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Summary

Avionics for satellites is a market which is continuously growing in these years. The

cost reduction enables many institutions to develop their own satellites. To evaluate

the feasibility of COTS components in space projects, some departments of

Politecnico di Torino developed a nanosatellite named PiCPoT. In order to greatly

reduce cost for further, the group began to develop a true modular satellite—AraMiS,

which allows a number of missions to share the same design.

A primary mission requirement of any satellite is the ability to exchange

information with a ground based command station. Similar as PiCPot, AraMiS has

two radio-frequency communication subsystems. One subsystem works in UHF

(437MHz) band, the other one works in S (2.4GHz) band. The two communication

subsystems are independent and their functions are interchangeable. Both channels

implement a half-duplex protocol, sharing the same frequency for downlink and

uplink.

The duty of this thesis is to develop the UHF communication subsystem. To get

the compatibility with amateur radios, this communication subsystem needs realize

AX.25 communication protocol. It consists of a micro-controller performing a TNC, a

transceiver, a power amplifier and an antenna. The micro-controller is TI

MSP430F149, which is low cost, low power and easy to operate. The transceiver is

CC1020, which is true narrowband, low voltage and power and easy to configure.

And it only needs a few external passive components. Still choose to use RFMD

RF2175 as the power amplifier, which can provides an +34dBm output power, while

using a helical antenna.

This paper copes with all the details to develop and verify the UHF

communication subsystem. Chapter 1 is an introduction of this final project,

addressing an general idea of the whole development process. In chapter 2, a brief

description of a space radiation environment, which largely affects the satellites'
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normal functionalites, is presented. From chapter 3 to chapter 5, development details

are exactly described. In chapter 3, detail the hardware development. After evaluating

several exiting solutions, our choice is addressed, including components selections,

circuits realizations and interface descriptions. Software development is shown in

chapter 4. The AX.25 protocol is firstly introduced, which involves how to transmit

and receive packets based on this protocol. Thereafter, softwares performing hardware

modules' functionalities and their relations to exchange information are interpreted in

details. Since both hardware and software are designed, realization and test processes

are demonstrated in chapter 5. The PCB realization procedures are addressed and

experiments for test are established, while results are also reported. In chapter 6, a

conclusion is given to conclude this final project.
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Chapter 1
Introduction

In current days, the industrial and academic interest in space and space-related

activities is rapidly growing. A cost effective access to space would open a wide range

of new opportunities and markets, especially for SMEs (Small Medium Enterprise)

and Universities.

After developed PICPOT---a small satellite built with low cost Commercial Off

The Shelf (COTS) components, electronic department in Politecnico di Torino

wants to design a nanosatellite with true modular architecture (particularly in

electronic subsystems) to go beyond the CubSat concept.

The project is aimed at:

� proving the feasibility of low-cost satellites using COTS (Commercial Off

The Shelf) devices;

� developing a flight model of flexible and reliable nanosatellite with less than

25,000 Euros;

� training students in the field of avionics space systems;

� developing expertise in the field of low-cost avionic systems, both internally

(university staff) and externally (graduated students will bring their expertise

in their future work activity);

� gathering expertise and resources which were available inside our university

around a common high-tech project.

The main idea of AraMiS (acronym for Modular Architecture for Satellites in

Italian) project is the development of distributed and intercommunicating on-board

units, built with COTS components, in order to increase fault tolerance and allow a

graceful performance degradation, while keeping the costs at acceptable levels. The

satellite can use as many basic modules as needed to perform the tasks of the mission.

Since the same module design is used in several satellites, the AraMiS architecture
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achieves an effective cost sharing between different missions [1]. Figure 1 below

shows the model of AraMiS.

Figure 1.1 Model of AraMiS

AraMiS has two types tiles outside: power management and telecommunication

(figure 2).

Figure 1.2 Model of telecommunication tile

The telecommunication tile is mostly composed of: 1) a microcontroller-based

programmable transceiver; 2) a modem; 3) a power amplifier (for transmission) and

low-noise amplifiers (for reception); 4) an antenna system.

In order to achieve fault tolerance, two different channels are used, in the bands

allocated by ITU for satellite communications. The first channel lays in the UHF

437MHz band, and the second in the SHF 2.4GHz band. The data contents of the two
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links are equivalent, thus providing two interchangeable possibilities to communicate

with the satellite. To reduce occupied bandwidth, both channels implement an

half-duplex protocol, sharing the same frequency for downlink and uplink.

To avoid the computational overhead of some of the operations required by

AX.25 (scrambling and bit-stuffing), the transceiver of S-Band link uses a modulation

scheme which is not directly compatible with amateur stations while the UHF

downlink is designed to be compatible with the amateur G3RUH packet radio

standard which uses the UI frame defined in the AX.25 standard, following the subset

for APRS.

The task of this final project is to develop the UHF communication subsystem,

both hardware and software. In the following chapters, this thesis will cope with most

procedures of the UHF communication subsystem development process. In chapter 2,

the space radiation effect, which may induce failures of electronic components, will

be presented including radiation source, effect types and mitigation methods. In

chapter 3, the whole hardware structure will be described in details. In chapter 4, we

focus on software part, describing how to transmit and receive AX.25 protocol

packets. In chapter 5, the test process is addressed. Three experiments were designed

to test all functionalities both in hardware and software. In chapter 6, the conclusion is

presented.
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Chapter 2
Space Radiation Effects

Since we choose to use COTS components for low cost aspiration, these components

are not space application dedicated and radiation robust. So we need be aware of the

space radiation environment (in particular, Low Earth Orbiting) and the damage

degree induced by the space radiation effects to our system. In this chapter, we discuss

the space radiation environment, how it affects electronic devices and methods to

mitigate these effects.

2.1 Space Radiation Environment [2]

Satellites operate in conditions that are much different from terrestrial weather. The

space environment, just as any environment on Earth, contains phenomena that are

potentially hazardous to humans and technological systems; however, many of these

hazards involve plasmas and higher-energy electrons and ions that are relatively

uncommon within Earth's atmosphere. These hazards exist in broad spatial regions

that change with time. Typical satellite orbits cross many of these regions and spend a

variable amount of time in each.

The space environment is populated with electrons and ionized atoms (ions). The

unit of kinetic energy for these particles is the electron volt. At high energies (millions

of electron volts), these particles have sufficient energy to ionize atoms in materials

through which they propagate. At lower energies (below thousands of electron volts)

their effects range from charge accumulation on surfaces to material degradation.

The space environment changes with time, often in unpredictable and

undiscovered ways, making it a challenge to completely assess the hazards in any

orbit.
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Interplanetary Space

The sun and most planets in the solar system generate magnetic fields. The space

outside the local effects of planetary magnetic fields contains its own population of

particles. Several satellites near Earth continuously monitor the intensity of the

particles and electromagnetic fields in interplanetary space. These and other space

probes have shown that the radiation environment in the solar system is highly

variable, but the consistent locations of intense radiation are the planetary

magnetospheres.

For instance, Earth's magnetosphere is a teardrop-shaped cavity formed by the

interaction of the solar wind with earth's magnetic field (figure 2.1).

Figure 2.1 Earth's teardrop-shaped magnetosphere

Solar Wind

Most of the particles in interplanetary space are in the form of a hot, ionized gas

called the solar wind; it flows radially from the sun with a speed at Earth that varies

from about 300 to 1000 kilometers per second, representing a mass loss of about 1014

kilograms per day.

Solar Energetic Particles

Many highly variable sources produce interplanetary particles with energies
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typically between 10 thousand and 100 million electron volts. These energetic

particles originate in acceleration processes in the solar atmosphere, sometimes close

to the sun and sometimes beyond Earth's orbit. The transient nature of these particle

populations is directly linked to the sun's activity.

Galactic Cosmic Rays

Galactic cosmic rays are the highest-energy particles in the solar system and they

originate somewhere outside the solar system.

Earth's Magnetosphere

Earth's magnetic field establishes a volume of space within which the magnetic

field dominates charged particle motion. Close to Earth, the magnetic field is roughly

a magnetic dipole that is tilted 11.5 degrees from the rotational axis and offset from

the center of the planet. For most purposes, the dipole approximation is poor, and

there are more sophisticated models that account for the steady changes of the central

field as well as the dynamic outer boundaries.

The magnetosphere contains a mixture of plasmas with incredibly diverse

sources. Some populations of charged particles are trapped within the magnetosphere

while others vary on many time scales. The magnetosphere has its own weather, with

complex processes of particle transport and acceleration during geomagnetic storms

that contribute to surface charging and internal charging of spacecraft.

Stable trapping of particles occurs, given the right combination of particle charge,

energy, and magnetic field strength. As these particles are trapped on time scales

ranging from days to years, they execute their gyration, bounce, and drift motions

around Earth, resulting in spatial zones of trapped radiation known as the Van Allen

belts (figure 2.2).
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Figure 2.2 Diagram of Van Allen radiation belts

Our satellite will operate in Low Earth Orbiting (LEO), which lies in the inter

zone of the Van Allen radiation belts. The Van Allen radiation belts and typical

satellite orbits are shown in figure 2.3.

Figure 2.3 The Van Allen radiation belts and typical satellite orbits
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2.2 Space Radiation Effect

The general radiation effects and their origins are shown in table 1.

Table 2.1 Types of radiation effects and the corresponding origins[3]

Types of radiation effect Origin

Total Ionizing Dose

(TID)

Trapped protons and electrons;

Solar protons

Single Event Effects

(SEE)

Trapped and solar protons; Heavier

ions from Galactic cosmic ray and solar

events; Neutrons

Displacement Damage Protons and electrons

Spacecraft Charging Surface for plasma;

Deep dielectric for high energy

electrons

Total Ionizing Dose

When incident radiation enters a semiconductor solid material such as silicon, an

electron−hole pair may be created if an electron in the valence band is excited across

the band gap into the material’s conduction band [4]. Electron−hole pairs generated in

the gate oxide of a metal-oxide semiconductor (MOS) device such as a transistor are

quickly separated by the electric field within the space charge region (figure 2.4). The

electrons quickly drift away while the lower-mobility holes drift slowly in the

opposite direction. Digital microcircuits are affected because trapped charge can shift

MOS transistor threshold voltage, which is a key device parameter. Other influences

may be leakage current, timing skew and function failures.
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Figure 2.4 Schematic of an n-channel MOSFET illustrating the basic effect of total

ionization induced charging of the gate oxide. Normal operation (a) and post

irradiation (b) show the residual trapped positive charge (holes) that produces a

negative threshold voltage shift

Single Event Effects

If the amount of charge collected at a junction exceeds a threshold, then an SEE

can be initiated. An SEE can be destructive or nondestructive. Destructive effects

result in catastrophic device failure. Nondestructive effects result in loss of data

and/or control. SEEs are generated through several mechanisms. The basic SEE

mechanism occurs when a charged particle travels through the device and loses

energy by ionizing the device material. Other physical charge generation mechanisms

include elastic and inelastic nuclear reactions.

