high energies (millions
of electron volts), these particles have sufficient energy to ionize atoms in materials
through which they propagate. At lower energies (below thousands of electron volts)
their effects range from charge accumulation on surfaces to material degradation.

The space environment changes with time, often in unpredictable and
undiscovered ways, making it a challenge to completely assess the hazards in any

orbit.

2-Space Radiation Effects

Interplanetary Space

The sun and most planets in the solar system generate magnetic fields. The space
outside the local effects of planetary magnetic fields contains its own population of
particles. Several satellites near Earth continuously monitor the intensity of the
particles and electromagnetic fields in interplanetary space. These and other space
probes have shown that the radiation environment in the solar system is highly
variable, but the consistent locations of intense radiation are the planetary
magnetospheres.

For instance, Earth's magnetosphere is a teardrop-shaped cavity formed by the

interaction of the solar wind with earth's magnetic field (figure 2.1).

Figure 2.1 Earth's teardrop-shaped magnetosphere

Solar Wind

Most of the particles in interplanetary space are in the form of a hot, ionized gas
called the solar wind; it flows radially from the sun with a speed at Earth that varies
from about 300 to 1000 kilometers per second, representing a mass loss of about 104

kilograms per day.
Solar Energetic Particles

Many highly variable sources produce interplanetary particles with energies

2-Space Radiation Effects

typically between 10 thousand and 100 million electron volts. These energetic
particles originate in acceleration processes in the solar atmosphere, sometimes close
to the sun and sometimes beyond Earth's orbit. The transient nature of these particle

populations is directly linked to the sun's activity.

Galactic Cosmic Rays

Galactic cosmic rays are the highest-energy particles in the solar system and they

originate somewhere outside the solar system.

Earth's Magnetosphere

Earth's magnetic field establishes a volume of space within which the magnetic
field dominates charged particle motion. Close to Earth, the magnetic field is roughly
a magnetic dipole that is tilted 11.5 degrees from the rotational axis and offset from
the center of the planet. For most purposes, the dipole approximation is poor, and
there are more sophisticated models that account for the steady changes of the central
field as well as the dynamic outer boundaries.

The magnetosphere contains a mixture of plasmas with incredibly diverse
sources. Some populations of charged particles are trapped within the magnetosphere
while others vary on many time scales. The magnetosphere has its own weather, with
complex processes of particle transport and acceleration during geomagnetic storms
that contribute to surface charging and internal charging of spacecraft.

Stable trapping of particles occurs, given the right combination of particle charge,
energy, and magnetic field strength. As these particles are trapped on time scales
ranging from days to years, they execute their gyration, bounce, and drift motions
around Earth, resulting in spatial zones of trapped radiation known as the Van Allen

belts (figure 2.2).

2-Space Radiation Effects

Figure 2.2 Diagram of Van Allen radiation belts

Our satellite will operate in Low Earth Orbiting (LEO), which lies in the inter
zone of the Van Allen radiation belts. The Van Allen radiation belts and typical

satellite orbits are shown in figure 2.3.

Figure 2.3 The Van Allen radiation belts and typical satellite orbits

2-Space Radiation Effects

2.2 Space Radiation Effect

The general radiation effects and their origins are shown in table 1.

Table 2.1 Types of radiation effects and the corresponding originsl?!

Types of radiation effect Origin

Total Ionizing Dose Trapped protons and electrons;

(TID) Solar protons

Single Event Effects Trapped and solar protons; Heavier
(SEE) ions from Galactic cosmic ray and solar

events; Neutrons

Displacement Damage Protons and electrons

Spacecraft Charging Surface for plasma;
Deep dielectric for high energy

electrons

Total Ionizing Dose

When incident radiation enters a semiconductor solid material such as silicon, an
electron—hole pair may be created if an electron in the valence band is excited across
the band gap into the material’s conduction band [#. Electron—hole pairs generated in
the gate oxide of a metal-oxide semiconductor (MOS) device such as a transistor are
quickly separated by the electric field within the space charge region (figure 2.4). The
electrons quickly drift away while the lower-mobility holes drift slowly in the
opposite direction. Digital microcircuits are affected because trapped charge can shift
MOS transistor threshold voltage, which is a key device parameter. Other influences

may be leakage current, timing skew and function failures.

2-Space Radiation Effects

(a) Gate Field
oxide oxide
Source Gate Drain l
]] v
[
|]
I n+ J—T—k n+ S

Conducting inversion channel (positive Vg)

p-type silicon

Substrate

Gate Field
(b) oxide oxide

Source Gate Drain

] i
T | F
]

1
] | + 4+ ++++++ [

N n+ a }‘—"*__\K n+ J
rd
Positive oxide trapped charge Channel turned on with Vg =0

p-type silicon

Substrate

Figure 2.4 Schematic of an n-channel MOSFET illustrating the basic effect of total
ionization induced charging of the gate oxide. Normal operation (a) and post
irradiation (b) show the residual trapped positive charge (holes) that produces a

negative threshold voltage shift

Single Event Effects

If the amount of charge collected at a junction exceeds a threshold, then an SEE
can be initiated. An SEE can be destructive or nondestructive. Destructive effects
result in catastrophic device failure. Nondestructive effects result in loss of data
and/or control. SEEs are generated through several mechanisms. The basic SEE
mechanism occurs when a charged particle travels through the device and loses
energy by ionizing the device material. Other physical charge generation mechanisms
include elastic and inelastic nuclear reactions.

The charge generated by this single strike is collected, producing spurious

voltage on a “sensitive” node that causes a circuit-level effect (figure 2.5).

10

2-Space Radiation Effects

Input
Lowq
Output Vad
L] fﬂ . T
= Off High on
lon
[P+ | [+ | | [P+] In+7
P= n-

i -
A
+
Diffusion

Figure 2.5 Schematic of a heavy ion strike on the cross-section of a bulk CMOS

memory cell

A typical nondestructive case is Single Event Upset (SEU). It is the change of
state of a bistable element, typically a flip-flop or other memory cell, caused by the
impact of an energetic heavy ion or proton. Single Event Latch-up is a typical
destructive case. Integrated circuits fabricated with complementary MOS (CMOS)
fabrication processes are very widely used in space electronics. These chips inherently
include parasitic bipolar junction transistors (BJTs) formed by closely located CMOS
structures that under normal conditions form the integrated circuits n-channel and

p-channel transistors (figure 2.6).

L AN ag R

R

s p-substrate

Figure 2.6 Bulk CMOS inverter architecture cross-section showing the parasitic

bipolar SCR structure that forms, making it susceptible to SEL

Displacement Damage

11

2-Space Radiation Effects

Radiation particle such as electrons, protons and neutrons scatter off lattice ions,

locally deforming material structure (figure 2.7).

5 ® o o

Crystal
lattice

0 0

(Recoil atom)

Q)
@

O Qeflmtsd
ExAL QO QO O
F ® o o o
Otlntermltlan
o @& & i ®

Q e O O
O O O O

Figure 2.7 schematic of atomic displacement damage in crystal solid

The amount of displacement damage is dependent on the incident particle type,

incident particle energy and target material.

2.3 Mitigation Methods

Since we know space radiation effects are very harmful for electronic systems of
spacecrafts, we must apply some mitigation methods. Basically, what we can do are as
follows:

m Limit current or turn off circuits with excessive current consumption

m Turn off devices when not in use

m Part de-rating and increase operating margin

m Shielding

m Change operating schedule in response to space weather

m Radiation-hard parts selection

» Redundancy

m Error detection and correction

= Memory scrubbing

12

3-Hardware Development

Chapter 3

Hardware Development

This chapter discusses the hardware development of UHF communication subsystem
for AraMiS. After evaluating the existed solutions, our choice is presented, describing

components selection, system circuits and interfaces.

3.1 Existing Solutions]

To date, based on the type of hardware used, communication subsystem of
nanosatellites can be categorized into three classes: 1) COTS devices; 2) modified
handhelds; 3) custom hardware.

m COTS devices

Directly purchasing a COTS space-rated transceiver is one choice, which
simplifies design of the subsystem. Most of the protocols and modulations are
proprietary and device specific, requiring an identical radio at the command ground
station. However, this kind device is usually expensive, heavy and big for
nanosatellite.

m Modified handhelds

With this approach, handheld amateur radios are modified to be a
communication subsystem. Amplifier, transceiver and even TNC sometimes are
functionally integrated in one circuit board, which largely simplifies the design
process. But it is hard to fit this kind system which weights a lot and has a large size
into a small space. The power consumption is also an important issue for less ability
to disable individual devices.

m Custom-built

In some projects, people decide to build the whole subsystem out of individual

components. It is hard to get a satisfied performance due to the inherent difficulties of

13

3-Hardware Development

RF board design and time consuming to test, yet it has the most flexibility. Another
obvious advantage is lower power consumption since it can easily enable and disable
individual components. The table (Table 3.1) below shows a summary of different

communication subsystems of some nanosatellite projects.

Table 3.1 Summary of communication subsystem

Project Transceiver Frequency TNC Protocl Baud rate
(MHz) Modulation
AAUI1 Wood & Douglas | 437.475 MX909 AX.25 9600 Baud
SX450 GMSK

DTUsat-1 | RFMD RF2905 437.475 AX.25 2400 Baud FSK

CO-57 Nishi RF Lab 436.845 PIC16C622 AX.25 1200 Baud
AFSK

UWE-1 473.505 Integrated AX.25 1200/9600 Baud
AFSK

CAPE1 CC1020 435.245 PICI16LF452 AX.25 9600 Baud FSK

MAST MicrohardMHX-2400 | 2400 Integrated Proprietary 15 kbps

3.2 Our Solution

To get the compatibility with amateur radios, the UHF communication subsystem
should be capable of transmitting and receiving AX.25 formatted packets. For the
power, cost and weight issues, we cannot just purchase a space-rated transceiver or
modify a handheld. Moreover, for the aim at teaching, we choose to build a custom
system using individual COTS devices, which will be integrated on one small PCB.

The diagram below (figure 3.1) shows the final designed structure.

14

3-Hardware Development

T Power
Amplifier

/

MCU Transceiver [« R Agt\,:i:‘:a

Figure 3.1 Diagram of UHF communication subsystem

This subsystem consists of four parts, MCU (Micro-Control Unit), Transceiver,
PA (power amplifier), and antenna. All the devices are selected from COTS
components. The MCU performs as a real TNC through software to transmit and
receive AX.25 protocol packets and it is controlled by OBC (On-Board Computer). To
save bandwidth, the subsystem works in half-duplex mode. The power amplifier is

disabled to save power when wording in receiving mode.

3.3 Components, Circuits and Interfaces

This section describes the components selections of the communication subsystem in

details. And their interfaces are also presented.

3.3.1 Components selection

Micro-controller Unit (MCU): MSP430F149

The MSP430 is a mixed-signal microcontroller family from Texas Instruments.
Built around a 16-bit CPU, the MSP430 is designed for low cost, and specifically, low
power consumption embedded applications. The electric current drawn in idle mode
can be less than 1 micro amp. TI provides robust design support for the MSP430
microcontroller including technical documents, training, tools, and software, which
decreases design time.

The MSP430x1xx Series is the basic generation without an embedded LCD
controller. These Flash or ROM based Ultra-Low Power MCUs offer 8 MIPS, 1.8-3.6

V operation, up to 60 KB Flash, and a wide range of high-performance analog and

15

3-Hardware Development

intelligent digital peripherals. Its functional block diagram is shown below (figure

3.2).

XN XOuT DVeop DVas Adzz RSTINMI

F__f# _____ 1% °°__A|Vf_LL_L_____g_{_;_%_g_; ______
8 8 a 8 8]

Emulatian
Madule

- L d
A

< MDE. 16-Bit MDB. 8 Bit
Cam v

QUL 0] 0]]

ROSCI—D— Oscillator [ACLK | 80KE Flash| | 2KE RAM ADC12 1o Port 12| | vo Pert 34| | 10 Pon 518
16 1i0s, 16 1I0s 18 I0s
AT2IN Sé’lz‘:;" [SMCLK | 4218 Flash| | 2kB Ram 12-Bit with || 1
XTZOUT I— 8 Channels Interrupt
32KB Flash| | 1kB RAM | |<10us Cony] Capability [H
I Jr 3
| MCLK 1 = s F
| v
| MAB,
I : Test MAB, 16-Bit 4 Bit a2 L
ITAG
| cru [T I MCE
| Incl. 16 Reg| | 1 — 1 |

TMS

Hardware | | | | | | | | | |
TCK Multiplier W?_';::::g | Timer_BT | Timer_AZ POR | Com?:r.:mr] USARTD | USART1
— MPY, MPYS 7CCReg || 2CCReg UART Mode| |UART Mode]
e MAC MACS 15/16-Bit Shadow SPI Mode | | SPI Mode
TDOITDI I Reg

Figure 3.2 Functional block diagram of MSP430x14x!6]

The MSP430149 has two built-in 16-bit timers, a fast 12-bit A/D converter, two
universal serial synchronous/asynchronous communication interfaces (USART), 48
I/O pins, 2 KB RAM and 60 KB Flash. The flash can be easily programmed and

erased through JTAG interface, which make debugging convenient.

Transceiver: Chipcon CC1020

CC1020 is a true single-chip UHF transceiver designed for very low power and
very low voltage wireless applications. The circuit is mainly intended for the ISM
(Industrial, Scientific and Medical) and SRD (Short Range Device) frequency bands
at 402, 424, 426, 429, 433, 447, 449, 469, 868 and 915 MHz, but can easily be
programmed for multi-channel operation at other frequencies in the 402 - 470 and 804
- 940 MHz range. What's more, it is very suitable for narrowband application with
12.5 KHz or 25 KHz channel spacing "),

In typical applications, CC1020 is complied with a micro-controller and only a
few external passive components. The interfaces between CC1020 and the needed

micro-controller are very simple (figure 3.3).

16

-_

3-Hardware Development

PCLK |

PDI < :

PDO A »{ (Optional)

PSEL < Micro-
controller

DIO < >

DCLEK -

LOCK {Optional) q

Figure 3.3 Interface between CC1020 and micro-controller

The main operating parameters including the component values needed for the

input/output matching circuit, the PLL (Phase Locked Loop) loop filter and the LC

filter can be easily generated based the user's

SmartRF® Studio (figure 3.4) provided by Chipcon. And these parameters can be

selections by a software program

programmed through a serial bus interfacing to a micro-controller.

= CCL020 - SmartF Studic

File ¥iew Configurstion Took Help

o0|=E| ®)
— Sysiem palareie: — Comporen! wahie:

ﬂl s leguency m WHz % Jar (™ Eet wio | Malch and LC- e
irfa kel memracy - ,5_ opm Ci foo pgfF i [fgpo rH
fa | RFFreqwency & 4 [6E59150 MHz & Ry T= [|02 MA pF 2 35 rH

g EEnED | g pee 7 ||CF ADD RF
irfo Fieuency ssparclion |4 550 kHz LT Bz ©F #1181 rH
irfo Diata rale I-i-EII kB aud C72 B2 @F
il [Crata foimat MAZ | Fazl % Accirals

fj e o et rfo | PLL bopfer
irfo RF ouipuk power IEI dBm
. i : SeH Rz |22 kOkm Ch 000 nF

| . -

Jrin | Cnems sacing A3 [EA kOhm CT (35000 @
irfin| Modulation [eFsk: =] ¥ Dikerng 08 fooan f
irfio Lock IEmI'ru.l:u: e] Dizgrose
irfio Caniiar 2enss off e IU dE ™ DCLE Souakch = -
== triods [RX El Sler |...|-| —ID

RE5I dHm
— Board Cortiol
AFC kHz
Fmsei I Caiarat= I ead I Disgros= I IF les:tl_ KHz
Sianz iné omation

Topical cumark consumption| 1800000

Lock indicator | Ir hack: 0

Reach

(< chipcon

wiaw.ehipe oh.com

Figure 3.4 SmartRF® Studio user interface

17

-10 3¢

3-Hardware Development

Power Amplifier: RFMD RF2175
This power amplifier has been tested in PiCPot project. By now, we have on

reason to change it.

3.3.2 Circuits Realization

Power Supply

To power the entire subsystem steadily, we use a low current three-terminal
adjustable positive voltage regulator (LM317), which generates a constant output
voltage. The application circuit (figure 3.5) is very simple and only requires two

external resistors to set the output voltage.

H Vol —
CL06n REG_LM317
1L L pur
AVATLE My
R18kK R27K
. I 2 Vi =
CTu

Figure 3.5 LM317 application circuit

The approximation equation to calculate is
Vo”;=1.25><(1+&)
R

Here, R2 and R1 are 27 KQ and 18 K€, respectively. Thus the output voltage is
setto 3.125 V approximately, which is suitable to power the MCU and tranceiver. In

practice, the value is 3.27 V.
18

3-Hardware Development

Connections between MSP430 and CC1020

These connections can be divided into two parts, configuration interface and

lconﬂguration interface

signal interface as shown in Figure 3.6.

/
/
/
~ L

A PSEC]
P PCCK]
POT]

7 Pz
P = e

MSP430 / LLlH) CC1020

/ [DCTK]

signal interface

Figure 3.6 Connections between MSP430F149 and CC1020

The configuration interface performs as a 4-wire SPI bus. When configuring, the
MCU is the master and CC1020 is its slave. In CC1020, there are 8-bit configuration
registers, each addressed by a 7-bit address. A Read/Write bit initiates a read or write
operation.

During each cycle, 16 bits are sent in series following this order: Address (7 bits),
Read/Write (1 bits) and Data (8 bits). During the write cycle, the 16 bits are sent on
the PDI line, and PDI should be configured as output by the MCU. During the read
cycle, the Address bits and Read bit are sent by the MCU firstly on the PDI line, then
CC1020 outputs the corresponding Data 8 bits to the MCU through the PDO line and
PDO should be configured as input by the MCU. Between each read or write cycle,
PSEL must be set high. The write and read operations are illustrated in Figure 3.7 and

Figure 3.8, respectively.

19

3-Hardware Development

TCL: min TCH,min THD TSD

PoL nanhEhGanhhGi
16

i | Address Write mode . | Data byte ¥
Pl 3000880000888 10
PDO
PSEL

Figure 3.7 Configuration registers write operation
TSS THS
— . —
T(:L,l'mn TCH min
PeLk U uduuty
Address Read mode

P 2000000
Data byte i
P00 20008801

PSEL >
T H

5

Figure 3.8 Configuration registers read operation

The signal interface has 2 wires. Here, CC1020 acts as the master and the MCU
is its slave. CC1020 can be configured for three different data formats: synchronous
NRZ (Non-Return to Zero) mode, synchronous Manchester encoding mode and
transparent asynchronous UART mode. We choose to use the synchronous NRZ mode
data format. Both in transmit mode and receive mode, CC1020 provides a clock (9600
bps for us) at DCLK and data at DIO should be always clocked at the rising edge of
DCLK. DIO is used as data input of CC1020 in transmit mode and data output of
CC1020 in receive mode. The whole timing diagrams are shown in Figure 3.9,

demonstrating both transmit and receive processes.

20

3-Hardware Development

Transmitter side:

DCLK Clock provided by CC1020

DIO Data provided by microcontroller

“RF” FSK modulating signal (NRZ),
internal in CC1020

Demodulated signal (NRZ).
internal in CC1020

w TN
sece (LU UUUIUULULLL ctock provicedty cetons
UL

Data provided by CC1020

Figure 3.9 Synchronous NRZ mode Transmit & Receive processes

The clock frequency is decided by CC1020 external oscillator and several related
registers. In our case, we use a 14.7456 MHz (optimum value referring to datasheet)

oscillator and enable CLOCK A register. According to the equation

BaudRate = oo ,
8o (REF _DIV+1)e DIV1e DIV2

we set REF DIV, MCLK DIV1 and MCLK DIV2 of CLOCK A to 1 (001),
48(110), and 2 (01) to get 9600 baud. That means setting register CLOCK A to 0x39.

CC1020 application circuit

To manage CC1020 to work properly, a few external passive components with
fitting values should be mounted besides correct configurations. The values of these
components can be easily calculated with the help of SmartRF® Studio. The

application is shown below (figure 3.10).

21

3-Hardware Development

AVDD=3V

DVDD=3V

99 av

TO
anoa ||l
(4
T
aaav |4

Y|
aaada

€«
"
anov |

OOAY [—

ve

LNO dHY

2 | PDI AVDD |23 hhl;l:po\e
antenna
—3 { ppo AVDD |4
pvpp=3v 1| DGYD RE_OUT [g
T s pvoo 00102 0 AVDD |2 0 AVDD=3V
|| DoND RFIN |18 [:
\||; B = TIR Switch
———I DCK AVDD HE——o AVDD=3v
— & pIO R BIAS (2
F = -
2 g Z u
Ei2zzczi g s
=2 8 5 8 2 % 8
L. = F |5 |= I; Ia = =
AVDD=3V =
XTAL
c4 cs

Figure 3.10 CC1020 application circuit

The circuit is realized identically except omitting the LC Filter part next to T/R
Switch. In this schematic, L1 and CI is the input match for the receiver; L1 is also a
DC choke for biasing;L> and Cs are used to match the transmitter to 50 Q; The PLL
loop filter consists of two resistors (R> and R3) and three capacitors (Ce-cg); An
external crystal with two loading capacitors (C4 and C5) is used for the crystal
oscillator. A very important part which is not shown is power supply decoupling and
filtering capacitors. To get optimum performance for narrowband applications, the
values and positions of these capacitors closely follow the CC1020EMX reference

design, which can be found in TI website.

Antenna Switch

This section of the subsystem includes switch and antenna two parts. Figure 3.11
shows the switch circuit. The switch is actually a relay. Its control part is a MOSFET
switch. The control signal is from the MCU.

The relay has four terminals. The VCC is used to power it. The NC and NO are
used to connect RFIN and RFOUT pins of CC1020 standing for receive and transmit

channel. The COM terminal connects the antenna.

22

3-Hardware Development

relay &47MHz

Sl
S] IU_O
LN COM
—1
g
D WVer A T -]
WIE. Swich 01 Ml |1 Lonfral =
- SRL00K
?
HMOSH
W/
AGND AGND

Figure 3.11 Switch circuit

3.3.3 Interfaces

MCU (MSP430F149) and OBC

The MSP430F149 exchanges data with OBC with a serial bus. On the
micro-controller side, its module USARTO is used. USARTs of MSP430F149 can be
configured to work in UART (Universal Asynchronous Receiver/Transimitter) mode,
SPI (Serial Peripheral Interface) mode, I>’C (Inter-Integrated Circuit) mode or just
basic digital I/O terminalsf®l. In this case, USARTO is working in UART mode. In the
later test procedure, the MCU is connected to PC with a RS232 bus.

The UART block diagram is shown in the figure below (figure 3.5). In UART
mode, the USARTO connects the MSP430 to an external system via two external pins,
URXD and UTXD. And this mode is selected when SYNC bit is cleared also as

shown in the same figure.

23

3-Hardware Development

SWRST URXEx" URXEIE URXWIE

T Tt or
URXIFGx"
FE PE OE BRE Receve Control I—I
Receive Status Receiver Buffer UxRXBUF LISTEM MM SYNC
- : = Bl
RAERR RXWAKE Receiver Shift Register | o H;: SOMI
I
i l F 1 a I [I
S5SEL1 SSELD sp CHAR | PEV PENA I URXD
|
UCLKS "—:—d"-'o(_l
UCLKl 0 Baud-Rats Generator | 0
! 5
ACLE — I TE
SMOLE - Prescaler/Divider UxBRx I
1
SMELE — Modulator UMCTL I
poator : UTHD
5P CHAR PEV PEMA : """""
1
1 T.r T :
1
WuT Transmit Shift Register I | SIMO
L
4 0|
TXWAKE Transmit Buffer LiTXBUF Poo
I
1
UTXIFG" :
Transmit Control :
1 1 1 SYNC CKPH CKPL i
SWRST UTHEx" TXEPT STC T : UCLE
U%H Clock Phase and Polarity -I—(:)

Figure 3.12 USART block diagram (UART mode)

The UART character format, shown in Figure 3.6, consists of a start bit, seven or
eight data bits, an even/odd/no parity bit, an address bit (address-bit mode), and one
or two stop bits. The bit period is defined by the selected clock source and setup of the
baud rate registers. Timing for each character is based on the selected baud rate of the

USART.

—|ST|DD ese DE‘D?|AD‘F\A|5PISP_I|_ S— :;::e

L [2nd Stop Bit, SP = 1]
[Parity Bit, PENA = 1]

[Address Bit, MM = 1]
[Optional Bit, ConditIOH]| [8th Data Bit, CHAR = 1]

Figure3.13 Date format of UART mode

To select baud rate in UART mode, what we need to do is to configure the 16-bit
register storing an integer N. The register is actually the combination of two 8-bit

registers, UOBRO storing 8 LSB (Least Significant Bit) and UOBR1 storing 8 MSB
24

3-Hardware Development

(Most Significant Bit).

e BRCLK
PBaudRate

where BRCLK the frequency of the crystal oscillator of the micro-controller and

[] means just taking the integral part.