The charge generated by this single strike is collected, producing spurious

voltage on a “sensitive” node that causes a circuit-level effect (figure 2.5).
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Figure 2.5 Schematic of a heavy ion strike on the cross-section of a bulk CMOS

memory cell

A typical nondestructive case is Single Event Upset (SEU). It is the change of

state of a bistable element, typically a flip-flop or other memory cell, caused by the

impact of an energetic heavy ion or proton. Single Event Latch-up is a typical

destructive case. Integrated circuits fabricated with complementary MOS (CMOS)

fabrication processes are very widely used in space electronics. These chips inherently

include parasitic bipolar junction transistors (BJTs) formed by closely located CMOS

structures that under normal conditions form the integrated circuits n-channel and

p-channel transistors (figure 2.6).

Figure 2.6 Bulk CMOS inverter architecture cross-section showing the parasitic

bipolar SCR structure that forms, making it susceptible to SEL

Displacement Damage
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Radiation particle such as electrons, protons and neutrons scatter off lattice ions,

locally deforming material structure (figure 2.7).

Figure 2.7 schematic of atomic displacement damage in crystal solid

The amount of displacement damage is dependent on the incident particle type,

incident particle energy and target material.

2.3 Mitigation Methods

Since we know space radiation effects are very harmful for electronic systems of

spacecrafts, we must apply some mitigation methods. Basically, what we can do are as

follows:

� Limit current or turn off circuits with excessive current consumption

� Turn off devices when not in use

� Part de-rating and increase operating margin

� Shielding

� Change operating schedule in response to space weather

� Radiation-hard parts selection

� Redundancy

� Error detection and correction

� Memory scrubbing
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Chapter 3
Hardware Development

This chapter discusses the hardware development of UHF communication subsystem

for AraMiS. After evaluating the existed solutions, our choice is presented, describing

components selection, system circuits and interfaces.

3.1 Existing Solutions [5]

To date, based on the type of hardware used, communication subsystem of

nanosatellites can be categorized into three classes: 1) COTS devices; 2) modified

handhelds; 3) custom hardware.

� COTS devices

Directly purchasing a COTS space-rated transceiver is one choice, which

simplifies design of the subsystem. Most of the protocols and modulations are

proprietary and device specific, requiring an identical radio at the command ground

station. However, this kind device is usually expensive, heavy and big for

nanosatellite.

� Modified handhelds

With this approach, handheld amateur radios are modified to be a

communication subsystem. Amplifier, transceiver and even TNC sometimes are

functionally integrated in one circuit board, which largely simplifies the design

process. But it is hard to fit this kind system which weights a lot and has a large size

into a small space. The power consumption is also an important issue for less ability

to disable individual devices.

� Custom-built

In some projects, people decide to build the whole subsystem out of individual

components. It is hard to get a satisfied performance due to the inherent difficulties of



3-Hardware Development

14

RF board design and time consuming to test, yet it has the most flexibility. Another

obvious advantage is lower power consumption since it can easily enable and disable

individual components. The table (Table 3.1) below shows a summary of different

communication subsystems of some nanosatellite projects.

Table 3.1 Summary of communication subsystem

Project Transceiver Frequency

(MHz)

TNC Protocl Baud rate

Modulation

AAU1 Wood & Douglas

SX450

437.475 MX909 AX.25 9600 Baud

GMSK

DTUsat-1 RFMD RF2905 437.475 AX.25 2400 Baud FSK

CO-57 Nishi RF Lab 436.845 PIC16C622 AX.25 1200 Baud

AFSK

UWE-1 473.505 Integrated AX.25 1200/9600 Baud

AFSK

CAPE1 CC1020 435.245 PIC16LF452 AX.25 9600 Baud FSK

MAST MicrohardMHX-2400 2400 Integrated Proprietary 15 kbps

3.2 Our Solution

To get the compatibility with amateur radios, the UHF communication subsystem

should be capable of transmitting and receiving AX.25 formatted packets. For the

power, cost and weight issues, we cannot just purchase a space-rated transceiver or

modify a handheld. Moreover, for the aim at teaching, we choose to build a custom

system using individual COTS devices, which will be integrated on one small PCB.

The diagram below (figure 3.1) shows the final designed structure.
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Figure 3.1 Diagram of UHF communication subsystem

This subsystem consists of four parts, MCU (Micro-Control Unit), Transceiver,

PA (power amplifier), and antenna. All the devices are selected from COTS

components. The MCU performs as a real TNC through software to transmit and

receive AX.25 protocol packets and it is controlled by OBC (On-Board Computer). To

save bandwidth, the subsystem works in half-duplex mode. The power amplifier is

disabled to save power when wording in receiving mode.

3.3 Components, Circuits and Interfaces

This section describes the components selections of the communication subsystem in

details. And their interfaces are also presented.

3.3.1 Components selection

Micro-controller Unit (MCU): MSP430F149

The MSP430 is a mixed-signal microcontroller family from Texas Instruments.

Built around a 16-bit CPU, the MSP430 is designed for low cost, and specifically, low

power consumption embedded applications. The electric current drawn in idle mode

can be less than 1 micro amp. TI provides robust design support for the MSP430

microcontroller including technical documents, training, tools, and software, which

decreases design time.

The MSP430x1xx Series is the basic generation without an embedded LCD

controller. These Flash or ROM based Ultra-Low Power MCUs offer 8 MIPS, 1.8–3.6

V operation, up to 60 KB Flash, and a wide range of high-performance analog and
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intelligent digital peripherals. Its functional block diagram is shown below ( figure

3.2).

Figure 3.2 Functional block diagram of MSP430x14x[6]

The MSP430149 has two built-in 16-bit timers, a fast 12-bit A/D converter, two

universal serial synchronous/asynchronous communication interfaces (USART), 48

I/O pins, 2 KB RAM and 60 KB Flash. The flash can be easily programmed and

erased through JTAG interface, which make debugging convenient.

Transceiver: Chipcon CC1020

CC1020 is a true single-chip UHF transceiver designed for very low power and

very low voltage wireless applications. The circuit is mainly intended for the ISM

(Industrial, Scientific and Medical) and SRD (Short Range Device) frequency bands

at 402, 424, 426, 429, 433, 447, 449, 469, 868 and 915 MHz, but can easily be

programmed for multi-channel operation at other frequencies in the 402 - 470 and 804

- 940 MHz range. What's more, it is very suitable for narrowband application with

12.5 KHz or 25 KHz channel spacing [7].

In typical applications, CC1020 is complied with a micro-controller and only a

few external passive components. The interfaces between CC1020 and the needed

micro-controller are very simple (figure 3.3).
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Figure 3.3 Interface between CC1020 and micro-controller

The main operating parameters including the component values needed for the

input/output matching circuit, the PLL (Phase Locked Loop) loop filter and the LC

filter can be easily generated based the user's selections by a software program

SmartRF® Studio (figure 3.4) provided by Chipcon. And these parameters can be

programmed through a serial bus interfacing to a micro-controller.

Figure 3.4 SmartRF® Studio user interface
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Power Amplifier: RFMD RF2175

This power amplifier has been tested in PiCPot project. By now, we have on

reason to change it.

3.3.2 Circuits Realization

Power Supply

To power the entire subsystem steadily, we use a low current three-terminal

adjustable positive voltage regulator (LM317), which generates a constant output

voltage. The application circuit (figure 3.5) is very simple and only requires two

external resistors to set the output voltage.

Figure 3.5 LM317 application circuit

The approximation equation to calculate is

)1(25.1
1

2

R
RVout +×=

Here, R2 and R1 are 27 KΩ and 18 KΩ, respectively. Thus the output voltage is

set to 3.125 V approximately, which is suitable to power the MCU and tranceiver. In

practice, the value is 3.27 V.
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Connections between MSP430 and CC1020

These connections can be divided into two parts, configuration interface and

signal interface as shown in Figure 3.6.

Figure 3.6 Connections between MSP430F149 and CC1020

The configuration interface performs as a 4-wire SPI bus. When configuring, the

MCU is the master and CC1020 is its slave. In CC1020, there are 8-bit configuration

registers, each addressed by a 7-bit address. A Read/Write bit initiates a read or write

operation.

During each cycle, 16 bits are sent in series following this order: Address (7 bits),

Read/Write (1 bits) and Data (8 bits). During the write cycle, the 16 bits are sent on

the PDI line, and PDI should be configured as output by the MCU. During the read

cycle, the Address bits and Read bit are sent by the MCU firstly on the PDI line, then

CC1020 outputs the corresponding Data 8 bits to the MCU through the PDO line and

PDO should be configured as input by the MCU. Between each read or write cycle,

PSEL must be set high. The write and read operations are illustrated in Figure 3.7 and

Figure 3.8, respectively.
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Figure 3.7 Configuration registers write operation

Figure 3.8 Configuration registers read operation

The signal interface has 2 wires. Here, CC1020 acts as the master and the MCU

is its slave. CC1020 can be configured for three different data formats: synchronous

NRZ (Non-Return to Zero) mode, synchronous Manchester encoding mode and

transparent asynchronous UART mode. We choose to use the synchronous NRZ mode

data format. Both in transmit mode and receive mode, CC1020 provides a clock (9600

bps for us) at DCLK and data at DIO should be always clocked at the rising edge of

DCLK. DIO is used as data input of CC1020 in transmit mode and data output of

CC1020 in receive mode. The whole timing diagrams are shown in Figure 3.9,

demonstrating both transmit and receive processes.
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Figure 3.9 Synchronous NRZ mode Transmit & Receive processes

The clock frequency is decided by CC1020 external oscillator and several related

registers. In our case, we use a 14.7456 MHz (optimum value referring to datasheet)

oscillator and enable CLOCK A register. According to the equation

21)1_(8 DIVDIVDIVREF
fBaudRate xosc

••+•
= ,

we set REF_DIV, MCLK_DIV1 and MCLK_DIV2 of CLOCK A to 1 (001),

48(110), and 2 (01) to get 9600 baud. That means setting register CLOCK A to 0x39.