For instance, if BRCLK is 4 MHz and baud rate is 9600 bps, N should be 416.

0x03 to UOBRO and UOBRI1, respectively.

And 416 is 0x01A0, thus UOBRO should be configured to be 0OxAO0 and UOBRO
should be configured to be 0x01. When BRCLK is 8 MHz, we should write 0x41 and

To manage the UARTO module to work properly, besides UOBRO and UOBRI1,

stop bit data format.

there are other registers must be written into right values to implement selected
functions. Table 3.2 shows these kind registers and their proper values for our case.

Our main specification is 9600 baud; UART mode and no parity, 8 bits length and 1

Table 3.2 USARTO control and status registers

Register Short Form Configuration Value
Pin selection P3SEL 0x30

USART control UOCTL 0x10

Transmit control UOTCTL 0x39

Modulation control UOMCTL 0x00

Baud rate control 0 UOBRO 0x03

Baud rate control 1 UOBR1 0x41

SFR module enable ME1 0xCO0

MCU and CC1020

As referred before, interfaces between can be divided into two parts,

The advantages are:

3.3.2. Here, we just give the cons and pros of SPI bus.

25

configuration interface and signal interface. Connection details can be referred to

3-Hardware Development

Full duplex communication

Higher throughput than I°C or SMBus

Complete protocol flexibility for the bits transferred

Not limited to 8-bit words

Arbitrary choice of message size, content, and purpose

Extremely simple hardware interfacing

Typically lower power requirements than I°C or SMBus due to less circuitry
(including pullups)

No arbitration or associated failure modes

Slaves use the master's clock, and don't need precision oscillators

Slaves don't need a unique address -- unlike I?°C or GPIB or SCSI

Wires in board layouts or connectors, much less than parallel interfaces

At most one "unique" bus signal per device (chip select); all others are shared

Signals are unidirectional allowing for easy Galvanic isolation

The disadvantages are:

Requires more pins on IC packages than I?C, even in the "3-Wire" variant

No in-band addressing; out-of-band chip select signals are required on shared
buses

No hardware flow control (but master can delay the next clock edge to slow
the transfer rate)

No hardware slave acknowledgment (the master could be "talking" to
nothing and not know it)

Only handles short distances compared to RS-232, RS-485, or CAN-bus
Supports only one master device

No error-checking protocol is defined

Generally prone to noise spikes causing faulty communication

Without a formal standard, validating conformance is not possible

The following section only describe signal interface for further. The

micro-controller uses P5.2 and P5.3 to communicate with DCLK and DIO of CC1020.

Port 5 is actually the USART1 module of MSP430F149. And USART]1 is configured

26

/wiki/Full_duplex
/wiki/I%C3%82%C2%B2C
/wiki/System_Management_Bus
/wiki/Address_space
/wiki/I%C3%82%C2%B2C
/wiki/GPIB
/wiki/SCSI
/wiki/Galvanic_isolation
/wiki/I%C3%82%C2%B2C
/wiki/Chip_select
/wiki/Flow_control
/wiki/RS-232
/wiki/RS-485
/wiki/CAN-bus

3-Hardware Development

differently in different communication subsystem working modes (transmit or
receive).

1) Transmit Mode

As mentioned before, USARTs of MSP430 can operate in four modes. When the
whole subsystem is working in transmit mode, USART1 operates in SPI mode (so
SYNC is set high) and performs as a slave while CC1020 works as an external master.

The configuration is shown in Figure 3.14.

MASTER SIMO SIMO SLAVE

SPI Receive Buffer Transmit Buffer UxTXBUF Receive Buffer UxRXBUF

v
w
et
m

Px.x

55

STE Port.x

A

] i SOM| SoMI o i) ;
- Data Shift Register DSR < Transmit Shift Register Receive Shift Register |-
MSB LSB MSB LSB MSB LSB
SCLK > UCLK
COMMON SPI MSP430 USART

Figure 3.14 USART]1 Slave and SPI mode

UCLK is used as the input for the SPI clock and must be supplied by the external
master CC1020. The data-transfer rate is determined by this clock and not by the
internal baud rate generator of USARTI, thus there is no need to configure registers
U1BRO and U1BRI1. Typical applications are 3 or 4 wires connections, but here only
SOMI and UCLK are needed for we just have one slave and always enabling transmit
or receive operations between the MCU and CC1020.

The polarity and phase of UCLK are independently configured via the CKPL and
CKPH control bits of the USART. Timing for each case is shown in Figure 3.15.

27

3-Hardware Development

CKOPH CZPL UCLK _.J,__/__f,__/__/__/__/__/___
0 1 vk \ /W VW WS WS
oo owex | SN/ VSV VW
T vk 1\ W W W\ S

STE \ [
T) G S) GR S) G G

10X Ss"c\)ﬂ IE X X X X X X LsB

Move to UxTxBUF |

TX Data Shifted Out

RX Sample Points I I I I I I I I

Figure 3.15 USART SPI timing

We configure CKPH and CKPL to be 0 and 1 to let TX data shifted out at the
falling edge. Still, we need to configure control and status registers properly (Table

3.3).

Table 3.3 UART1 control and status registers

Register Short Form Configuration Value
Pin selection P5SSEL 0x0E
USART control UICTL 0x14
Transmit control UITCTL 0x83
Modulation control UIMCTL 0x00
SFR module enable ME2 0x10

2) Receive mode

When the subsystem is working in receive mode, the module function of Port 5
is disabled which means P5.0-P5.7 performs as normal I/O pins. This can be easily
done by configuring ME2 as 0x00. Both UCLK and SOMI should be configured as
input.

Since Port 5 performs as digital I/O, registers PSIN, PSOUT, P5SDIR and P5SSEL
are useful. Each bit in P5SIN register reflects the value of input signal of the

corresponding I/O pin. Bit 0 means that input is low and bit 1 means that input is high.

28

3-Hardware Development

Each bit in PSOUT is the output signal on the corresponding pin when the pin is
configured as output direction. Each pin's direction is decided by the corresponding
bit stored in PSDIR. Bit 0 means input direction and bit 1 means output direction.
Because port pins are often multiplexed with other peripheral module functions,
PxSELs are used to enable or disable I/O function of each pin. Bit 0 means enabling
I/O function and bit 1 stands for peripheral module function.

Here, we only use P5.2 (UCLK) and P5.3 (SOMI) of MSP430F149. It is receive
mode. So, both UCLK and SOMI should be configured as I/O function and input
direction. Through the software, write both PSSEL and P5SDIR as 0x00, respectively.
At the same time, ME2 is set to 0x00 to disable module function and UICTL is also
reset by software to disable SPI.

Unused I/O pins should be configured as I/O function, output direction, and left

unconnected on the board to reduce power consumption.

29

4-Software Development

Chapter 4

Software Development

This chapter presents the details of software development. Since the UHF
communication is dedicated to be compatible with amateur radios, AX.25 protocol
and G3RUH packet radio standard (a standard way to scramble and descramble
amateur radio packets) are addressed first of all. Then, modules realized by software
and their relations are discussed. And the final section provides descriptions of

functions of all modules.

4.1 AX.25 protocol and G3RUH standard

To design a UHF communication subsystem compatible with amateur radios so that
every amateur radio over the world can communicate with AraMiS, the software must
be capable of transmit and receive AX.25 protocol packets. The radio we are using is
PKO96 and it is based on the G3RUH packet radio standard. Thus the transmit and

receive methods are coherent to this standard.

4.1.1 AX.25 protocol

AX.25 is a data link layer protocol derived from the X.25 protocol suite and
designed for use by amateur radio operators. It is used extensively on amateur packet
radio networks. The AX.25 version 2.2 Link-Layer Protocol provides this service,
independent of the existence of any upper layer.

Most link-layer protocols assume that one primary (or master) device (generally
called a Data Communication Equipment, or DCE), is connected to one or more
secondary (or slave) device(s) (usually called a Data Terminating Equipment, or DTE).
This type of unbalanced operation is not practical in a shared RF amateur radio

environment. Instead, AX.25 assumes that both ends of the link are of the same class,

30

4-Software Development

thereby eliminating the two different classes of devices. In this protocol specification,
the phrase Terminal Node Controller (TNC) refers to the balanced type of device
found in amateur packet radio [°!.

Link layer packet radio transmissions are sent in small blocks of data, called
frames. There are three general types of AX.25 frames: 1) Information frame (I frame);
2) Supervisory frame (S frame); and 3) Unnumbered frame (U frame). Each frame is
made up of several smaller groups, called fields. Figures 4.1 and 4.2 illustrate the

three basic types of frames.

Flag Address Control Info FCS Flag
01111110 | 112/224 Bits| 8/16 Bits N*g Bits 16 Bits 01111110
Figure 4.1 U and S frame construction
Flag Address Control PID Info FCS Flag
01111110 |112/224 Bits| 8/16 Bits 8 Bits N*8 Bits 16 Bits 01111110

Figure 4.2 Information frame construction

In the two figures, FCS i1s Frame Check Sequence field and PID is Protocol
Identifier field. All fields except the Frame Check Sequence (FCS) are transmitted
low-order bit first. FCS is transmitted bit 15 first. The following section describes

each field in details.

Flag Field

To avoid overruns and data losses, the flag field is needed to distinguish every
frame. It is one octet long. Because the flag delimits frames, it occurs at both the
beginning and end of each frame. Two frames may share one flag, which would
denote the end of the first frame and the start of the next frame. A flag consists of a
zero followed by six ones followed by another zero, or 01111110 (7E hex). As a result
of bit stuffing, this sequence is not allowed to occur anywhere else inside a complete
frame.

Flags are sent over and over again when no data are transmitting. For instance,

when you set the TXdelay on your TNC to some value, it sends flags (7E's) over and

31

4-Software Development

over again for that period. These flags provide the receiver with a clear indication of

when one packet has ended and the next is beginning.

Address Field

The address field identifies both the source of the frame and its destination.
Optionally, it also consists of two Data Link Layer repeater sub-fields. Each sub-field
consists of an amateur callsign and a Secondary Station Identifier (SSID). The
call-sign is made up of upper-case alpha and numeric ASCII characters only. The
SSID is a four-bit integer that uniquely identifies multiple stations using the same
amateur call-sign.

The HDLC address field is extended beyond one octet by assigning the
least-significant bit of each octet to be an "extension bit". The extension bit of each
octet is set to "O" to indicate the next octet contains more address information, or to
"1", to indicate that this is the last octet of the HDLC address field. To make room for
this extension bit, the amateur radio call- sign information is shifted one bit left.

Reference 9 section 3.12 details the address field encoding.

Control Field

The control field identifies with one or two octets in length the type of frame
being passed and controls several attributes of the Data Link Layer connection. This
field in AX.25 are modeled after the ISO HDLC balanced operation control fields.

Figures 4.3 and 4.4 illustrate the basic format of the control field associated with
each of AX.25 three types of frames. The control field can be one or two octets long
and may use sequence numbers to maintain link integrity. These sequence numbers

may be three-bit (modulo 8) or seven-bit (modulo 128) integers.

32

4-Software Development

Control-Field Bits
Control Field Type

76 5413210
I Frame N(R) P N(ES) |0
S Frame N{R) |PF|S S 01
U Frame MMMI|PFIM M1 1

Figure 4.3 Control field formats (modulo 8)

Control-Field Bits
Control Field Type

1514131211109 | 8 |76 543210

I Frame N(R) P N(S) 0
S Frame N(R) PFIOOOOSSO01

Figure 4.4 Control field formats (modulo 128)

PID Field
The Protocol Identifier (PID) field appears in information frames (I and UI) only.
It identifies which kind of Layer 3 (Network Layer) protocol, if any, is in use. The

PID itself is not included as part of the octet count of the information field. The

encoding of the PID is as follows (Figure 4.5):

33

4-Software Development

M L
HEX g 8 Translation
B B
wE yv0lyvyy AX 25 layer 3 implemented.
i yyl0vyyy AX 25 layer 3 implemented.
0x01 00000001 ISO 8208/CCITT X 25 PLP
Compressed TCP/IP packet.
0x06 00000110 Van Jacobson (RFC 1144)
Uncompressed TCP/IP packet.
0x07 00000111 Van Jacobson (RFC 1144)
0x08 00001000 Segmentation fragment
0xC3 11000011 TEXNET datagram protocol
0xC4 11000100 Link Quality Protocol
0xCA 11001010 Appletalk
0xCB 11001011 Appletalk ARP
0=xCC 11001100 ARPA Internet Protocol
0xCD 11001101 ARPA Address resolution
0xCE 11001110 FlexNet
0xCF 11001111 NET/ROM
0xFO 11110000 No layer 3 protocol implemented.
Escape character. Next octet
0xFF 11111111 contams more Level 3 protocol
information.
Escape character. Next octet
contains more Level 3 00001000
protocol information.

Figure 4.5 PID definition'

Information Field

This field is where the users' data locates. The Information field is allowed only
in these five types of frames: the I frame, the Ul frame, the XID frame, the TEST
frame and the FRMR frame. The default length of this field is 256 octets. Any
information in the Information field is passed along the link transparently, except for
the zero-bit insertion (Bit Stuffing) necessary to prevent flags from accidentally

appearing in the Information field.

! An “Y” indicates all combinations used.

34

4-Software Development

Frame Check Sequence

The Frame-Check Sequence (FCS) is a sixteen-bit number calculated by both the
sender and the receiver of a frame. It is computed over the Address, Control, and
Information fields. It provides a method by which the receiver can detect errors that
may have been induced during the transmission of the frame, such as lost bits, flipped
bits, and extraneous bits.

In practical applications, FCS is more preferred to be CRC (Cyclic Redundancy
Check).

4.1.2 HDLC encoding Polynomial scrambling/descrambling

The main concepts addressed in this sub-section are HDLC encoding and LFSR
(Linear Feedback Shifted Register) scrambling and descrambling which is called
G3RUH standard named by James miller.

4.1.2.1 Transmit AX.25 packets

Before the data is sent out, it is handled by these procedures: NRZ encoding, bit
stuffing, polynomial scrambling and frame delimiting.

NRZI encoding

In NRZI (Non-Return to Zero Inverse) encoding, a zero is transmitted by a
change in the output, while a one is sent by no change in the output. This is illustrated

in Figure 4.6.

Input bit stream 1 0 0 1 1 0 0 1

Output
waveforms

o
—

L

I
—

L

no change —
change —e
change —e
no change —&
no change —
change —&
change —»
no change —e
change —»
no change —&

Figure 4.6 NRZI encoding
35

4-Software Development

Bit stuffing

There is an obvious weakness of NRZI encoding that if there are too many one
bits in a row, a DC component is needed for transmission. And this is not reliable for
reception to recovery the timing of each bit. The solution of usual stream-oriented
data transmission schemes is bit stuffing. That is if too many bits of one kind appear
in a row, insert a bit of the other kind on transmission, and remove it on reception.
The process is shown in Figure 4.7. In this standard, only maximum five consecutive
one are allowed in a row. When the sixth one occurs, insert a zero before the one bit

on transmission and remove the zero on reception.

Input bit stream 10 1 1 1 1 1 1 1 1 0
Output waveform [L
Output bit stream 1 01 1 1 1 1 0 1 1 1 0

4
Y,

Zero inserted ——

Figure 4.7 bit stuffing process

Frame delimiting
HDLC indicates the beginning and end of a frame with a bit pattern (preferred to
call flag) that is not permitted in user data: the octet 0x7e. And this pattern is not the

subject of bit stuffing.

Polynomial scrambling
Polynomial scrambling is a typical modem function to handle transmitted data.
The process of scrambling the data enhances its transmission in several ways:
m An increased density of transitions further eases timing recovery.
m An increased density of transitions further reduces the low frequency
bandwidth requirements of the system.
m The pseudo-random nature of the scrambled data renders the transmitted

spectrum noise-like, with no spectral lines that could interfere with other

36

4-Software Development

services in shared spectrum allocations.

The standard 9600 baud modem is designed by James Miller and use polynomial
scrambling. Its polynomial is 1+X!'>+X!7. And this design is named by his amateur
radio call-sign G3RUH. The scrambling process using LFSR is shown in the figure
below (Figure 4.8).

Output

Figure 4.8 polynomial scrambler in G3RUH modem

The original implementation was built with discreet logic shift registers and
exclusive-OR gates. Modern implementations use programmable logic or perform

these operations in software.

4.1.2.2 Receive AX.25 packets

On reception, it is merely the reverse process of transmission: descrambling,
flags eliminating, skipping bit stuffing zero and recovery from NRZI encoding.

The scrambling and descrambling work in the same way. The scrambling divides
the bit sequence by the polynomial, while the descrambling multiplies the same
polynomial illustrated in Figure 4.9.

1 12 2l

Input
—{ [[[T [TTTTTITI]T]

}""\\ Output
+ —

P 4

Figure 4.9 polynomial descrambler in the G3RUH modem

37

4-Software Development

4.2 Software modules

The communication software is implemented in the C language with IAR Embedded
Workbench provided by TI Company. The source codes are structured as a set of
functionality modules required by the communication subsystem. Table 4.1 gives a

brief description of each module.

Table 4.1 software module brief description

File Description

main.c Implement the communication controller main processing loop
CC1020.c Implement the CC1020 transceiver interfaces

AX25.c Implement the TNC functionality in software

uart.c Implement the UART functionality in software

SPl.c Implement the SPI bus interface

timer.c Implement a timer functionality

The relations between each software module are shown in the block diagram

below (Figure 4.10).

‘I CC1020.C \’
|]

SPl.c main.c H AX25.c

uart.c

Figure 4.10 relations between each software module

38

4-Software Development

4.3 Functionality description

The section provides the details of every functionality file of the software design. The

full source codes are available in Appendix A except CC1020 software module.

4.3.1 Main communication Control (main.c)

The behavior of the UHF communication subsystem is very simple. The entire
loop process is illustrated in Figure 4.11.

After initialization, the system calls functions in uart.c to receive commands
from the OBC. There will be three states to handle. If it is a transmit command,
configure the whole system in transmit mode, especially the transceiver with
functions in CC1020.c. The transmission process calls functions from AX25.c which
performs as a real TNC. After that, go back to the beginning of the whole loop.
Provided that a receive command, configure the system in receive mode and begin to
receive packets. There are three cases to end the reception: timeout, Non-valid CRC
and full valid packet. Then, go back to the beginning of the loop. If the command is a
order to generate a carrier, configure properly and send a carrier in some time and
then go back to the loop beginning. If no valid command is got from the OBC, the
software will keep listening and all other parts like transceiver and power amplifier

are in power-down mode to save power.

39

4-Software Development

Initialization

.,_lyeceive command from OBC
Mo valid Command

Command? -
T T~Rx
7 ICarrier I
o Wy R
Transmit Carrier Receive
_— /x/
_ "~-_\\H timeout /”/
transmission ™ _ N ’,/’ timeout/non-valid
done . e CRC/ull packet
N End &

Figure 4.11 main.c loop behaviour

After whatever transmission, generating carrier or reception, the system will
disable the transceiver right now to save power. Before this, bus terminals' module

functions are also disabled.

4.3.2 Transceiver interface (CC1020.c)

The CC1020 is a highly programmable device. Using its programming bus (SPI),
the carrier frequency and power consumption levels can be set, the PLL can be
re-calibrated, and switching between transmit and receive modes is easy to be done.
This programmability is achieved through the 8-bit registers built in the CC1020 itself.
These registers control every aspect of the operations of the CC1020 and are fully
programmable though the programming bus.

The CC1020.c file includes all functions to configure or read status from the
control registers. The main functions are as the following:

m void CC1020 SetReg(char registro, char dato)

The basic function to configure one certain register of CC1020.

m char CC1020 ReadReg(char registro)

The basic function to read value from a certain register of CC1020.

40

4-Software Development

m void CC1020 Init(void)
Configure the interface pins (PSEL, PDI, PDO, PCLK) in order to proceed
the working configurations of CC1020.
m char CC1020_Reset(void)
Configure the registers of CC1020 with default values.
m void CC1020 WakeUpToTX(char txanalog)

Configure the register ANALOG to wake up the CC1020 to transmit data by
switching on the quartz, bias generator and frequency synthesizer. Before starting bias
generator, the quartz needs 2-5 ms to get stabilization. Otherwise, functionality failure
will be induced. Another 150 ms should be set between the power generator and the
bias of the synthesizer to hang up the PLL.

m char CC1020_Calibrate(char pa_power)
Ensure the PLL working properly while PA should be off.
m char CC1020 SetupTX(char txanalog, char pa_power)
Configure the registers ANALOG and PA Power which control the PLL and
output power respectively. After calling this function, the system is ready to transmit.
m void CC1020_ SetupPD(void)
After transmission, disable the internal power amplifier.
m char CC1020 Config X?(void)

Configure the registers of CC1020 to control frequency used, desired output

power, baud rate, modulation type and other parameters of the subsystem.
m void CC1020 WakeUpToRX(char RXANALOG)

Configure the register ANALOG to wake up the CC1020 to receive data by
switching on the quartz, bias generator and frequency synthesizer. Before starting bias
generator, the quartz needs 2-5 ms to get stabilization. Otherwise, functionality failure
will be induced. Another 150 ms should be set between the power generator and the
bias of the synthesizer to hang up the PLL.

m char CC1020_SetUpToRX(char RXANALOG, char PA POWER)

2 X stands for Carrier, Tx and Rx three cases.

41

4-Software Development

Configure the registers ANALOG and PA Power which control the PLL and
output power respectively. After calling this function, the system is ready to receive.

These functionalities are just indicated by their names. Most functionality like
initialization and configuration of transmit or receive is highly abstracted. But the

ability to read or write an individual register is also available.

4.3.3 Software TNC (AX25.¢)

This file realizes the functionality of a real TNC based on the G3RUH standard.
There are two main functions, void AX25 SendPacket(unsigned char * packet,
unsigned int packet len) and unsigned int AX25 ReceivePacket(unsigned char *data),
which are used in transmit mode and receive mode separately. Every bit both in
transmission and reception are handled as AX.25 protocol, HDLC encoding and
G3RUH standard require. The transmission and reception process are shown

correspondingly in Figure 4.12 and Figure 4.13.

42

4-Software Development

|FCS caculation

TX_FLAG

send flags

TX_PROLOGO

send prologo

TX_DATA

send data

TX.FCS

send FCS

TX_FLAG

| send flags

) -

Fa

[TX_END |

Figure 4.12 software TNC transmission process

43

4-Software Development

I\-_

Check_Flag

Data_Rx

!

o

<__Flag or Valid CRC

timeout Yes

!

III.-c:"“‘ffaIid Packet Length

——

e 5 \\/’/ Mo
return packet return NULL

N —— /
W >
N B

Figure 4.13 software TNC reception process

One thing should be referred is the FCS calculation. A Frame Check Sequence
(FCS) refers to the extra checksum characters added to a frame in a communication
protocol for error detection and correction. All frames and the bits, bytes, and fields

contained within them, are susceptible to errors from a variety of sources. The FCS

44

4-Software Development

field contains a number that is calculated by the source node based on the data in the
frame. This number is added to the end of a frame that is sent. When the destination
node receives the frame the FCS number is recalculated and compared with the FCS
number included in the frame. If the two numbers are different, an error is assumed,
the frame is discarded. The sending host computes a checksum on the entire frame
and appends this as a trailer to the data. The receiving host computes the checksum on
the frame using the same algorithm, and compares it to the received FCS. This way it
can detect whether any data was lost or altered in transit. The FCS is transmitted in
such a way that the receiver computes a running sum over the entire frame, including
the trailing FCS, and expects to see a fixed result when it is correct.
The Frame Check Sequence can use a number of different methods; however
these are the most popular:
s CRC - Cyclic redundancy Check — Polynomial calculations are performed on
the data
m Two Dimensional Parity — Uses a parity bit to make sure the data has not
been corrupted.
m Checksum — Sums the data to arrive at a total.
Most people prefer to use the CRC method. The figure below shows the
hardware (Figure 4.14) in a real TNC (PK96) with which to generate FCS of a packet.

Figure 4.14 CRC calculation hardware of PK96

In our software, we use the bye-wise CRC-16 polynomial method. This method
is a byte-wise CRC calculation which can handle 8 bits at once and it is almost four
times faster than a bit-oriented calculation!'”). And the drawback is more memory
needed. The implemented polynomial is X'6+X!2+X5+X as well and the look-up table

1s shown in Table 4.2.