CC1020 application circuit

To manage CC1020 to work properly, a few external passive components with

fitting values should be mounted besides correct configurations. The values of these

components can be easily calculated with the help of SmartRF® Studio. The

application is shown below (figure 3.10).
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Figure 3.10 CC1020 application circuit

The circuit is realized identically except omitting the LC Filter part next to T/R

Switch. In this schematic, L1 and C1 is the input match for the receiver; L1 is also a

DC choke for biasing;L2 and C3 are used to match the transmitter to 50 Ω; The PLL

loop filter consists of two resistors (R2 and R3) and three capacitors (C6-C8); An

external crystal with two loading capacitors (C4 and C5) is used for the crystal

oscillator. A very important part which is not shown is power supply decoupling and

filtering capacitors. To get optimum performance for narrowband applications, the

values and positions of these capacitors closely follow the CC1020EMX reference

design, which can be found in TI website.

Antenna Switch

This section of the subsystem includes switch and antenna two parts. Figure 3.11

shows the switch circuit. The switch is actually a relay. Its control part is a MOSFET

switch. The control signal is from the MCU.

The relay has four terminals. The VCC is used to power it. The NC and NO are

used to connect RFIN and RFOUT pins of CC1020 standing for receive and transmit

channel. The COM terminal connects the antenna.
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Figure 3.11 Switch circuit

3.3.3 Interfaces

MCU (MSP430F149) and OBC

The MSP430F149 exchanges data with OBC with a serial bus. On the

micro-controller side, its module USART0 is used. USARTs of MSP430F149 can be

configured to work in UART (Universal Asynchronous Receiver/Transimitter) mode,

SPI (Serial Peripheral Interface) mode, I2C (Inter-Integrated Circuit) mode or just

basic digital I/O terminals[8]. In this case, USART0 is working in UART mode. In the

later test procedure, the MCU is connected to PC with a RS232 bus.

The UART block diagram is shown in the figure below (figure 3.5). In UART

mode, the USART0 connects the MSP430 to an external system via two external pins,

URXD and UTXD. And this mode is selected when SYNC bit is cleared also as

shown in the same figure.
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Figure 3.12 USART block diagram (UARTmode)

The UART character format, shown in Figure 3.6, consists of a start bit, seven or

eight data bits, an even/odd/no parity bit, an address bit (address-bit mode), and one

or two stop bits. The bit period is defined by the selected clock source and setup of the

baud rate registers. Timing for each character is based on the selected baud rate of the

USART.

Figure3.13 Date format of UARTmode

To select baud rate in UART mode, what we need to do is to configure the 16-bit

register storing an integer N. The register is actually the combination of two 8-bit

registers, U0BR0 storing 8 LSB (Least Significant Bit) and U0BR1 storing 8 MSB
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(Most Significant Bit).

][
BaudRate
BRCLKN =

where BRCLK the frequency of the crystal oscillator of the micro-controller and

[] means just taking the integral part.

For instance, if BRCLK is 4 MHz and baud rate is 9600 bps, N should be 416.

And 416 is 0x01A0, thus U0BR0 should be configured to be 0xA0 and U0BR0

should be configured to be 0x01. When BRCLK is 8 MHz, we should write 0x41 and

0x03 to U0BR0 and U0BR1, respectively.

To manage the UART0 module to work properly, besides U0BR0 and U0BR1,

there are other registers must be written into right values to implement selected

functions. Table 3.2 shows these kind registers and their proper values for our case.

Our main specification is 9600 baud; UART mode and no parity, 8 bits length and 1

stop bit data format.

Table 3.2 USART0 control and status registers

Register Short Form Configuration Value

Pin selection P3SEL 0x30

USART control U0CTL 0x10

Transmit control U0TCTL 0x39

Modulation control U0MCTL 0x00

Baud rate control 0 U0BR0 0x03

Baud rate control 1 U0BR1 0x41

SFR module enable ME1 0xC0

MCU and CC1020

As referred before, interfaces between can be divided into two parts,

configuration interface and signal interface. Connection details can be referred to

3.3.2. Here, we just give the cons and pros of SPI bus.

The advantages are:



3-Hardware Development

26

� Full duplex communication

� Higher throughput than I²C or SMBus

� Complete protocol flexibility for the bits transferred

� Not limited to 8-bit words

� Arbitrary choice of message size, content, and purpose

� Extremely simple hardware interfacing

� Typically lower power requirements than I²C or SMBus due to less circuitry

(including pullups)

� No arbitration or associated failure modes

� Slaves use the master's clock, and don't need precision oscillators

� Slaves don't need a unique address -- unlike I²C or GPIB or SCSI

� Wires in board layouts or connectors, much less than parallel interfaces

� At most one "unique" bus signal per device (chip select); all others are shared

� Signals are unidirectional allowing for easy Galvanic isolation

The disadvantages are:

� Requires more pins on IC packages than I²C, even in the "3-Wire" variant

� No in-band addressing; out-of-band chip select signals are required on shared

buses

� No hardware flow control (but master can delay the next clock edge to slow

the transfer rate)

� No hardware slave acknowledgment (the master could be "talking" to

nothing and not know it)

� Only handles short distances compared to RS-232, RS-485, or CAN-bus

� Supports only one master device

� No error-checking protocol is defined

� Generally prone to noise spikes causing faulty communication

� Without a formal standard, validating conformance is not possible

The following section only describe signal interface for further. The

micro-controller uses P5.2 and P5.3 to communicate with DCLK and DIO of CC1020.

Port 5 is actually the USART1 module of MSP430F149. And USART1 is configured

/wiki/Full_duplex
/wiki/I%C3%82%C2%B2C
/wiki/System_Management_Bus
/wiki/Address_space
/wiki/I%C3%82%C2%B2C
/wiki/GPIB
/wiki/SCSI
/wiki/Galvanic_isolation
/wiki/I%C3%82%C2%B2C
/wiki/Chip_select
/wiki/Flow_control
/wiki/RS-232
/wiki/RS-485
/wiki/CAN-bus
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differently in different communication subsystem working modes (transmit or

receive).

1) Transmit Mode

As mentioned before, USARTs of MSP430 can operate in four modes. When the

whole subsystem is working in transmit mode, USART1 operates in SPI mode (so

SYNC is set high) and performs as a slave while CC1020 works as an external master.

The configuration is shown in Figure 3.14.

Figure 3.14 USART1 Slave and SPI mode

UCLK is used as the input for the SPI clock and must be supplied by the external

master CC1020. The data-transfer rate is determined by this clock and not by the

internal baud rate generator of USART1, thus there is no need to configure registers

U1BR0 and U1BR1. Typical applications are 3 or 4 wires connections, but here only

SOMI and UCLK are needed for we just have one slave and always enabling transmit

or receive operations between the MCU and CC1020.

The polarity and phase of UCLK are independently configured via the CKPL and

CKPH control bits of the USART. Timing for each case is shown in Figure 3.15.
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Figure 3.15 USART SPI timing

We configure CKPH and CKPL to be 0 and 1 to let TX data shifted out at the

falling edge. Still, we need to configure control and status registers properly (Table

3.3).

Table 3.3 UART1 control and status registers

Register Short Form Configuration Value

Pin selection P5SEL 0x0E

USART control U1CTL 0x14

Transmit control U1TCTL 0x83

Modulation control U1MCTL 0x00

SFR module enable ME2 0x10

2) Receive mode

When the subsystem is working in receive mode, the module function of Port 5

is disabled which means P5.0-P5.7 performs as normal I/O pins. This can be easily

done by configuring ME2 as 0x00. Both UCLK and SOMI should be configured as

input.

Since Port 5 performs as digital I/O, registers P5IN, P5OUT, P5DIR and P5SEL

are useful. Each bit in P5IN register reflects the value of input signal of the

corresponding I/O pin. Bit 0 means that input is low and bit 1 means that input is high.
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Each bit in P5OUT is the output signal on the corresponding pin when the pin is

configured as output direction. Each pin's direction is decided by the corresponding

bit stored in P5DIR. Bit 0 means input direction and bit 1 means output direction.

Because port pins are often multiplexed with other peripheral module functions,

PxSELs are used to enable or disable I/O function of each pin. Bit 0 means enabling

I/O function and bit 1 stands for peripheral module function.

Here, we only use P5.2 (UCLK) and P5.3 (SOMI) of MSP430F149. It is receive

mode. So, both UCLK and SOMI should be configured as I/O function and input

direction. Through the software, write both P5SEL and P5DIR as 0x00, respectively.

At the same time, ME2 is set to 0x00 to disable module function and U1CTL is also

reset by software to disable SPI.

Unused I/O pins should be configured as I/O function, output direction, and left

unconnected on the board to reduce power consumption.
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Chapter 4
Software Development

This chapter presents the details of software development. Since the UHF

communication is dedicated to be compatible with amateur radios, AX.25 protocol

and G3RUH packet radio standard (a standard way to scramble and descramble

amateur radio packets) are addressed first of all. Then, modules realized by software

and their relations are discussed. And the final section provides descriptions of

functions of all modules.

4.1 AX.25 protocol and G3RUH standard

To design a UHF communication subsystem compatible with amateur radios so that

every amateur radio over the world can communicate with AraMiS, the software must

be capable of transmit and receive AX.25 protocol packets. The radio we are using is

PK96 and it is based on the G3RUH packet radio standard. Thus the transmit and

receive methods are coherent to this standard.

4.1.1 AX.25 protocol

AX.25 is a data link layer protocol derived from the X.25 protocol suite and

designed for use by amateur radio operators. It is used extensively on amateur packet

radio networks. The AX.25 version 2.2 Link-Layer Protocol provides this service,

independent of the existence of any upper layer.

Most link-layer protocols assume that one primary (or master) device (generally

called a Data Communication Equipment, or DCE), is connected to one or more

secondary (or slave) device(s) (usually called a Data Terminating Equipment, or DTE).

This type of unbalanced operation is not practical in a shared RF amateur radio

environment. Instead, AX.25 assumes that both ends of the link are of the same class,
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thereby eliminating the two different classes of devices. In this protocol specification,

the phrase Terminal Node Controller (TNC) refers to the balanced type of device

found in amateur packet radio [9].