45

4-Software Development

Table 4.2 look-up table for CRC calculation

0x0000 0x1189 0x2312 0x329b 0x4624 O0xb7ad 0x6536 0x74bf
0x8c48 0x9dcl Oxafba O0xbed3 Oxcabc O0xdbeb 0xe97e O0xf8f7
0x1081 0x0108 0x3393 0x221a 0xb6ab 0x472c¢ 0x75b7 0x643e
0x9cc9 0x8d40 Oxbfdb O0xaeb2 Oxdaed Oxcb64 O0xf9ff 0xe876
0x2102 0x308b 0x0210 0x1399 0x6726 O0x76af 0x4434 0x55bd
Oxad4a Oxbcc3d 0x8eb8 0x9fdl Oxebbe O0xfae7? O0xc87c 0xd9fbh
0x3183 0x200a 0x1291 0x0318 O0x77a7 0x662e 0x54bb 0x453c
Oxbdcbh Oxac42 0x9ed9 0x8f50 Oxfbef O0Oxeab6 0xd8fd 0xc974
0x4204 0xb38d 0x6116 0x709f 0x0420 O0x15a9 0x2732 0x36bb
Oxcedc Oxdfch Oxedbe O0xfcd7 0x8868 0x99el Oxab7a Oxbaf3
0xb285 0x430c 0x7197 0x60le O0xl4al 0x0528 0x37b3 0x263a
Oxdecd O0Oxcf44 Oxfddf Oxecb6 0x98e9 0x8960 O0xbbfb 0xaa72
0x6306 0x728f 0x4014 0x519d 0x2522 O0x34ab 0x0630 0x17b9
Oxefde Oxfec7 Oxccbc 0xdddb O0xa96a 0xb8e3 0x8a78 0x9bfl
0x7387 0x620e 0x5095 0x41lc 0x3bad 0x242a 0x16bl 0x0738
Oxffcf Oxee46 Oxdcdd O0Oxcdb4 O0xb9eb 0xa862 0x9af9 0x8b70
0x8408 0x9581 Oxa7la 0xb693 O0xc22c¢ 0xd3ab Oxel3de 0xfOb7
0x0840 0x19c9 0x2bb2 O0x3adb O0x4e64 O0xbfed 0x6d76 Ox7cff
0x9489 0x8500 0xb79b 0xa612 O0xd2ad 0xc324 O0xflbf 0xe036
0x18cl 0x0948 0x3bd3 0x2aba O0xbeeb O0x4f6c 0x7df7 O0x6¢Te
Oxab0a 0xb483 0x8618 0x9791 O0xed2e O0xf2a7 O0xc03c 0xdlbb
0x2942 0x38cb 0x0ab0 O0x1bd9 0x6f66 0x7eef 0x4c74 0xbdfd
0xbb8b 0xa402 0x9699 0x8710 O0xf3af O0xe226 0xdObd O0xcl34
0x39c3 0x284a Oxladl O0x0bb8 O0x7fe7 O0x6ebe 0xbcfbh 0x4d7c
0xc60c 0xd785 Oxeble 0xf497 0x8028 0x9lal O0xa33a 0xb2b3
0Ox4a44 O0Oxbbcd 0x6956 0x78df 0x0c60 O0xlde9 O0x2f72 O0x3efb
0xd68d 0xc704 O0xfbH9f 0Oxedl6 0x90a9 0x8120 0xb3bb 0xa232
Oxbach O0x4b4c 0x79d7 0x685e Oxlcel 0x0d68 0x3ff3 0x2e7a
Oxe70e O0xf687 Oxcdlc 0xdb95 OxalZ2a 0Oxb0a3 0x8238 0x93bl
0x6b46 Ox7acf 0x4854 0x59dd 0x2d62 O0x3ceb 0x0e70 0x1ff9
0xf78f 0xe606 0xd49d Oxcbl4 Oxblab 0xa022 0x92b9 0x8330
0x7bc7 Oxb6ade 0xb8db 0x495¢c 0x3ded O0x2cba Oxlefl 0x0f78

The calculation procedures are as the following:

1. Initial the FCS with OXFFFF;

2. Exclusive-OR the new input byte with the least significant byte of FCS, and
use the result as the index to get values from the look-up table;

3. FCS shifts 8 bits to the right

4. Exclusive-OR FCS with the new value got from the look-up table;

46

4-Software Development

5. Repeat the steps from 1 to 4 for all data bytes.

4.3.4 Timer (timer.c)

In this file, the function void TIMER SetupTimer ms(short volatile *semaforo)
realizes a timer functionality with the ms-wise counter. void TIMER Wait ms(short
volatile semaforo) and void TIMER Wait us(short volatile semaforo) are used to be

waiting cycles whose time units are ms and us separately.

4.3.5 Data interface (uart.c)

Functions used to communicate with OBC are defined in this file.
m void UART Init(void);
Function that enables the module USARTO of the micro-controller.
Character attributes and baud rate are defined.
s void UART SendByte (unsigned char data);
Function that allows to transmit a byte to USART.
» unsigned char UART ReceiveByte (void);
Function that allows USART to receive a byte.
m void printUART (unsigned char *message);
Function whose purpose is to print the whole message through the RS232
serial bus.
m unsigned char CRC(unsigned char *pDato, unsigned short dim);
Function which is used to calculate CRC of transmitted or received packets.
» unsigned char UART ReceivePacket(unsigned char *pDato);
Function that allows USART to receive a packet which can be more than
one byte.
» unsigned char uart SendPacket(unsigned char *pDato);

Function that allows to transmit more than one byte data to USART.

47

4-Software Development

4.3.6 Configuration interface (SPI.c)

Functions used for USARTO in SPI mode which performs as a SPI bus to
configure the registers of CC1020 are defined in this file.
m void SPI Init(void)
Configure the port of USARTO to work in SPI mode. The character
attributes, baud rate and other parameters are defined.
m void SPI Disable(void)
Function that disables the module functionality of USARTO and enables the
digital I/O functions of the corresponding port.
» void SPI_SendByte (unsigned char data)
Function that transmits character from RXTXData buffer.
m unsigned char SPI ReceiveByte (void)
Function that receive character from RXTXData buffer.
m void SPI_ResetBit (void)
Reset bit transmission counter.
m void SPI SendBit (unsigned char data)

Function that transmits character from RXTXData buffer bit by bit.

48

5-Realization and Test

Chapter 5

Realization and Test

This chapter addresses the PCB realization of the communication subsystem and

experiments established to test all functionalities.

5.1 PCB realization

To design and realize a PCB, the main following procedures can be followed with the
help of the software Mentor Graphics:

m Create a components library with Library Manager;

m Draw and verify schematics with Design Capture;

m Produce PCB layout and optimize connections with Expedition PCB;

m Generate Gerber files used for manufactures.

The symbols and cells of each component are defined in the overall library of the
AraMis project, serving for the schematics and layouts design.

Figure 5.1 shows the final PCB layout of the UHF communication subsystem.
From this layout, we can easily find the 32-pin CC1020 and below the transceiver, it
is the 64-pin micro-controller MSP430F149. The LM317 is on the left side of the
MCU and the position to place the antenna is above th transceiver, which has 5
terminals to solder.

Figure 5.2 shows the PCB in kind, which is a realization of a former version
layout. And we built two prototypes of the communication subsystem with this kind

board.

49

5-Realization and Test

Figure 5.1 PCB layout

50

5-Realization and Test

“IxRx CC1020 ¥ 1.0

o

@ N3130 — 0L170d

BZ/9

£BBZ-

co4 .
caez R381 capy

Fig2 |
R302 Ri@1

CrfuUZer micro

WA !
‘ B SRR
LR «,."1.‘.1"‘-5;1\;‘9.&%:'3&3&% ‘ﬁ’&%.s:'l-.s‘

Figure 5.3 a realization of layout

5.2 Experiments for test

To evaluate the functionalities of the whole system in both hardware and software, we

have designed and completed some experiments. These equipment and software are

used in the test:

Hardware

PC DC power supply (GPC-3030D)
Oscilloscope (ADS7102C) Radio (YAESU FT-847)

TNC (PK96) 2 evaluation boards

RS233 cable and USB adaptor Spectrum Analyzer

Soldering equipments

Software

IAR Embedded Workbench RealTerm

Control panel software

51

5-Realization and Test

A brief description is presented in the following table (Table 5.1).

Table 5.1 brief description of experiments

Experiment Descriptions
#1 Transparent data transmission and reception to test hardware
#2 Predefined AX.25 packet transmission and reception to test the
software TNC
#3 Communication with amateur radio

The section below gives the details of these three test experiments.

Experiment # 1

The goal of this experiment is to test the fundamental hardware functionality that
if the subsystem can transmit and receive properly. The communication is done
between the two evaluation boards which both are the prototypes of the
communication subsystem, built with the same components. The data is transparent,
which means that it is not encoded on transmission so that there is no need to decode
it.

,,,,,, 0101010101010 0101010101010 Debug interface

MSP430F149 CC1020 CC1020 MSP430F149 PC

|— DC Power J Data interface

Figure 5.2 experiment 1 construction

Figure 5.2 shows the construction of this experiment. The debug interface is a
JTAG port to program the micro-controller with the JAR Embedded Workbench
software and the data interface is a RS232 serial bus through which the commands
from PC are sent to the micro-controller and all information can be sent back using
the USART1 module functionality.

One board runs automatically and is not controlled manually. It keeps transmit a
predefined sequence bits. The other board is controlled by the software to receive this

52

5-Realization and Test

packet. The first part of the transmitted packet are "010101010101......", which are
recommended to use for the transceiver CC1020 to sense the carrier. This kind bit
pattern can improve the performance of BER (Bit Error Rate) and it is proved by the
experiment. If one board transmit packets including this kind preambles and other
parts, after sensing the preambles which means the receiver has got synchronization,
the other begins to store what it receives and the bit error is zero in the short distance.
Otherwise, if we use preambles which are similar as "0111110111......" (many same
bit in a row), the bit error will be increased largely.

Actually, before other tests, the communication subsystem works in the right
frequency should be ensured. And the Spectrum Analyzer can detect the broadcasting
signal. The figure below (Figure 5.3) displays the detecting spectrum, which proves

the transmitter uses the right 437 MHz frequency?.

Figure 5.3 spectrum analyzer

Through this experiment, from the hardware point of view, we can verify that at
least the subsystem can transmit and receive data properly. From the software point of
view, the functions, except those that realize a real TNC functionalities (encoding,

decoding and FCS calculation of AX.25 protocol packets), also work.

3 Precisely, the actual frequency is 437.008 MHz.

53

5-Realization and Test

Experiment # 2

The main goal of this experiment is to test the AX25.c software module. The
construction is the same as experiment 1. A predefined AX.25 protocol packet is
transmitted by one evaluation board over and over again. The MCU of the sending
board performs the same transmission functionality of a TNC and the MCU of the
receiving board performs the same reception functionality of a TNC. The experiment
has two steps. The first step is to test the reception function and the second step is to
test the transmission function.