Link layer packet radio transmissions are sent in small blocks of data, called

frames. There are three general types of AX.25 frames: 1) Information frame (I frame);

2) Supervisory frame (S frame); and 3) Unnumbered frame (U frame). Each frame is

made up of several smaller groups, called fields. Figures 4.1 and 4.2 illustrate the

three basic types of frames.

Figure 4.1 U and S frame construction

Figure 4.2 Information frame construction

In the two figures, FCS is Frame Check Sequence field and PID is Protocol

Identifier field. All fields except the Frame Check Sequence (FCS) are transmitted

low-order bit first. FCS is transmitted bit 15 first. The following section describes

each field in details.

Flag Field

To avoid overruns and data losses, the flag field is needed to distinguish every

frame. It is one octet long. Because the flag delimits frames, it occurs at both the

beginning and end of each frame. Two frames may share one flag, which would

denote the end of the first frame and the start of the next frame. A flag consists of a

zero followed by six ones followed by another zero, or 01111110 (7E hex). As a result

of bit stuffing, this sequence is not allowed to occur anywhere else inside a complete

frame.

Flags are sent over and over again when no data are transmitting. For instance,

when you set the TXdelay on your TNC to some value, it sends flags (7E's) over and
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over again for that period. These flags provide the receiver with a clear indication of

when one packet has ended and the next is beginning.

Address Field

The address field identifies both the source of the frame and its destination.

Optionally, it also consists of two Data Link Layer repeater sub-fields. Each sub-field

consists of an amateur callsign and a Secondary Station Identifier (SSID). The

call-sign is made up of upper-case alpha and numeric ASCII characters only. The

SSID is a four-bit integer that uniquely identifies multiple stations using the same

amateur call-sign.

The HDLC address field is extended beyond one octet by assigning the

least-significant bit of each octet to be an "extension bit". The extension bit of each

octet is set to "0" to indicate the next octet contains more address information, or to

"1", to indicate that this is the last octet of the HDLC address field. To make room for

this extension bit, the amateur radio call- sign information is shifted one bit left.

Reference 9 section 3.12 details the address field encoding.

Control Field

The control field identifies with one or two octets in length the type of frame

being passed and controls several attributes of the Data Link Layer connection. This

field in AX.25 are modeled after the ISO HDLC balanced operation control fields.

Figures 4.3 and 4.4 illustrate the basic format of the control field associated with

each of AX.25 three types of frames. The control field can be one or two octets long

and may use sequence numbers to maintain link integrity. These sequence numbers

may be three-bit (modulo 8) or seven-bit (modulo 128) integers.
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Figure 4.3 Control field formats (modulo 8)

Figure 4.4 Control field formats (modulo 128)

PID Field

The Protocol Identifier (PID) field appears in information frames (I and UI) only.

It identifies which kind of Layer 3 (Network Layer) protocol, if any, is in use. The

PID itself is not included as part of the octet count of the information field. The

encoding of the PID is as follows (Figure 4.5):
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Figure 4.5 PID definition1

Information Field

This field is where the users' data locates. The Information field is allowed only

in these five types of frames: the I frame, the UI frame, the XID frame, the TEST

frame and the FRMR frame. The default length of this field is 256 octets. Any

information in the Information field is passed along the link transparently, except for

the zero-bit insertion (Bit Stuffing) necessary to prevent flags from accidentally

appearing in the Information field.

1 An “Y” indicates all combinations used.
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Frame Check Sequence

The Frame-Check Sequence (FCS) is a sixteen-bit number calculated by both the

sender and the receiver of a frame. It is computed over the Address, Control, and

Information fields. It provides a method by which the receiver can detect errors that

may have been induced during the transmission of the frame, such as lost bits, flipped

bits, and extraneous bits.

In practical applications, FCS is more preferred to be CRC (Cyclic Redundancy

Check).

4.1.2 HDLC encoding Polynomial scrambling/descrambling

The main concepts addressed in this sub-section are HDLC encoding and LFSR

(Linear Feedback Shifted Register) scrambling and descrambling which is called

G3RUH standard named by James miller.

4.1.2.1 Transmit AX.25 packets

Before the data is sent out, it is handled by these procedures: NRZ encoding, bit

stuffing, polynomial scrambling and frame delimiting.

NRZI encoding

In NRZI (Non-Return to Zero Inverse) encoding, a zero is transmitted by a

change in the output, while a one is sent by no change in the output. This is illustrated

in Figure 4.6.

Figure 4.6 NRZI encoding
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Bit stuffing

There is an obvious weakness of NRZI encoding that if there are too many one

bits in a row, a DC component is needed for transmission. And this is not reliable for

reception to recovery the timing of each bit. The solution of usual stream-oriented

data transmission schemes is bit stuffing. That is if too many bits of one kind appear

in a row, insert a bit of the other kind on transmission, and remove it on reception.

The process is shown in Figure 4.7. In this standard, only maximum five consecutive

one are allowed in a row. When the sixth one occurs, insert a zero before the one bit

on transmission and remove the zero on reception.

Figure 4.7 bit stuffing process

Frame delimiting

HDLC indicates the beginning and end of a frame with a bit pattern (preferred to

call flag) that is not permitted in user data: the octet 0x7e. And this pattern is not the

subject of bit stuffing.

Polynomial scrambling

Polynomial scrambling is a typical modem function to handle transmitted data.

The process of scrambling the data enhances its transmission in several ways:

� An increased density of transitions further eases timing recovery.

� An increased density of transitions further reduces the low frequency

bandwidth requirements of the system.

� The pseudo-random nature of the scrambled data renders the transmitted

spectrum noise-like, with no spectral lines that could interfere with other
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services in shared spectrum allocations.

The standard 9600 baud modem is designed by James Miller and use polynomial

scrambling. Its polynomial is 1+X12+X17. And this design is named by his amateur

radio call-sign G3RUH. The scrambling process using LFSR is shown in the figure

below (Figure 4.8).

Figure 4.8 polynomial scrambler in G3RUH modem

The original implementation was built with discreet logic shift registers and

exclusive-OR gates. Modern implementations use programmable logic or perform

these operations in software.

4.1.2.2 Receive AX.25 packets

On reception, it is merely the reverse process of transmission: descrambling,

flags eliminating, skipping bit stuffing zero and recovery from NRZI encoding.

The scrambling and descrambling work in the same way. The scrambling divides

the bit sequence by the polynomial, while the descrambling multiplies the same

polynomial illustrated in Figure 4.9.

Figure 4.9 polynomial descrambler in the G3RUH modem
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4.2 Software modules

The communication software is implemented in the C language with IAR Embedded

Workbench provided by TI Company. The source codes are structured as a set of

functionality modules required by the communication subsystem. Table 4.1 gives a

brief description of each module.

Table 4.1 software module brief description

File Description

main.c Implement the communication controller main processing loop

CC1020.c Implement the CC1020 transceiver interfaces

AX25.c Implement the TNC functionality in software

uart.c Implement the UART functionality in software

SPI.c Implement the SPI bus interface

timer.c Implement a timer functionality

The relations between each software module are shown in the block diagram

below (Figure 4.10).

Figure 4.10 relations between each software module
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4.3 Functionality description

The section provides the details of every functionality file of the software design. The

full source codes are available in Appendix A except CC1020 software module.

4.3.1 Main communication Control (main.c)

The behavior of the UHF communication subsystem is very simple. The entire

loop process is illustrated in Figure 4.11.

After initialization, the system calls functions in uart.c to receive commands

from the OBC. There will be three states to handle. If it is a transmit command,

configure the whole system in transmit mode, especially the transceiver with

functions in CC1020.c. The transmission process calls functions from AX25.c which

performs as a real TNC. After that, go back to the beginning of the whole loop.

Provided that a receive command, configure the system in receive mode and begin to

receive packets. There are three cases to end the reception: timeout, Non-valid CRC

and full valid packet. Then, go back to the beginning of the loop. If the command is a

order to generate a carrier, configure properly and send a carrier in some time and

then go back to the loop beginning. If no valid command is got from the OBC, the

software will keep listening and all other parts like transceiver and power amplifier

are in power-down mode to save power.
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Figure 4.11 main.c loop behaviour

After whatever transmission, generating carrier or reception, the system will

disable the transceiver right now to save power. Before this, bus terminals' module

functions are also disabled.

4.3.2 Transceiver interface (CC1020.c)

The CC1020 is a highly programmable device. Using its programming bus (SPI),

the carrier frequency and power consumption levels can be set, the PLL can be

re-calibrated, and switching between transmit and receive modes is easy to be done.

This programmability is achieved through the 8-bit registers built in the CC1020 itself.

These registers control every aspect of the operations of the CC1020 and are fully

programmable though the programming bus.

The CC1020.c file includes all functions to configure or read status from the

control registers. The main functions are as the following:

� void CC1020_SetReg(char registro, char dato)

The basic function to configure one certain register of CC1020.

� char CC1020_ReadReg(char registro)

The basic function to read value from a certain register of CC1020.
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� void CC1020_Init(void)

Configure the interface pins (PSEL, PDI, PDO, PCLK) in order to proceed

the working configurations of CC1020.

� char CC1020_Reset(void)

Configure the registers of CC1020 with default values.

� void CC1020_WakeUpToTX(char txanalog)

Configure the register ANALOG to wake up the CC1020 to transmit data by

switching on the quartz, bias generator and frequency synthesizer. Before starting bias

generator, the quartz needs 2-5 ms to get stabilization. Otherwise, functionality failure

will be induced. Another 150 ms should be set between the power generator and the

bias of the synthesizer to hang up the PLL.

� char CC1020_Calibrate(char pa_power)

Ensure the PLL working properly while PA should be off.

� char CC1020_SetupTX(char txanalog, char pa_power)

Configure the registers ANALOG and PA Power which control the PLL and

output power respectively. After calling this function, the system is ready to transmit.

� void CC1020_SetupPD(void)

After transmission, disable the internal power amplifier.

� char CC1020_Config_X2(void)

Configure the registers of CC1020 to control frequency used, desired output

power, baud rate, modulation type and other parameters of the subsystem.

� void CC1020_WakeUpToRX(char RXANALOG)

Configure the register ANALOG to wake up the CC1020 to receive data by

switching on the quartz, bias generator and frequency synthesizer. Before starting bias

generator, the quartz needs 2-5 ms to get stabilization. Otherwise, functionality failure

will be induced. Another 150 ms should be set between the power generator and the

bias of the synthesizer to hang up the PLL.