In the first step, the test packet we use is: "~~~ ~~~~~~~~~~~~ v~~~
~~~~~~~~~~~~~~~~~ prova.j~~", and after decoding, the packet
transmitted by CC1020 is: "FE F1 6E 90 A0 BC AS 6A FA E4 2D CE 34 FA AB 29
19 FB ED BD D3 FD 28 D2 E7 B9 F6 BD 6E 76 AE AF 43 5D 6A 86 E3 D3 B2 2C
05 28 AE E0 47 8A A5 91 F529 56 FF 3A 72 C4 EB D2 36 34 86 AC D7 65 E3 12
3E 54 04 94 B5 FF FB FE BC EA 6E 2D 2B 3A D8 91 C4 A5 B6 58 F4 6D C2". The
received packet should be the former one. Fortunately, the result is what we expect,
thus the reception function works. Based on this fact, we can test the TNC
transmission function now. The transmission packet includes starting FLAG,
PROLOGO, and a number of 0OxAA whose quantities can be controlled, FCS and
ending FLAG. And the receiving board can get the same packet, which demonstrates
the TNC reception function works as well.

In the receiving process, before every bit is sampled by the I/O pin of the
micro-controller, descrambling calculations are done and CRC is re-calculated after
every byte by the software. Since the baud rate is fixed, to avoid missing the coming
bits, we should be ensuring that the calculation time is much less than the period of
the data rate. To know the time the two calculations needs, we set P1.0 of the
micro-controller to 1 before calculations and set it to O after that. The test result is that
the descrambling processes for every bit needs 10 us and the CRC calculation for

every byte needs 5 us under the condition of 8 MHz crystal oscillator for the

54



5-Realization and Test

micro-controller. The period of the data is 100 us, thus it is stable enough. And these
data determine the minimum frequency of the crystal oscillator. We can calculate the
minimum value in this way: Fxoscmin = 8 MHz/(baud period/15 us). Baud rate is 9600

bps, so the minimum value required is 1.152 MHz.

Experiment # 3

The former two experiments have tested all functionalities of the software. All
functions work properly when data is exchanged between the two evaluation boards,
each of which is the prototype of the UHF communication subsystem. But the
ultimate goal of the subsystem design is that it can communicate with amateur radios.
The experiment is assigned to test the ability in this aspect.

The experiment diagram is shown in Figure 5.4.

Debug Interface

)

Amateur TNC MSP430 CC1020
Radio

PC

Signal Interface

Figure 5.4 experiment 3 construction

Three software are needed, IAR Embedded Workbench, Realterm and the control

panel software, shown in Figure5.5.

55



5-Realization and Test

i -

Stazione Di Terra Versinne 1.

DEH@
‘ @ At Datiicevt [45CI) Datiicevut (HEX]
- i MDREDEHLDNEEHRDRERD 4
i b LOCK 0K CFRBFRTFRD 0D EE BRI
e A (400 4C 4F 4340 5 25F 4F 40 10 T4 525 G244 60%h
e L manh | cl020c | P LAt Pt A DHel Welahb )0 B AREQ 2500 40404061 D3FOCOCO DA BB G5EC
IDeug | [ inente i fEst BLEF 20576F 7260 MEDCO DB R0 2111 ACDEDES
R iiEwwy e D 2RO L EEFRFFHD L
Files fn|B | Fchide hueint B 540 % DA IR BB B BROICD
B iner uart 1. v Fiuclnde "uect.tf i 0B D8 4865 ECACSF 2057 6 T2EC64COCODB DR 01 1
S fiticlude "a2S." NIODEDES EE B RS DL F BAFR
pEEUE Finclnde "ce 10" LOCK 0K BF 0F 48 00 1A 0 26 240 296 246 EOR SR 404040
22 0uips P —— Bytelosend B1 03700 C0 0B DF 48 55 606 6F 20 57 5 726 64 L0
L Bodsh e Rz 157 @Al e w0 CADRDB D1 2111 08,00 50 55 6F 7508 00 525808 00 €2
: finclude "tiner.l i U5 (4B 5 5F F R OD (A0 75 B0 A4 0 B 2 AGED
— @i s 8298584041 61 03F0C0 COB 0B 06560 6CEF 0
— Bt fetine VECT SIZE 260 = (576 72606400 CODB DB DT 21 F304.00 6D B5EE TH14 =
— Bintinsicsh | ! ﬁ f
— B mapd3D signed char option;
B igned char i; ol
SPH] IIIIS:.lglIB ‘ 1‘ ) Command
— Bimerh wsiged char din;
L Busth wmeimed char vect] VECT SLEE |
g CC]UZU.C unsigned char test] VECT SLZE ]
8 1 Output ) : -
L CC]UQUh wmsigned char crc; B SL!]J
— Bind0h
L har L;
— B invinsicsh il
I~ B void nain (]
— Bmspdd0h <
- msp43ﬂxm short volatile semafaro;
" Buath int 1;
P main.c TTETL = WTPH + WTHAID:

Figure 5.5 windows of software

The Realterm software controls the TNC in KISS (Keep It Simple, Stupid) mode.
Then, users can manage the TNC to transmit or receive packets after proper
configurations. The KISS is a simple Host-to-TNC communication protocol [,
Asynchronous frame format is used to delimit frames. Each frame is both preceded
and followed by a special FEND (Frame End) character, analogous to an HDLC flag.
No CRC or checksum is provided. In addition, no RS-232C handshaking signals are
employed. The special characters are in table 5.2. The reason for both preceding and
ending frames with FENDs is to improve performance when there is noise on the
asynchronous line. The FEND at the beginning of a frame serves to "flush out" any
accumulated garbage into a separate frame (which will be discarded by the upper
layer protocol) instead of sticking it on the front of an otherwise good frame. As with
back-to-back flags in HDLC, two FEND characters in a row should not be interpreted

as delimiting an empty frame.

56




5-Realization and Test

Table 5.2 special characters in KISS protocol

Abbreviation Description Hex value
FEND Frame End Co
FESC Frame Escape DB
TFEND Transposed Frame End DC
TFESC Transposed Frame Escape DD

Experiment #3 can also be divided into two steps. Similarly, the first step is
transmission test. The transmission packet includes starting FLAG, PROLOGO, and a
number of 0xAA whose quantities can be controlled, FCS and ending FLAG. The
software Realterm communicates with the TNC and it can show what the received
data by the radio after the TNC decoding (Figure 5.6), which can demonstrate that
amateur radios can receive data from the UHF communication subsystem
satisfactorily.

The second step is obviously reception test. The software Realterm controls the
KISS mode TNC to transmit the packet in Hex "CO0 00 82 A4 82 9A 92 A6 EO0 82 98
98 40 40 40 61 03 FO DB DC DB DC DB DD DB DD 48 65 6C 6C 6F 20 57 6F 72
6C 64 DB DC DB DC DB DD DB DD D1 21 C0" which includes some KISS special
characters, AraMiS PROLOGO and "Hello World!" information. Figure 5.7 shows
what the communication subsystem receives, which can demonstrate that amateur

radios are able to transmit data to the UHF communication subsystem effectively.

57




5-Realization and Test

. RealTerm: SerlalCapture Program 2.0.0.57

q
0 Az 5, FIRRARRRARRRA RARARARARL, |.
Display | Part | Capture | Pins | Send | EchoPart| 120 | 1202 | 12CMise | Misc | An| Clear] Freeze| _|
Dizplay As [~ Half Duplex Status
? gscii ™ newline mode _| Connected
 Haslspace] | | Invert Data _|RxD[2)
" Hew+Ascii | [V | THD(3)
" uintd
 intd D ata Frames [CTS (8
[.‘: .Hﬁ“s Bytes |2 = moco)
irl
 LintlE [ Single _Gubp W DSR (5)
" Asci _|Ring(9)
? Binary Rows Cols | BRE&K
& sk Teminal Fort| [16 =] [0 2] 1 Scrolback e
‘ol can use Ackivel automation ko conkrol me! Chat Count:2610 CPS:0 Park: 9 19200 8M1 None

Figure 5.5 amateur radio reception

ACE Dati ricewuti [ASCH] Drati ricewuti [HE=]
4| 100D 524553 45 54 04 0D 6D G5 6E 7504 0D 5256 (40D 4 |
LOCK_R_0OK, 4C 4F 43 4B 5F 52 5F 4F 4B 0D 04 60 65 6E 75 (4 0D 52 58
it 04 0D 4C 4F 43 4B 5F 52 5F 4F 4B 0D (4 52 25 82 44 2 94
R A 3a  @E@aads0 0Helo wordta0 0 92 46 E0 52 9595 40 40 40 61 03 FO COCODE DB 43 65 6C
BC BF 2057 6F 72 6C B4 COCODE DB D7 21 11 0400 BD 65
men GE 75 04 0D 52 58 04 0D 4C 4F 43 4B 5F 52 5F 4F 4B 0D D&
52 2582 44 82 94 92 A6 E0 82 95 93 40 40 40 61 03 F0 00 00
R DB DB 48 £5 BC BC GF 2057 6F 72 G064 CO CODB DB D1 21
11 04 0D BD 65 GE 75 04 0D 52 58 04 00 4C 4F 43 4B &F 52
LOCK_R_0OkK. 5F 4F 4B 0D 04 52 25 82 44 82 98 92 4 E0 82 98 98 40 40 40
Byt to Send £1 03 FOCOCODE DE 48 B5 BC BC BF 20 57 6F 72 6C 64 C0
: R0 £l @e@aibil Helo WerldsA00 s CODE DB D121 11 04 0D ED 65 BE 75 04 0D 52 53 04 0D 4C
30 4F 43 4B 5F 52 5F 4F 4B 0D (4 52 25 82 44 82 94 92 A6 EO0

8298924040 4061 03FOCOCODE DE 48 65 EC EC 6F 20
57EF72ECE4 COCODE DB D121 F2 040D BD BS BE 75 08 —

DD
A

menu

.
Cammand

@

Figure 5.6 amateur radio transmission

Test results of this experiment shows that the UHF communication subsystem is
able to communication with amateur radios with quite a good performance. Both the

hardware and the software are well developed.

58



6-Conclusion

Chapter 6

Conclusion

In this final project, a fully amateur radio compatible UHF communication subsystem
is well developed. And its design exploits small size, low power and COTS
components which are both relatively cheap and power efficient. In addition, the
programmable low power micro-controller implements the functionality of a real
TNC through its software which largely reduces the size and weight of the
communication subsystem. This communication subsystem is very suitable for
nanosatellite application.

Thanks to the narrowband capability of the CC1020, the subsystem can
communicate with the amateur radio YAESU FT-847 with a quite good performance.
And the required data rate is 9600 bps which is pretty high for narrowband operation.
Fortunately, we got a satisfactory result at last.

The only problem left is radiation effect to the communication subsystem. A test
under a radiation environment should be done to ensure the reliability in the future
work.

Through this practice, the graduation candidate has improved basic practical
engineering skills, grasped the process of PCB realization and been familiar with
software programming and debugging in the C language. What's more, the ability to

use theoretical knowledge to instruct practice is highly enhanced.

59



Appendix A Source Codes

main.h
#ifndef MAIN_H
#define MAIN_H
//#define FOSC 8000000 //use 8MHz oscillator
#define FOSC 4000000 //use 4MHz oscillator
#define TX_CMD T
#define RX_CMD r'
#define PORTANTE_CMD '
#define STATUS_CMD 's'
#define ECO_CMD e'
#define CONFIG_CMD 'c'
#define ON 1
#define OFF 0
#define ACK A

#define NACK_WRONG_COMMAND 'n'
#define NACK_ WRONG_CRC  'N'
tendif

main.c

#include <msp430.h>
#include "main.h"
#include "uart.h"
#include "ax25.h"
#include "cc1020.h"
#include "SPI.h"
#include "timer.h"

#define VECT_SIZE 260