� char CC1020_SetUpToRX(char RXANALOG, char PA_POWER)

2 X stands for Carrier, Tx and Rx three cases.
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Configure the registers ANALOG and PA Power which control the PLL and

output power respectively. After calling this function, the system is ready to receive.

These functionalities are just indicated by their names. Most functionality like

initialization and configuration of transmit or receive is highly abstracted. But the

ability to read or write an individual register is also available.

4.3.3 Software TNC (AX25.c)

This file realizes the functionality of a real TNC based on the G3RUH standard.

There are two main functions, void AX25_SendPacket(unsigned char * packet,

unsigned int packet_len) and unsigned int AX25_ReceivePacket(unsigned char *data),

which are used in transmit mode and receive mode separately. Every bit both in

transmission and reception are handled as AX.25 protocol, HDLC encoding and

G3RUH standard require. The transmission and reception process are shown

correspondingly in Figure 4.12 and Figure 4.13.
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Figure 4.12 software TNC transmission process
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Figure 4.13 software TNC reception process

One thing should be referred is the FCS calculation. A Frame Check Sequence

(FCS) refers to the extra checksum characters added to a frame in a communication

protocol for error detection and correction. All frames and the bits, bytes, and fields

contained within them, are susceptible to errors from a variety of sources. The FCS
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field contains a number that is calculated by the source node based on the data in the

frame. This number is added to the end of a frame that is sent. When the destination

node receives the frame the FCS number is recalculated and compared with the FCS

number included in the frame. If the two numbers are different, an error is assumed,

the frame is discarded. The sending host computes a checksum on the entire frame

and appends this as a trailer to the data. The receiving host computes the checksum on

the frame using the same algorithm, and compares it to the received FCS. This way it

can detect whether any data was lost or altered in transit. The FCS is transmitted in

such a way that the receiver computes a running sum over the entire frame, including

the trailing FCS, and expects to see a fixed result when it is correct.

The Frame Check Sequence can use a number of different methods; however

these are the most popular:

� CRC – Cyclic redundancy Check – Polynomial calculations are performed on

the data

� Two Dimensional Parity – Uses a parity bit to make sure the data has not

been corrupted.

� Checksum – Sums the data to arrive at a total.

Most people prefer to use the CRC method. The figure below shows the

hardware (Figure 4.14) in a real TNC (PK96) with which to generate FCS of a packet.

Figure 4.14 CRC calculation hardware of PK96

In our software, we use the bye-wise CRC-16 polynomial method. This method

is a byte-wise CRC calculation which can handle 8 bits at once and it is almost four

times faster than a bit-oriented calculation[10]. And the drawback is more memory

needed. The implemented polynomial is X16+X12+X5+X0 as well and the look-up table

is shown in Table 4.2.
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Table 4.2 look-up table for CRC calculation

0x0000 0x1189 0x2312 0x329b 0x4624 0x57ad 0x6536 0x74bf

0x8c48 0x9dc1 0xaf5a 0xbed3 0xca6c 0xdbe5 0xe97e 0xf8f7

0x1081 0x0108 0x3393 0x221a 0x56a5 0x472c 0x75b7 0x643e

0x9cc9 0x8d40 0xbfdb 0xae52 0xdaed 0xcb64 0xf9ff 0xe876

0x2102 0x308b 0x0210 0x1399 0x6726 0x76af 0x4434 0x55bd

0xad4a 0xbcc3 0x8e58 0x9fd1 0xeb6e 0xfae7 0xc87c 0xd9f5

0x3183 0x200a 0x1291 0x0318 0x77a7 0x662e 0x54b5 0x453c

0xbdcb 0xac42 0x9ed9 0x8f50 0xfbef 0xea66 0xd8fd 0xc974

0x4204 0x538d 0x6116 0x709f 0x0420 0x15a9 0x2732 0x36bb

0xce4c 0xdfc5 0xed5e 0xfcd7 0x8868 0x99e1 0xab7a 0xbaf3

0x5285 0x430c 0x7197 0x601e 0x14a1 0x0528 0x37b3 0x263a

0xdecd 0xcf44 0xfddf 0xec56 0x98e9 0x8960 0xbbfb 0xaa72

0x6306 0x728f 0x4014 0x519d 0x2522 0x34ab 0x0630 0x17b9

0xef4e 0xfec7 0xcc5c 0xddd5 0xa96a 0xb8e3 0x8a78 0x9bf1

0x7387 0x620e 0x5095 0x411c 0x35a3 0x242a 0x16b1 0x0738

0xffcf 0xee46 0xdcdd 0xcd54 0xb9eb 0xa862 0x9af9 0x8b70

0x8408 0x9581 0xa71a 0xb693 0xc22c 0xd3a5 0xe13e 0xf0b7

0x0840 0x19c9 0x2b52 0x3adb 0x4e64 0x5fed 0x6d76 0x7cff

0x9489 0x8500 0xb79b 0xa612 0xd2ad 0xc324 0xf1bf 0xe036

0x18c1 0x0948 0x3bd3 0x2a5a 0x5ee5 0x4f6c 0x7df7 0x6c7e

0xa50a 0xb483 0x8618 0x9791 0xe32e 0xf2a7 0xc03c 0xd1b5

0x2942 0x38cb 0x0a50 0x1bd9 0x6f66 0x7eef 0x4c74 0x5dfd

0xb58b 0xa402 0x9699 0x8710 0xf3af 0xe226 0xd0bd 0xc134

0x39c3 0x284a 0x1ad1 0x0b58 0x7fe7 0x6e6e 0x5cf5 0x4d7c

0xc60c 0xd785 0xe51e 0xf497 0x8028 0x91a1 0xa33a 0xb2b3

0x4a44 0x5bcd 0x6956 0x78df 0x0c60 0x1de9 0x2f72 0x3efb

0xd68d 0xc704 0xf59f 0xe416 0x90a9 0x8120 0xb3bb 0xa232

0x5ac5 0x4b4c 0x79d7 0x685e 0x1ce1 0x0d68 0x3ff3 0x2e7a

0xe70e 0xf687 0xc41c 0xd595 0xa12a 0xb0a3 0x8238 0x93b1

0x6b46 0x7acf 0x4854 0x59dd 0x2d62 0x3ceb 0x0e70 0x1ff9

0xf78f 0xe606 0xd49d 0xc514 0xb1ab 0xa022 0x92b9 0x8330

0x7bc7 0x6a4e 0x58d5 0x495c 0x3de3 0x2c6a 0x1ef1 0x0f78

The calculation procedures are as the following:

1. Initial the FCS with 0xFFFF;

2. Exclusive-OR the new input byte with the least significant byte of FCS, and

use the result as the index to get values from the look-up table;

3. FCS shifts 8 bits to the right

4. Exclusive-OR FCS with the new value got from the look-up table;
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5. Repeat the steps from 1 to 4 for all data bytes.

4.3.4 Timer (timer.c)

In this file, the function void TIMER_SetupTimer_ms(short volatile *semaforo)

realizes a timer functionality with the ms-wise counter. void TIMER_Wait_ms(short

volatile semaforo) and void TIMER_Wait_us(short volatile semaforo) are used to be

waiting cycles whose time units are ms and us separately.

4.3.5 Data interface (uart.c)

Functions used to communicate with OBC are defined in this file.

� void UART_Init(void);

Function that enables the module USART0 of the micro-controller.

Character attributes and baud rate are defined.

� void UART_SendByte (unsigned char data);

Function that allows to transmit a byte to USART.

� unsigned char UART_ReceiveByte (void);

Function that allows USART to receive a byte.

� void printUART (unsigned char *message);

Function whose purpose is to print the whole message through the RS232

serial bus.

� unsigned char CRC( unsigned char *pDato, unsigned short dim);

Function which is used to calculate CRC of transmitted or received packets.

� unsigned char UART_ReceivePacket(unsigned char *pDato);

Function that allows USART to receive a packet which can be more than

one byte.

� unsigned char uart_SendPacket(unsigned char *pDato);

Function that allows to transmit more than one byte data to USART.
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4.3.6 Configuration interface (SPI.c)

Functions used for USART0 in SPI mode which performs as a SPI bus to

configure the registers of CC1020 are defined in this file.

� void SPI_Init(void)

Configure the port of USART0 to work in SPI mode. The character

attributes, baud rate and other parameters are defined.

� void SPI_Disable(void)

Function that disables the module functionality of USART0 and enables the

digital I/O functions of the corresponding port.

� void SPI_SendByte (unsigned char data)

Function that transmits character from RXTXData buffer.

� unsigned char SPI_ReceiveByte ( void )

Function that receive character from RXTXData buffer.

� void SPI_ResetBit (void)

Reset bit transmission counter.

� void SPI_SendBit (unsigned char data)

Function that transmits character from RXTXData buffer bit by bit.
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Chapter 5
Realization and Test

This chapter addresses the PCB realization of the communication subsystem and

experiments established to test all functionalities.

5.1 PCB realization

To design and realize a PCB, the main following procedures can be followed with the

help of the software Mentor Graphics:

� Create a components library with Library Manager;

� Draw and verify schematics with Design Capture;

� Produce PCB layout and optimize connections with Expedition PCB;

� Generate Gerber files used for manufactures.

The symbols and cells of each component are defined in the overall library of the

AraMis project, serving for the schematics and layouts design.

Figure 5.1 shows the final PCB layout of the UHF communication subsystem.

From this layout, we can easily find the 32-pin CC1020 and below the transceiver, it

is the 64-pin micro-controller MSP430F149. The LM317 is on the left side of the

MCU and the position to place the antenna is above th transceiver, which has 5

terminals to solder.

Figure 5.2 shows the PCB in kind, which is a realization of a former version

layout. And we built two prototypes of the communication subsystem with this kind

board.
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Figure 5.1 PCB layout
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Figure 5.3 a realization of layout

5.2 Experiments for test

To evaluate the functionalities of the whole system in both hardware and software, we

have designed and completed some experiments. These equipment and software are

used in the test:

Hardware

PC DC power supply (GPC-3030D)

Oscilloscope (ADS7102C) Radio (YAESU FT-847)

TNC (PK96) 2 evaluation boards

RS233 cable and USB adaptor Spectrum Analyzer

Soldering equipments

Software

IAR Embedded Workbench RealTerm

Control panel software
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A brief description is presented in the following table (Table 5.1).

Table 5.1 brief description of experiments

Experiment Descriptions

# 1 Transparent data transmission and reception to test hardware

# 2 Predefined AX.25 packet transmission and reception to test the

software TNC

# 3 Communication with amateur radio

The section below gives the details of these three test experiments.

Experiment # 1

The goal of this experiment is to test the fundamental hardware functionality that

if the subsystem can transmit and receive properly. The communication is done

between the two evaluation boards which both are the prototypes of the

communication subsystem, built with the same components. The data is transparent,

which means that it is not encoded on transmission so that there is no need to decode

it.

Figure 5.2 experiment 1 construction

Figure 5.2 shows the construction of this experiment. The debug interface is a

JTAG port to program the micro-controller with the IAR Embedded Workbench

software and the data interface is a RS232 serial bus through which the commands

from PC are sent to the micro-controller and all information can be sent back using

the USART1 module functionality.

One board runs automatically and is not controlled manually. It keeps transmit a

predefined sequence bits. The other board is controlled by the software to receive this
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packet. The first part of the transmitted packet are "010101010101......", which are

recommended to use for the transceiver CC1020 to sense the carrier. This kind bit

pattern can improve the performance of BER (Bit Error Rate) and it is proved by the

experiment. If one board transmit packets including this kind preambles and other

parts, after sensing the preambles which means the receiver has got synchronization,

the other begins to store what it receives and the bit error is zero in the short distance.

Otherwise, if we use preambles which are similar as "0111110111......" (many same

bit in a row), the bit error will be increased largely.

Actually, before other tests, the communication subsystem works in the right

frequency should be ensured. And the Spectrum Analyzer can detect the broadcasting

signal. The figure below (Figure 5.3) displays the detecting spectrum, which proves

the transmitter uses the right 437 MHz frequency3.

Figure 5.3 spectrum analyzer

Through this experiment, from the hardware point of view, we can verify that at

least the subsystem can transmit and receive data properly. From the software point of

view, the functions, except those that realize a real TNC functionalities (encoding,

decoding and FCS calculation of AX.25 protocol packets), also work.

3 Precisely, the actual frequency is 437.008 MHz.
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Experiment # 2

The main goal of this experiment is to test the AX25.c software module. The

construction is the same as experiment 1. A predefined AX.25 protocol packet is

transmitted by one evaluation board over and over again. The MCU of the sending

board performs the same transmission functionality of a TNC and the MCU of the

receiving board performs the same reception functionality of a TNC. The experiment

has two steps. The first step is to test the reception function and the second step is to

test the transmission function.

In the first step, the test packet we use is: "~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ p r o v a . j ~ ~", and after decoding, the packet

transmitted by CC1020 is: "FE F1 6E 90 A0 BC A5 6A FA E4 2D CE 34 FA AB 29

19 FB ED BD D3 FD 28 D2 E7 B9 F6 BD 6E 76 AE AF 43 5D 6A 86 E3 D3 B2 2C

05 28 AE E0 47 8A A5 91 F5 29 56 FF 3A 72 C4 EB D2 36 34 86 AC D7 65 E3 12

3E 54 04 94 B5 FF FB FE BC EA 6E 2D 2B 3A D8 91 C4 A5 B6 58 F4 6D C2". The

received packet should be the former one. Fortunately, the result is what we expect,

thus the reception function works. Based on this fact, we can test the TNC

transmission function now. The transmission packet includes starting FLAG,

PROLOGO, and a number of 0xAA whose quantities can be controlled, FCS and

ending FLAG. And the receiving board can get the same packet, which demonstrates

the TNC reception function works as well.

In the receiving process, before every bit is sampled by the I/O pin of the

micro-controller, descrambling calculations are done and CRC is re-calculated after

every byte by the software. Since the baud rate is fixed, to avoid missing the coming

bits, we should be ensuring that the calculation time is much less than the period of

the data rate. To know the time the two calculations needs, we set P1.0 of the

micro-controller to 1 before calculations and set it to 0 after that. The test result is that

the descrambling processes for every bit needs 10 us and the CRC calculation for

every byte needs 5 us under the condition of 8 MHz crystal oscillator for the
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micro-controller. The period of the data is 100 us, thus it is stable enough. And these

data determine the minimum frequency of the crystal oscillator. We can calculate the

minimum value in this way: Fxoscmin = 8 MHz/(baud period/15 us). Baud rate is 9600

bps, so the minimum value required is 1.152 MHz.

Experiment # 3

The former two experiments have tested all functionalities of the software. All

functions work properly when data is exchanged between the two evaluation boards,

each of which is the prototype of the UHF communication subsystem. But the

ultimate goal of the subsystem design is that it can communicate with amateur radios.

The experiment is assigned to test the ability in this aspect.

The experiment diagram is shown in Figure 5.4.

Figure 5.4 experiment 3 construction

Three software are needed, IAR Embedded Workbench, Realterm and the control

panel software, shown in Figure5.5.
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Figure 5.5 windows of software

The Realterm software controls the TNC in KISS (Keep It Simple, Stupid) mode.

Then, users can manage the TNC to transmit or receive packets after proper

configurations. The KISS is a simple Host-to-TNC communication protocol [11].

Asynchronous frame format is used to delimit frames. Each frame is both preceded

and followed by a special FEND (Frame End) character, analogous to an HDLC flag.

No CRC or checksum is provided. In addition, no RS-232C handshaking signals are

employed. The special characters are in table 5.2. The reason for both preceding and

ending frames with FENDs is to improve performance when there is noise on the

asynchronous line. The FEND at the beginning of a frame serves to "flush out" any

accumulated garbage into a separate frame (which will be discarded by the upper

layer protocol) instead of sticking it on the front of an otherwise good frame. As with

back-to-back flags in HDLC, two FEND characters in a row should not be interpreted

as delimiting an empty frame.
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Table 5.2 special characters in KISS protocol

Abbreviation Description Hex value

FEND Frame End C0

FESC Frame Escape DB

TFEND Transposed Frame End DC

TFESC Transposed Frame Escape DD

Experiment #3 can also be divided into two steps. Similarly, the first step is

transmission test. The transmission packet includes starting FLAG, PROLOGO, and a

number of 0xAA whose quantities can be controlled, FCS and ending FLAG. The

software Realterm communicates with the TNC and it can show what the received

data by the radio after the TNC decoding (Figure 5.6), which can demonstrate that

amateur radios can receive data from the UHF communication subsystem

satisfactorily.

The second step is obviously reception test. The software Realterm controls the

KISS mode TNC to transmit the packet in Hex "C0 00 82 A4 82 9A 92 A6 E0 82 98

98 40 40 40 61 03 F0 DB DC DB DC DB DD DB DD 48 65 6C 6C 6F 20 57 6F 72

6C 64 DB DC DB DC DB DD DB DD D1 21 C0" which includes some KISS special

characters, AraMiS PROLOGO and "Hello World!" information. Figure 5.7 shows

what the communication subsystem receives, which can demonstrate that amateur

radios are able to transmit data to the UHF communication subsystem effectively.
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Figure 5.5 amateur radio reception

Figure 5.6 amateur radio transmission

Test results of this experiment shows that the UHF communication subsystem is

able to communication with amateur radios with quite a good performance. Both the

hardware and the software are well developed.



6-Conclusion

59

Chapter 6
Conclusion

In this final project, a fully amateur radio compatible UHF communication subsystem

is well developed. And its design exploits small size, low power and COTS

components which are both relatively cheap and power efficient. In addition, the

programmable low power micro-controller implements the functionality of a real

TNC through its software which largely reduces the size and weight of the

communication subsystem. This communication subsystem is very suitable for

nanosatellite application.

Thanks to the narrowband capability of the CC1020, the subsystem can

communicate with the amateur radio YAESU FT-847 with a quite good performance.

And the required data rate is 9600 bps which is pretty high for narrowband operation.

Fortunately, we got a satisfactory result at last.

The only problem left is radiation effect to the communication subsystem. A test

under a radiation environment should be done to ensure the reliability in the future

work.

Through this practice, the graduation candidate has improved basic practical

engineering skills, grasped the process of PCB realization and been familiar with

software programming and debugging in the C language. What's more, the ability to

use theoretical knowledge to instruct practice is highly enhanced.
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Appendix A Source Codes

main.h

#ifndef MAIN_H
#define MAIN_H
//#define FOSC 8000000 //use 8MHz oscillator
#define FOSC 4000000 //use 4MHz oscillator
#define TX_CMD 'T'
#define RX_CMD 'r'
#define PORTANTE_CMD 'p'
#define STATUS_CMD 's'
#define ECO_CMD e'
#define CONFIG_CMD 'c'
#define ON 1
#define OFF 0
#define ACK 'A'
#define NACK_WRONG_COMMAND 'n'
#define NACK_WRONG_CRC 'N'
#endif

main.c

#include <msp430.h>
#include "main.h"
#include "uart.h"
#include "ax25.h"
#include "cc1020.h"
#include "SPI.h"
#include "timer.h"

#define VECT_SIZE 260
signed char option;
unsigned char i;
unsigned char dim;
unsigned char vect[ VECT_SIZE ];
unsigned char test[ VECT_SIZE ];
unsigned char crc;
char tmp,tmp1;

void main ()
{

short volatile semaforo;



61

int i;
WDTCTL = WDTPW +WDTHOLD; // Stop watchdog timer
BCSCTL1 &= ~XT2OFF; // XT2on

do
{

IFG1 &= ~OFIFG; // Clear OSCFault flag bit
for (i = 0xFF; i > 0; i--); // Time for flag to set

}
while ((IFG1 & OFIFG)); // OSCFault flag still set?
BCSCTL2 |= SELM_2 + SELS; // MCLK = SMCLK = XT2 (safe)
UART_Init();
CC1020_Init();
CC1020_SetupPD();
_BIS_SR(GIE);
printUART("RESET\n\r");

while (1)
{

printUART("menu\n\r");
crc = UART_ReceivePacket(vect);
if (crc != 0)
{

switch (vect[0])
{
case PORTANTE_CMD:

printUART("PORTANTE\n\r");
SPI_Init();
CC1020_Config_Carrier();
CC1020_WakeUpToTX(LO_DC | PA_BOOST | DIV_BUFF_CURRENT_3);
CC1020_SetupTX(LO_DC | PA_BOOST | DIV_BUFF_CURRENT_3,

POWER_10_DBM);
semaforo = 5000;
TIMER_SetupTimer_ms(&semaforo);
while (semaforo)