signed char option;

unsigned char i;

unsigned char dim;

unsigned char vect[ VECT_SIZE |;
unsigned char test[ VECT_SIZE ];
unsigned char crc;

char tmp,tmp1;

void main ()

{

short volatile semaforo;

60



inti;
WDTCTL = WDTPW + WDTHOLD;
BCSCTL1 &= ~XT2OFF;

do
{
IFG1 &= ~OFIFG;
for (i = OXFF; i > 0; i--);
}
while ((IFG1 & OFIFG));

// Stop watchdog timer
// XT2on

// Clear OSCFault flag bit
// Time for flag to set

// OSCFault flag still set?

BCSCTL2 |= SELM_2 + SELS; // MCLK = SMCLK = XT2 (safe)
UART_Init();

CC1020_lInit();

CC1020_SetupPD();

_BIS_SR(GIE);

printUART("RESET\n\r");

while (1)
{
printUART("menu\n\r");
crc = UART_ReceivePacket(vect);

if (crc 1=0)

{
switch (vect[0])
{

case PORTANTE_CMD:
printUART("PORTANTE\Nn\r");
SPI_Init();
CC1020_Config_Carrier();
CC1020_WakeUpToTX(LO_DC | PA_BOOST | DIV_BUFF_CURRENT_3);
CC1020_SetupTX(LO_ DC | PA BOOST | DIV_BUFF CURRENT. 3,
POWER_10_DBM);
semaforo = 5000;
TIMER_SetupTimer_ms(&semaforo);
while (semaforo)
SPI_SendByte(0xFF);
printUART("carrier\n\r");
SPI_Disable();
CC1020_SetupPD();
break;
case TX_CMD:
printUART("TX\n\r");
SPI_Init();//USART1 in SPI mode
CC1020_Config_Tx();

61



CC1020_WakeUpToTX(LO_DC|PA_BOOST| DIV_BUFF_CURRENT_3);
CC1020_SetupTX(LO_DC | PA_BOOST | DIV_BUFF_CURRENT_3,
POWER_10 _DBM);
AX25_SendPacket(vect+2,vect[1]);
SPI_Disable();
CC1020_SetupPD();
break;
case RX_CMD:
/*
//config port 1
P1SEL = 0x00;
P1DIR = OxFF;
P10OUT = 0x00;
*/
printUART("RX\n\r");
SPI_Init();
CC1020_Config_Rx();
CC1020_WakeUpToRX(LO_DC | PA_BOOST | DIV_BUFF_CURRENT _3);
CC1020_SetUpToRX(LO_DC | PA_BOOST | DIV_BUFF_CURRENT 3,
0x00);
SPI_Disable(); //disable USART module and its SPI mode
unsigned int rec_bytes = AX25_ReceivePacket(&(test[2]));
if (rec_bytes !1=0)
{
test[0]='R";
test[1]=rec_bytes;
uart_SendPacket(test);
printUART("\n\r");
CC1020_SetupPD();
}
break;
default:
printUART("NO\n\r");

}

else

{
printUART("NO CRC\n\r");

ax25.h

62



#ifndef APRS_H
#define APRS_H

#define PPPINITFCS Oxffff /* Initial FCS value */
#define INITFCS() fcs.u=PPPINITFCS
#define CPLFCS() fcs.u A=0xffff

#define TX_DELAY 80

#define FLAG Ox7E

#define MAX_AX25_ONES 5
#define MAX_PACKET_SIZE 255
#define MIN_FLAG_PREAMBLE 20
#define MIN_PACKET_LENGTH 17

void AX25_ SendPacket(unsigned char * packet, unsigned int packet_len);
unsigned int AX25_ReceivePacket(unsigned char *data);

char RxByte(void);

#endif

ax25.c

#include "ax25.h"
#include "uart.h"
#include "SPL.h"
#include "CC1020.h"
#include "timer.h"

int totalbytes;

char ONEScount = 0;

char lastBit = 0;

char nextBit;

char isFlag;

unsigned int total_byte;

unsigned char preamble = 0x00;

#define INTSCRAMBLER

//look-up table used in Byte-wise CRC caculation

const unsigned short fcstab[256] = {
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, Oxaf5a, Oxbed3, Oxcabc, Oxdbe5, Oxe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, Ox56a5, 0x472c, 0x75b7, Ox643e,
0x9cc9, 0x8d40, Oxbfdb, Oxae52, Oxdaed, Oxcb64, Oxfoff, Oxe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, Ox76af, 0x4434, 0x55bd,
Oxad4a, Oxbcc3, 0x8e58, 0x9fd1, Oxebbe, Oxfae7, Oxc87c, Oxd9f5,
0x3183, 0x200a, 0x1291, 0x0318, Ox77a7, 0x662e, 0x54b5, Ox453c,

63



Oxbdcb, Oxac42, 0x9ed9, 0x8f50, Oxfbef, Oxeab66, Oxd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
Oxcedc, Oxdfc5, Oxed5e, Oxfcd7, 0x8868, 0x99e1, Oxab7a, Oxbaf3,
0x5285, 0x430c, 0x7197, 0x601e, Ox14al, 0x0528, 0x37b3, 0x263a,
Oxdecd, Oxcf44, 0xfddf, Oxec56, 0x98e9, 0x8960, Oxbbfb, Oxaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
Oxef4de, Oxfec7, Oxcc5c, Oxddd5, Oxa96a, 0xb8e3, 0x8a78, 0x9bf1l,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
Oxffcf, Oxee46, Oxdcdd, Oxcd54, Oxb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, Oxc22c, Oxd3a5, Oxel3e, OxfOb7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, Oxa612, Oxd2ad, 0xc324, Oxf1bf, Oxe036,
0x18c1, 0x0948, 0x3bd3, Ox2a5a, 0x5ee5, 0x4f6c, 0x7df7, Ox6c7e,
Oxa50a, 0xb483, 0x8618, 0x9791, Oxe32e, Oxf2a7, 0xcO3c, Oxd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, Ox7eef, Ox4c74, Ox5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, Oxf3af, Oxe226, OxdObd, Oxc134,
0x39c3, 0x284a, Ox1ad1, 0x0b58, 0x7fe7, Ox6eb6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, Oxe51e, 0xf497, 0x8028, 0x91al, Oxa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, Ox1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, Oxe416, 0x90a9, 0x8120, Oxb3bb, Oxa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, Ox1cel, 0x0d68, 0x3ff3, Ox2e7a,
Oxe70e, 0xf687, Oxc41c, 0xd595, Oxal2a, Oxb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, Oxblab, 0xa022, 0x92b9, 0x8330,
0x7bc7, Ox6ade, 0x58d5, 0x495c, Ox3de3, Ox2cba, Oxlefl, OxOf78

2

#define PROLOGO_LEN 16

const char prologo[PROLOGO_LEN] = {
'A'<<],'L'<<1,'"<<1,"'<< 1, " "<< 1, "' << 1, OXEO,
'A'<<1,'R'<<1,'A'<<1,'M'<< 1, "I'<< 1, 'S' << 1, Ox61,
0x03, OxFO

2

unsigned char out;

#ifdef INTSCRAMBLER

unsigned short scrambled1, scrambled2;

#else

unsigned char scrambled1, scrambled2, scrambled3;

#endif

union

{

struct

{
unsigned char crc2; //byte piu' significativo
unsigned char crcl; //byte meno significativo

64



1b;
unsigned short u;
Hcs;

void pppfcs(unsigned char *cp, int len)
{
while (len--)
fcs.u = (fcs.u >> 8) A festab[(fes.u A *cp++) & OxFF];

void AX25_ComputeFCS(unsigned char * packet, int packet_len)
{

INITECS();

pppfcs(packet, packet_len);

CPLFCS();

void AX25_SendByte(unsigned char byte, int flag)
{
chari;
unsigned int tmp;
unsigned char tx;
static unsigned char ones_cnt;
/* for every bit in byte */
for (i=0; i<8; i++)
{
/* extract LSB and shift */
tmp = byte & 0x01;
byte >>=1;
if (tmp)
ones_cnt ++;
else {
ones_cnt=0;
out = ~out;
}
#ifdef INTSCRAMBLER
tx = (out A (scrambled1 >> 11) A (scrambled?2)) & 0x1;
scrambled2 = (scrambled1 >> 15);
scrambledl = (scrambled1 << 1) | tx;
#else
tx = (out A (scrambled2 >> 3) A (scrambled3)) & 0x1;
scrambled3=(((signed char)scrambled2) <0) ? 1: 0;

65



scrambled2<<=1;
scrambled2+=((signed char)scrambled1)<0? 1:0;
scrambledl = (scrambled1 << 1) | tx;
#endif
SPI_SendBit(tx);
/* if sent bit is 1 increment ones counter */
/* if we have reached max number
* of ones allowed by AX.25 proto */
if (ones_cnt >= MAX_AX25_ONES)
{
// ... and we reset ones counter
ones_cnt=0;
// ... we send a stuffing 0 bit...
out = ~out;
#ifdef INTSCRAMBLER
tx = (out A (scrambled1 >> 11) A (scrambled?2)) & 0x1;
scrambled2 = (scrambled1 >> 15);
scrambledl = (scrambled1 << 1) | tx;

#else
tx = (out A (scrambled2 >> 3) A (scrambled3)) & 0x1;
scrambled3=((signed char)scrambled2)<0? 1:0;
scrambled2<<=1;
scrambled2+=((signed char)scrambled1)<0? 1:0;
scrambledl = (scrambled1 << 1) | tx;
#endif
// send it
SPI_SendBit(tx);
}
if(flag)
ones_cnt=0;
}
}

void AX25_SendPacket(unsigned char * packet, unsigned int packet_len)
{
inti;
scrambledl = 0;
scrambled2 = 0;
#ifndef INTSCRAMBLER
scrambled3 = 0;
#endif
out =0;
INITECS();
pppfcs( (unsigned char *)prologo, PROLOGO LEN);

66



pppfcs( packet, packet_len);
CPLFCS();
SPI_ResetBit();
/* prologo transmission */
for (i=0; i<TX_DELAY; i++)
AX25 SendByte(FLAG, 1);
/* send prologo */
for (i=0; i<PROLOGO_LEN; i++)
AX25 SendByte (prologoli], 0);
/* send packet */
for (i=0; i<packet_len; i++)
AX25 SendByte (packet[i], 0);
/* now we send 15:8 bits MSB first */
AX25 SendByte(fcs.b.crc2, 0);
/* and now 7:0 MSB first */
AX25 SendByte(fcs.b.crcl, 0);
for (i=0; i<2; i++)
AX25 SendByte(FLAG, 1); /* ones count =-3 removes bit stuffing from Flag
TX */
AX25 SendByte(0x00, 1); //wait for the end of transmission (one more byte,
to ensure reception)

}

unsigned int AX25_ReceivePacket(unsigned char *data)
{
int flag_counter = 0;
char byte = 0x00;
char DIN;
short volatile semaforo;
semaforo = 5000;
TIMER_SetupTimer_ms(&semaforo);
do
{
scrambledl = 0;
scrambled2 = 0;
byte = 0;
do
{
ONEScount =0;
lastBit = O;
totalbytes = 0;
// Check for flag
while ( (byte != FLAG) && semaforo) // Check for flag

{

67



byte = byte >> 1; // shift byte 1 bit to the right inserting a 0 as MSB
while( (P5IN & DCLK) ==0); // wait for CC1020 clock to rise and then
//P10OUT = 0x01;

DIN = ( (P5IN & DIO) =0 ); // sample nextBit from CC1020 DIO
nextBit = (DIN ” (scrambled1 >> 11) A (scrambled2)) & 0x1;
scrambled2 = (scrambled1 >> 15);

scrambledl = (scrambled1 << 1) | DIN;

if ( nextBit == lastBit ) // if no change, then bit is a 1 using NRZI
{
byte = byte | 0x80;// insert a 1 as the MSB }
else // otherwise, bit is a 0 using NRZI
{
byte &= 0x7f; // insert a 0 as the MSB
}

lastBit = nextBit;
// change the value of lastBit for next NRZI comparison

//P1OUT = 0x00; // one bit descrambing needs 10 us
while( (P5IN & DCLK) I=0); // wait for next clock cycle

}

// End flag check

byte = 0x00; // reset byte so it is no longer 0x7e

totalbytes = 0;
flag_counter =1;
byte = RxByte();
while ( byte == FLAG)
{
byte = RxByte();
flag_counter++;

}
lwhile ((flag_counter < MIN_FLAG_PREAMBLE) && semaforo);

INITFCS(); //initial FCS value

while (( byte != FLAG ) && (totalbytes < MAX_PACKET _SIZE) && semaforo )
{
data[totalbytes] = byte;
totalbytes++;
//P10OUT = 0x01;
fcs.u = (fcs.u >> 8) A festab[(fes.u A data[totalbytes-1]) & OxFF];
if ( (fcs.b.crc2 == (data[totalbytes-2]"OxFF)) && (fcs.b.crcl ==
(data[totalbytes-1]*0xFF)) )
return totalbytes-2;
//P1OUT = 0x00; // one byte CRC caculation needs 5us when
FOSC = 8 MHz

68



byte = RxByte();
}
} while ( (totalbytes < MIN_PACKET_LENGTH) && semaforo);
/*
AX25 ComputeFCS(data, totalbytes); //receiver caculates CRC
if ( (fcs.b.crc2 == data[totalbytes-2]) && (fcs.b.crcl == data[totalbytes-1]) )
// if ( (fcs.b.crc2 == (data[totalbytes-2]"OxFF)) && (fcs.b.crcl ==
(data[totalbytes-1]*0xFF)) )
return totalbytes-2;
else
return O;
*/
return O;
}// End void RxPacket(void)

char RxByte(void)

{
char byte = 0x00;
char DIN;
for (intlen =0; len < 8; len++) // for all 8 bits
{

byte = byte >> 1; // shift the byte over to the right
inserting a O for MSB

while( (P5IN & DCLK) ==0); // wait for CC1020 clock to rise and then