SPI_SendByte(0xFF);
printUART("carrier\n\r");
SPI_Disable();
CC1020_SetupPD();
break;

case TX_CMD:
printUART("TX\n\r");
SPI_Init();//USART1 in SPI mode
CC1020_Config_Tx();
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CC1020_WakeUpToTX(LO_DC|PA_BOOST| DIV_BUFF_CURRENT_3);
CC1020_SetupTX(LO_DC | PA_BOOST | DIV_BUFF_CURRENT_3,

POWER_10_DBM);
AX25_SendPacket(vect+2,vect[1]);
SPI_Disable();
CC1020_SetupPD();

break;
case RX_CMD:

/*
//config port 1
P1SEL = 0x00;
P1DIR = 0xFF;
P1OUT = 0x00;
*/
printUART("RX\n\r");
SPI_Init();
CC1020_Config_Rx();
CC1020_WakeUpToRX(LO_DC | PA_BOOST | DIV_BUFF_CURRENT_3);
CC1020_SetUpToRX(LO_DC | PA_BOOST | DIV_BUFF_CURRENT_3,

0x00);
SPI_Disable(); //disable USART module and its SPI mode
unsigned int rec_bytes = AX25_ReceivePacket(&(test[2]));
if ( rec_bytes != 0 )
{

test[0]='R';
test[1]=rec_bytes;
uart_SendPacket(test);
printUART("\n\r");
CC1020_SetupPD();

}
break;

default:
printUART("NO\n\r");

}
}
else
{

printUART("NO CRC\n\r");
}

}
}

ax25.h
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#ifndef APRS_H
#define APRS_H

#define PPPINITFCS 0xffff /* Initial FCS value */
#define INITFCS() fcs.u=PPPINITFCS
#define CPLFCS() fcs.u ^=0xffff

#define TX_DELAY 80
#define FLAG 0x7E
#define MAX_AX25_ONES 5
#define MAX_PACKET_SIZE 255
#define MIN_FLAG_PREAMBLE 20
#define MIN_PACKET_LENGTH 17

void AX25_SendPacket(unsigned char * packet, unsigned int packet_len);
unsigned int AX25_ReceivePacket(unsigned char *data);
char RxByte(void);
#endif

ax25.c

#include "ax25.h"
#include "uart.h"
#include "SPI.h"
#include "CC1020.h"
#include "timer.h"

int totalbytes;
char ONEScount = 0;
char lastBit = 0;
char nextBit;
char isFlag;
unsigned int total_byte;
unsigned char preamble = 0x00;
#define INTSCRAMBLER
//look-up table used in Byte-wise CRC caculation
const unsigned short fcstab[256] = {

0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
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0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78

};
#define PROLOGO_LEN 16
const char prologo[PROLOGO_LEN] = {

'A' << 1, 'L' << 1, 'L' << 1, ' ' << 1, ' ' << 1, ' ' << 1, 0xE0,
'A' << 1, 'R' << 1, 'A' << 1, 'M' << 1, 'I' << 1, 'S' << 1, 0x61,
0x03, 0xF0

};
unsigned char out;
#ifdef INTSCRAMBLER
unsigned short scrambled1, scrambled2;
#else
unsigned char scrambled1, scrambled2, scrambled3;
#endif
union
{

struct
{

unsigned char crc2; //byte piu' significativo
unsigned char crc1; //byte meno significativo
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}b;
unsigned short u;

}fcs;

void pppfcs(unsigned char *cp, int len)
{

while (len--)
fcs.u = (fcs.u >> 8) ^ fcstab[(fcs.u ^ *cp++) & 0xFF];

}

void AX25_ComputeFCS(unsigned char * packet, int packet_len)
{

INITFCS();
pppfcs(packet, packet_len);
CPLFCS();

}

void AX25_SendByte(unsigned char byte, int flag)
{

char i;
unsigned int tmp;
unsigned char tx;
static unsigned char ones_cnt;
/* for every bit in byte */
for (i=0; i<8; i++)
{

/* extract LSB and shift */
tmp = byte & 0x01;
byte >>= 1;
if (tmp)

ones_cnt ++;
else {

ones_cnt = 0;
out = ~out;

}
#ifdef INTSCRAMBLER

tx = (out ^ (scrambled1 >> 11) ^ (scrambled2)) & 0x1;
scrambled2 = (scrambled1 >> 15);
scrambled1 = (scrambled1 << 1) | tx;

#else
tx = (out ^ (scrambled2 >> 3) ^ (scrambled3)) & 0x1;
scrambled3=(((signed char)scrambled2) < 0) ? 1 : 0;
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scrambled2<<=1;
scrambled2+=((signed char)scrambled1)<0? 1:0;
scrambled1 = (scrambled1 << 1) | tx;

#endif
SPI_SendBit(tx);
/* if sent bit is 1 increment ones counter */
/* if we have reached max number
* of ones allowed by AX.25 proto */
if (ones_cnt >= MAX_AX25_ONES)
{

// ... and we reset ones counter
ones_cnt = 0;
// ... we send a stuffing 0 bit...
out = ~out;

#ifdef INTSCRAMBLER
tx = (out ^ (scrambled1 >> 11) ^ (scrambled2)) & 0x1;
scrambled2 = (scrambled1 >> 15);
scrambled1 = (scrambled1 << 1) | tx;

#else
tx = (out ^ (scrambled2 >> 3) ^ (scrambled3)) & 0x1;
scrambled3=((signed char)scrambled2)<0? 1:0;
scrambled2<<=1;
scrambled2+=((signed char)scrambled1)<0? 1:0;
scrambled1 = (scrambled1 << 1) | tx;

#endif
// send it
SPI_SendBit(tx);

}
if(flag)

ones_cnt=0;
}

}

void AX25_SendPacket(unsigned char * packet, unsigned int packet_len)
{

int i;
scrambled1 = 0;
scrambled2 = 0;

#ifndef INTSCRAMBLER
scrambled3 = 0;

#endif
out = 0;
INITFCS();
pppfcs( (unsigned char *)prologo, PROLOGO_LEN);
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pppfcs( packet, packet_len);
CPLFCS();
SPI_ResetBit();
/* prologo transmission */
for (i=0; i<TX_DELAY; i++)

AX25_SendByte(FLAG, 1);
/* send prologo */
for (i=0; i<PROLOGO_LEN; i++)

AX25_SendByte (prologo[i], 0);
/* send packet */
for (i=0; i<packet_len; i++)

AX25_SendByte (packet[i], 0);
/* now we send 15:8 bits MSB first */
AX25_SendByte(fcs.b.crc2, 0);
/* and now 7:0 MSB first */
AX25_SendByte(fcs.b.crc1, 0);
for (i=0; i<2; i++)

AX25_SendByte(FLAG, 1); /* ones count =-3 removes bit stuffing from Flag
TX */

AX25_SendByte(0x00, 1); //wait for the end of transmission (one more byte,
to ensure reception)

}

unsigned int AX25_ReceivePacket(unsigned char *data)
{

int flag_counter = 0;
char byte = 0x00;
char DIN;
short volatile semaforo;
semaforo = 5000;
TIMER_SetupTimer_ms(&semaforo);
do
{

scrambled1 = 0;
scrambled2 = 0;
byte = 0;
do
{

ONEScount = 0;
lastBit = 0;
totalbytes = 0;
// Check for flag ------------------------------------------------------------------
while ( (byte != FLAG) && semaforo ) // Check for flag
{
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byte = byte >> 1; // shift byte 1 bit to the right inserting a 0 as MSB
while( (P5IN & DCLK) == 0 ); // wait for CC1020 clock to rise and then
//P1OUT = 0x01;
DIN = ( (P5IN & DIO) != 0 ); // sample nextBit from CC1020 DIO
nextBit = (DIN ^ (scrambled1 >> 11) ^ (scrambled2)) & 0x1;
scrambled2 = (scrambled1 >> 15);
scrambled1 = (scrambled1 << 1) | DIN;
if ( nextBit == lastBit ) // if no change, then bit is a 1 using NRZI
{

byte = byte | 0x80;// insert a 1 as the MSB }
else // otherwise, bit is a 0 using NRZI
{

byte &= 0x7f; // insert a 0 as the MSB
}
lastBit = nextBit;
// change the value of lastBit for next NRZI comparison
//P1OUT = 0x00; // one bit descrambing needs 10 us
while( (P5IN & DCLK) != 0 ); // wait for next clock cycle

}
// End flag check -----------------------------------------------------------------------
byte = 0x00; // reset byte so it is no longer 0x7e
totalbytes = 0;
flag_counter = 1;
byte = RxByte();
while ( byte == FLAG )
{

byte = RxByte();
flag_counter++;

}
}while ((flag_counter < MIN_FLAG_PREAMBLE) && semaforo);

INITFCS(); //initial FCS value

while (( byte != FLAG ) && (totalbytes < MAX_PACKET_SIZE) && semaforo )
{

data[totalbytes] = byte;
totalbytes++;
//P1OUT = 0x01;
fcs.u = (fcs.u >> 8) ^ fcstab[(fcs.u ^ data[totalbytes-1]) & 0xFF];
if ( (fcs.b.crc2 == (data[totalbytes-2]^0xFF)) && (fcs.b.crc1 ==

(data[totalbytes-1]^0xFF)) )
return totalbytes-2;

//P1OUT = 0x00; // one byte CRC caculation needs 5us when
FOSC = 8 MHz
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byte = RxByte();
}

} while ( (totalbytes < MIN_PACKET_LENGTH) && semaforo);
/*
AX25_ComputeFCS(data, totalbytes); //receiver caculates CRC
if ( (fcs.b.crc2 == data[totalbytes-2]) && (fcs.b.crc1 == data[totalbytes-1]) )
// if ( (fcs.b.crc2 == (data[totalbytes-2]^0xFF)) && (fcs.b.crc1 ==

(data[totalbytes-1]^0xFF)) )
return totalbytes-2;

else
return 0;
*/
return 0;

} // End void RxPacket(void)

char RxByte(void)
{

char byte = 0x00;
char DIN;
for ( int len = 0; len < 8; len++ ) // for all 8 bits
{

byte = byte >> 1; // shift the byte over to the right
inserting a 0 for MSB

while( (P5IN & DCLK) == 0 ); // wait for CC1020 clock to rise and then
DIN = ( (P5IN & DIO) != 0 ); // sample nextBit from CC1020 DIO
nextBit = (DIN ^ (scrambled1 >> 11) ^ (scrambled2)) & 0x1;
scrambled2 = (scrambled1 >> 15);
scrambled1 = (scrambled1 << 1) | DIN;
if ( nextBit != lastBit )
{

byte &= 0x7f; // zero out MSB
ONEScount = 0; // reset ONEScount

}
else if ( nextBit == lastBit ) // then no change so one in NRZI
{

byte = byte | 0x80; // MSB when shifting right
ONEScount = ONEScount + 1;

}
lastBit = nextBit;
while( (P5IN & DCLK) != 0 ); // wait for next clock cycle

//----------------------------------------------------------------------------------------
// if there have been 5 ones and the next bit is a zero (change in bit stream)
// then remove the bitstuffed zero.
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if ( ONEScount >= 5 )
{

//still need to right shift byte---lv
byte = byte >> 1;
// Check the next bit to see if it is a bitstuffed zero; if it is not then it
// is probably the flag
len = len + 1;
while( (P5IN & DCLK) == 0 ); // wait for CC1020 clock to rise and

then
//for (int j = 0; j < 10; j++) asm("nop;");
DIN = ( (P5IN & DIO) != 0 ); // sample nextBit from CC1020 DIO
nextBit = (DIN ^ (scrambled1 >> 11) ^ (scrambled2)) & 0x1;
scrambled2 = (scrambled1 >> 15);
scrambled1 = (scrambled1 << 1) | DIN;
if (nextBit != lastBit) // then zero needs to be skipped
{

lastBit = nextBit; // fix lastBit for NRZI
ONEScount = 0; // reset ONEScount
len--;
byte = byte << 1; //shift back, zero skipped---lv
while( (P5IN & DCLK) != 0 ); // wait for next clock cycle

}
else // otherwise, flag byte has been

encountered
{

while( (P5IN & DCLK) != 0 ); // wait for next clock cycle
ONEScount = 0; // Reset ones since we're assuming a flag

has been received
len = len + 1;
while( (P5IN & DCLK) == 0 ); // wait for CC1020 clock to rise and then
DIN = ( (P5IN & DIO) != 0 ); // sample nextBit from CC1020 DIO
nextBit = (DIN ^ (scrambled1 >> 11) ^ (scrambled2)) & 0x1;
scrambled2 = (scrambled1 >> 15);
scrambled1 = (scrambled1 << 1) | DIN;
lastBit = nextBit;
while( (P5IN & DCLK) != 0 ); // wait for next clock cycle
return 0x7e; // If we have 6 ones then it is either the flag
// or an error. Either way we trick TxPacket into
// thinking it is an end flag by setting it as 0x7e &

}
}

}
return byte;

}
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SPI.h

#ifndef SPI_H
#define SPI_H
#define DIO BIT2
#define DCLK BIT3
#define LOCK_BIT BIT1
void SPI_Init(void);
void SPI_Disable(void);
void SPI_SendByte (unsigned char data);
unsigned char SPI_ReceiveByte (void);
void SPI_ResetBit (void);
void SPI_SendBit (unsigned char data);
#endif

SPI.c

#include "main.h"
#include "uart.h"
#include "SPI.h"
#include <msp430x14x.h>

unsigned char SPI_tmp_value;
signed char SPI_tmp_index;

void SPI_Init(void)
{

P5SEL |= DIO | DCLK | LOCK_BIT; // P5.1,2,3 SPI option select
U1CTL = CHAR + SYNC + SWRST; // 8-bit, SPI, Slave
//U1TCTL = STC; // Polarity, SMCLK, 3-wire
U1TCTL = 0x82; //UCLK delayed one half

circle--lv
U1BR0 = 0x02; // SPICLK = SMCLK/2
U1BR1 = 0x02;
U1MCTL = 0x00; //no modulation---lv
ME2 |= USPIE1; // Module enable
U1CTL &= ~SWRST; // SPI enable SWRST = 0x01

}

void SPI_Disable(void)
{

P5SEL &= ~(DIO | DCLK | LOCK_BIT); // P5.1,2,3 I/O function is
selected
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P5DIR &= ~(DIO | DCLK | LOCK_BIT); //set SPI pin as input
ME2 &= ~USPIE1; // Module disable
U1CTL |= SWRST; // SPI disable, software reset

enable, usart logic held in reset state.
}

// Function Transmits Character from RXTXData Buffer
void SPI_SendByte (unsigned char data)
{

while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?
TXBUF1 = data;

}

// Function Receive Character from RXTXData Buffer
unsigned char SPI_ReceiveByte ( void )
{

unsigned char data;
while (!(IFG2 & URXIFG1)); // USART1 RX buffer ready?
data = RXBUF1;
return data;

}

void SPI_ResetBit (void)
{

SPI_tmp_value = 0;
SPI_tmp_index = 7;

}

// Function Transmits Character from RXTXData Buffer
void SPI_SendBit (unsigned char data)
{

SPI_tmp_value += (data & 1) << SPI_tmp_index;
SPI_tmp_index--;
if (SPI_tmp_index < 0)
{

//UART_SendByte(SPI_tmp_value);
while (!(IFG2 & UTXIFG1)); // USART1 TX buffer ready?
TXBUF1 = SPI_tmp_value;
SPI_tmp_index = 7;
SPI_tmp_value = 0;

}
}
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uart.h

#ifndef UART_H
#define UART_H
#include <msp430x14x.h>
#define DATARATE 9600
#define RXD 32 // RXD on P3.5
#define TXD 16 // TXD on P3.4
#define Bitime_5 ((int)((float)FOSC/(1.91*DATARATE)))
// ~ 0.5 bit length + small adjustment
#define Bitime ((int)(((float)(FOSC))/DATARATE))
// 8.6 us bit length ~ 115942 baud

void UART_SendByte (unsigned char data);
unsigned char UART_ReceiveByte (void);
void UART_Init(void);
void printUART (unsigned char *message);
unsigned char CRC( unsigned char *pDato, unsigned short dim);
unsigned char UART_ReceivePacket(unsigned char *pDato);
unsigned char uart_SendPacket(unsigned char *pDato);
#endif

uart.c

#include <msp430.h>
#include "main.h"
#include "uart.h"
#include "SPI.h"

unsigned int RXTXData;
unsigned char BitCnt;
unsigned short uart_i;
unsigned char uart_crc;
unsigned char uart_crc1;
unsigned char uart_crc2;
unsigned char CRC( unsigned char *pDato, unsigned short dim)
{

uart_crc = 0;
for ( uart_i=0; uart_i<dim ; uart_i++ )

uart_crc += pDato[uart_i];
return uart_crc;

}

void printUART (unsigned char *message)
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{
int i;
for (i=0; message[i]!=0; i++) UART_SendByte(message[i]);

}

void UART_Init(void)
{

P3SEL |= 0x30; // P3.4,5 = USART0
TXD/RXD

ME1 |= UTXE0 + URXE0; // Enabled USART0
TXD/RXD

UCTL0 |= CHAR; // 8-bit character
UTCTL0 |= SSEL1 + SSEL0 + URXSE; // UCLK = SMCLK, start edge detect
UBR00 = (unsigned char)(FOSC/9600); // 9600 bps
UBR10 = (unsigned char)((FOSC/9600) >> 8);// 9600 bps
UMCTL0 = 0x00; // no modulation
UCTL0 &= ~SWRST; // Initialize USART state machine

}

// Function Transmits Character from RXTXData Buffer
void UART_SendByte (unsigned char data)
{

while (!(IFG1 & UTXIFG0)); // USART0 TX buffer ready?
TXBUF0 = data;

}

// Function Transmits Character from RXTXData Buffer
unsigned char UART_ReceiveByte ( void )
{

unsigned char data;
while (!(IFG1 & URXIFG0)); // USART0 RX buffer ready?
data = RXBUF0;
return data;

}

unsigned char UART_ReceivePacket(unsigned char *pDato)
{

pDato[0] = UART_ReceiveByte();
pDato[1] = UART_ReceiveByte();

for ( uart_i = 2 ; uart_i < ((short)pDato[1]) + 2 ; uart_i++ )
pDato[uart_i] = UART_ReceiveByte();

//*dim = pDato[1];
pDato[uart_i] = UART_ReceiveByte();
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uart_crc2 = CRC(pDato, ((short)(pDato[1])) + 2 );
if (uart_crc2 == pDato[uart_i])

return 1;
else

return 0;
}

unsigned char uart_SendPacket(unsigned char *pDato)
{

for ( uart_i = 0 ; uart_i < pDato[1] + 2 ; uart_i++ )
UART_SendByte(pDato[uart_i]);

uart_crc = CRC(pDato, pDato[1] + 2);
UART_SendByte(uart_crc);
return uart_i;

}

timer.h

#ifndef TIMER_H
#define TIMER_H
void TIMER_SetupTimer_ms(short volatile *semaforo);
void TIMER_Wait_ms(short volatile semaforo);
void TIMER_Wait_us(short volatile semaforo);
#endif

timer.c

#include <msp430x14x.h>
#include "timer.h"
#include "uart.h"
#include "main.h"
short volatile *contatore;

void TIMER_SetupTimer_ms(short volatile *semaforo)
{

contatore = semaforo;
TACTL = 0; //stop the timer
TAR = 0; //reset timer
TACCR0 = (short)(FOSC/1000); // 1 ms at 4 MhZ
TACTL = TASSEL1 | MC_1 | TAIE; //start!
TACCTL0 = CCIE; //enable interrupt

}

void TIMER_Wait_ms(short volatile semaforo)
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{
contatore = &semaforo;
TACTL = 0; //stop the timer
TAR = 0; //reset timer
TACCR0 = (short)(FOSC/1000); // 1 us at 4 MhZ
TACTL = TASSEL1 | MC_1 | TAIE; //start!
TACCTL0 = CCIE; //enable interrupt
while(semaforo);

}

void TIMER_Wait_us(short volatile semaforo)
{

contatore = &semaforo;
TACTL = 0; //stop the timer
TAR = 0; //reset timer
TACCR0 = (short)(FOSC/1000000); // 1 us at 4 MhZ
TACTL = TASSEL1 | MC_1 | TAIE; //start!
TACCTL0 = CCIE; //enable interrupt
while(semaforo);

}

// Timer A0 interrupt service routine
#pragma vector=TIMERA0_VECTOR
__interrupt void Timer_A (void)
{

TACTL &= ~TAIFG; //reset interrupt flag
(*contatore)--;
if ((*contatore) == 0)
{

TACCTL0 = 0;
TACTL = 0;

}
}
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