DIN = ( (P5IN & DIO) =0 ); // sample nextBit from CC1020 DIO

nextBit = (DIN ” (scrambled1 >> 11) A (scrambled2)) & 0x1;

scrambled2 = (scrambled1 >> 15);

scrambledl = (scrambled1 << 1) | DIN;

if ( nextBit != lastBit )

{
byte &= 0x7f; // zero out MISB
ONEScount = 0; // reset ONEScount
}
else if ( nextBit == lastBit ) // then no change so one in NRZI
{
byte = byte | 0x80; // MSB when shifting right
ONEScount = ONEScount + 1;
}
lastBit = nextBit;
while( (P5IN & DCLK) 1=0); // wait for next clock cycle
//

// if there have been 5 ones and the next bit is a zero (change in bit stream)
// then remove the bitstuffed zero.

69



if (ONEScount>=5)

{

//still need to right shift byte---Iv

byte = byte >> 1;

// Check the next bit to see if it is a bitstuffed zero; if it is not then it
// is probably the flag

len=len+1;
while( (P5IN & DCLK) == 0 ); // wait for CC1020 clock to rise and
then
//for (intj =0; j<10; j++) asm("nop;");
DIN =( (P5IN & DIO) !=0); // sample nextBit from CC1020 DIO
nextBit = (DIN ” (scrambled1 >> 11) A (scrambled2)) & 0x1;
scrambled2 = (scrambled1 >> 15);
scrambledl = (scrambled1 << 1) | DIN;
if (nextBit != lastBit) // then zero needs to be skipped
{
lastBit = nextBit; // fix lastBit for NRZI
ONEScount = 0; // reset ONEScount
len--;
byte = byte << 1; //shift back, zero skipped---Iv
while( (P5IN & DCLK) 1=0); // wait for next clock cycle
}
else // otherwise, flag byte has been
encountered
{
while( (P5IN & DCLK) '=0); // wait for next clock cycle
ONEScount = 0; // Reset ones since we're assuming a flag
has been received
len=len+1;
while( (P5IN & DCLK) ==0); // wait for CC1020 clock to rise and then
DIN = ( (P5IN & DIO) =0 ); // sample nextBit from CC1020 DIO

}

nextBit = (DIN ” (scrambled1 >> 11) A (scrambled2)) & 0x1;
scrambled2 = (scrambled1 >> 15);

scrambledl = (scrambled1 << 1) | DIN;

lastBit = nextBit;

while( (P5IN & DCLK) 1=0); // wait for next clock cycle

return Ox7e; // If we have 6 ones then it is either the flag
// oran error. Either way we trick TxPacket into

// thinking it is an end flag by setting it as 0x7e &

return byte;

70



SPLh

#ifndef SPI_H
#define SPI_H
#define DIO BIT2
#define DCLK BIT3

#define LOCK_BIT BIT1

void SPI_Init(void);

void SPI_Disable(void);

void SPI_SendByte (unsigned char data);
unsigned char SPI_ReceiveByte (void);
void SPI_ResetBit (void);

void SPI_SendBit (unsigned char data);
#endif

SPl.c

#include "main.h"
#include "uart.h"
#include "SPIL.h"

#include <msp430x14x.h>

unsigned char SPI_tmp_value;
signed char SPI_tmp_index;

void SPI_Init(void)
{
P5SEL |=DIO | DCLK | LOCK_BIT; // P5.1,2,3 SPI option select
U1CTL = CHAR + SYNC + SWRST; // 8-bit, SPI, Slave
//U1TCTL = STC; // Polarity, SMCLK, 3-wire
U1TCTL = 0x82; //UCLK delayed one half
circle--lv
U1BRO = 0x02; // SPICLK = SMCLK/2
U1BR1 = 0x02;
U1MCTL = 0x00; //no modulation---lv
ME2 |= USPIEZ]; // Module enable
U1CTL &= ~SWRST; // SPl enable SWRST = 0x01

void SPI_Disable(void)

{
PSSEL &= ~(DIO | DCLK | LOCK_BIT); // P5.1,2,3 1/O function is

selected

71



P5DIR &= ~(DIO | DCLK | LOCK_BIT); //set SPI pin as input

ME2 &= ~USPIE]; // Module disable
U1CTL |= SWRST; // SPI disable, software reset
enable, usart logic held in reset state.

}

// Function Transmits Character from RXTXData Buffer

void SPI_SendByte (unsigned char data)

{
while (/(IFG2 & UTXIFG1)); // USART1 TX buffer ready?
TXBUF1 = data;

}

// Function Receive Character from RXTXData Buffer
unsigned char SPI_ReceiveByte ( void )
{
unsigned char data;
while (1(IFG2 & URXIFG1)); // USART1 RX buffer ready?
data = RXBUF1;
return data;

void SPI_ResetBit (void)
{
SPI_tmp_value =0;
SPI_tmp_index=7;
}

// Function Transmits Character from RXTXData Buffer
void SPI_SendBit (unsigned char data)
{
SPI_tmp_value += (data & 1) << SPI_tmp_index;
SPI_tmp_index--;
if (SPI_tmp_index < 0)
{
//UART_SendByte(SPI_tmp_value);
while (/(IFG2 & UTXIFG1)); // USART1 TX buffer ready?
TXBUF1 = SPI_tmp_value;
SPI_tmp_index=7;
SPI_tmp_value =0;

72



uart.h

#ifndef UART_H

#define UART_H

#include <msp430x14x.h>

#define DATARATE 9600

#define RXD 32 // RXD on P3.5
#define TXD 16 // TXD on P3.4
#define Bitime_5  ((int)((float)FOSC/(1.91*DATARATE)))

// ~ 0.5 bit length + small adjustment

#define Bitime ((int)(((float)(FOSC))/DATARATE))

// 8.6 us bit length ~ 115942 baud

void UART_SendByte (unsigned char data);

unsigned char UART_ReceiveByte (void);

void UART_Init(void);

void printUART (unsigned char *message);

unsigned char CRC( unsigned char *pDato, unsigned short dim);
unsigned char UART_ReceivePacket(unsigned char *pDato);
unsigned char uart_SendPacket(unsigned char *pDato);

#endif

uart.c

#include <msp430.h>
#include "main.h"
#include "uart.h"
#include "SPL.h"

unsigned int RXTXData;
unsigned char BitCnt;
unsigned short uart_i;
unsigned char uart_crc;
unsigned char uart_crcl;
unsigned char uart_crc2;
unsigned char CRC( unsigned char *pDato, unsigned short dim)
{
uart_crc=0;
for (uart_i=0; uart_i<dim ; uart_i++)
uart_crc += pDato[uart_i];
return uart_crc;

void printUART (unsigned char *message)

73



inti;
for (i=0; message[i]!=0; i++) UART_SendByte(messageli]);
}
void UART _Init(void)
{
P3SEL |= 0x30; // P3.4,5 = USARTO
TXD/RXD
ME1 |= UTXEO + URXEO; // Enabled USARTO
TXD/RXD
UCTLO |= CHAR; // 8-bit character
UTCTLO |=SSEL1 + SSELO + URXSE; // UCLK = SMCLK, start edge detect
UBROO = (unsigned char)(FOSC/9600); // 9600 bps
UBR10 = (unsigned char)((FOSC/9600) >> 8);// 9600 bps
UMCTLO = 0x00; // no modulation
UCTLO &= ~SWRST; // Initialize USART state machine
}

// Function Transmits Character from RXTXData Buffer

void UART_SendByte (unsigned char data)

{
while (/(IFG1 & UTXIFGO)); // USARTO TX buffer ready?
TXBUFO = data;

}

// Function Transmits Character from RXTXData Buffer
unsigned char UART_ReceiveByte ( void )
{
unsigned char data;
while (I(IFG1 & URXIFGO)); // USARTO RX buffer ready?
data = RXBUFO;
return data;

unsigned char UART_ReceivePacket(unsigned char *pDato)
{

pDato[0] = UART_ReceiveByte();

pDato[1] = UART_ReceiveByte();

for (uart_i=2; uart_i< ((short)pDato[1]) + 2 ; uart_i++)
pDato[uart_i] = UART_ReceiveByte();

//*dim = pDato[1];

pDato[uart_i] = UART_ReceiveByte();

74



uart_crc2 = CRC(pDato, ((short)(pDato[1])) + 2 );
if (uart_crc2 == pDato[uart_i])

return 1;
else

return O;

unsigned char uart_SendPacket(unsigned char *pDato)
{
for (uart_i=0; uart_i < pDato[1] + 2 ; uart_i++)
UART_SendByte(pDato[uart_i]);
uart_crc = CRC(pDato, pDato[1] + 2);
UART_SendByte(uart_crc);
return uart_i;

timer.h

#ifndef TIMER_H

#define TIMER_H

void TIMER_SetupTimer_ms(short volatile *semaforo);
void TIMER_Wait_ms(short volatile semaforo);

void TIMER_Wait_us(short volatile semaforo);

#endif

timer.c

#include <msp430x14x.h>
#include "timer.h"
#include "uart.h"
#include "main.h"

short volatile *contatore;

void TIMER_SetupTimer_ms(short volatile *semaforo)

{

contatore = semaforo;

TACTL =0; //stop the timer
TAR=0; //reset timer
TACCRO = (short)(FOSC/1000); // 1 ms at 4 MhZ
TACTL = TASSEL1 | MC_1 | TAIE; //start!

TACCTLO = CCIE; //enable interrupt

void TIMER_Wait_ms(short volatile semaforo)

75



contatore = &semaforo;

TACTL=0;

TAR = 0;

TACCRO = (short)(FOSC/1000);

TACTL = TASSEL1 | MC_1 | TAIE;  //start!
TACCTLO = CCIE;

while(semaforo);

void TIMER_Wait_us(short volatile semaforo)

{

contatore = &semaforo;

TACTL=0;

TAR = 0;

TACCRO = (short)(FOSC/1000000);

TACTL = TASSEL1 | MC_1 | TAIE;  //start!
TACCTLO = CCIE;

while(semaforo);

// Timer AO interrupt service routine
#pragma vector=TIMERAO_VECTOR

{

interrupt void Timer_A (void)

//stop the timer
//reset timer
// 1 us at4 MhZ

//enable interrupt

//stop the timer
//reset timer
// 1 us at4 MhZ

//enable interrupt

TACTL &= ~TAIFG; //reset interrupt flag

(*contatore)--;
if ((*contatore) == 0)
{
TACCTLO = 0;
TACTL=0;
}

76



Reference

[1].Stefano Speretta, Leonardo M. Reyneri, Claudio Sanso’e, Maurizio
Tranchero, Claudio Passerone, Dante Del Corso, MODULAR
ARCHITECTURE FOR SATELLITES

[2].J. E. Mazur, An Overview of the Space Radiation Environment

[3].JANET Barth, IEEE NSREC Short cource SESSION 1, available at
http://radhome.gsfc.nasa.gov/radhome/papers/slideshow10/SC_NSREC97/sl
d001.htm.

[4].Richard H. Maurer, Martin E.Fraeman, Mark N. Martin, and David R. Roth,
Harsh Environments: Space Radiation Environment, Effects, and Mitigation.

[5].Bryan Klofas (KF6ZEOQO), Jason Anderson (KI6GIV),A Survey of CubeSat
Communication System.

[6]. MSP430F 149 DATASHEET, available at www.ti.com.

[7].CC1020 DATASHEET, available at www.ti.com.

[8].MSP430x1xxx Family User's Guide, available at www.ti.com.

[9].William A. Beech, NJ7P, Douglas E. Nielsen, N7LEM, Jack Taylor,
N700,AX.25 Link Access Protocol for Amateur Packet Radio.

[10]. Aram Perez, Wismer & Becker, Byte-wise CRC Calculations.

[11].  Mike Chepponis, K3MC and Phil Karn, KA9Q, The KISS TNC,

available at http://www.ka9q.net/papers/kiss.html.

77



	front cover
	main_text1
	Acknowledgement
	Summary
	Contents
	ListofFiguresandTables
	ListofAcronyms
	Introduction
	SpaceRadiationEffects
	2.1SpaceRadiationEnvironment[2]
	InterplanetarySpace
	SolarWind
	SolarEnergeticParticles
	GalacticCosmicRays
	Earth'sMagnetosphere

	2.2SpaceRadiationEffect
	TotalIonizingDose
	SingleEventEffects
	DisplacementDamage

	2.3MitigationMethods

	HardwareDevelopment
	3.1ExistingSolutions[5]
	3.2OurSolution
	3.3Components,CircuitsandInterfaces
	3.3.1Componentsselection
	3.3.2CircuitsRealization
	3.3.3Interfaces


	SoftwareDevelopment
	4.1AX.25protocolandG3RUHstandard
	4.1.1AX.25protocol
	4.1.2HDLCencodingPolynomialscrambling/descramb
	4.1.2.1TransmitAX.25packets
	4.1.2.2ReceiveAX.25packets


	4.2Softwaremodules
	4.3Functionalitydescription
	4.3.1MaincommunicationControl(main.c)
	4.3.2Transceiverinterface(CC1020.c)
	4.3.3SoftwareTNC(AX25.c)
	4.3.4Timer(timer.c)
	4.3.5Datainterface(uart.c)
	4.3.6Configurationinterface(SPI.c)


	RealizationandTest
	5.1PCBrealization
	5.2Experimentsfortest
	Experiment#1
	Experiment#2
	Experiment#3


	Conclusion
	AppendixASourceCodes
	Reference


