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List of parameters  

 

Is The matrix of the inertia tensor of satellite 

Iw Inertia momentum of Reaction wheels 

XI, YI, ZI Earth Center Inertial coordinate frame (ECI) 

XO, YO, ZO Orbital coordinate frame 

XB, YB, ZB Body-Fixed coordinate frame 

E Eccentricity 

A Semi-major axis 

RA  apogee/ periapsis   

RP perigee/ apoapsis 

i Inclination 

☊ or Ω Longitude of the ascending node 

Ω Argument of periapsis 

ν True anomaly  

ω0 the orbital rotation frequency 

G the gravitational constant 

Me the Mass of the earth 

R the distance from the center of the earth 

RE the Earth radius 

H the distance of the satellite from the earth 

m the magnetic dipole strength 

φ  the rotation about the x body axis 

θ the rotation about the y body axis       Euler angles 

ψ the rotation about the z body axis 

q  Quaternion 

q0  scalar part of the quaternion 

q=(q1, q2, q3) vector part of the quaternion 

C Rotation matrix 

T External torques applied to the satellite 

H total angular momentum of the satellite 

ωbi the angular velocity of the body-fixed reference with 

respect to the inertial frame 

Tc Control torque generated by the controller 

https://en.wikipedia.org/wiki/Eccentricity_(orbit)
https://en.wikipedia.org/wiki/Semimajor_axis
https://en.wikipedia.org/wiki/Inclination
https://en.wikipedia.org/wiki/Longitude_of_the_ascending_node
https://en.wikipedia.org/wiki/Argument_of_periapsis
https://en.wikipedia.org/wiki/True_anomaly
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Td External disturbance torque 

hw angular momentum of the wheel 

D wheel orientation matrix 

Tw Control torque generated by reaction wheel 

qd
 desired quaternion 
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This work has been done by Sevil M. Sadigh under supervision of Professor Leonardo 

Reyneri at the Polytechnic University of Turin
1
, Italy. Sevil M. Sadigh is PhD student from Iran 

and she is doing her PhD thesis, at the moment. A part of her thesis is about satellite attitude 

control. She has worked on this part of her PhD thesis at the Department of Electronics and 

Telecommunications, as a visiting research scholar for a period of six months, from May 5
th

 to 

Nov 5
th

 2017. 

The works done in this period is described in this text as follows. In section 1, coordinate 

frames such as inertia, body, and orbit are described to determine the satellite attitude. Some 

types of orbital classifications like as centric classifications, altitude classifications for geocentric 

orbits, eccentricity classifications, and inclination classifications are described in section 2. Also, 

some necessary information like as orbital elements, orbital period and earth magnetic field are 

explained. In section 3, satellite attitude and the types of the rotation are described. Also, how to 

convert them to each other are explained. Then satellite kinematic and dynamic equations are 

described in section 4. Attitude actuators, their characteristics, advantages and disadvantages and 

their operations are explained in section 5. Attitude control is described in section 6. Attitude 

control approach used in this work is SMC
2
. SMC method is explained its advantages and 

disadvantages is described then the controller is designed for satellite attitude control with 

magnetorquer and reaction wheel actuators, in this section. In section 7, the proposed attitude 

control is simulated for the nanosatellites with several combinations of the actuators. At first, a 

sample attribute motion for tracking has been described. Then, attitude dynamic and kinematic of 

the satellite has been explained. The numerical model for the attitude control has been described 

in the next section. Finally, the performed simulations are explained. In the final section, the 

conclusion and future works are described. 

                                                 
1
 Politecnico di Torino 

2
 Sliding Mode Control 

https://en.wikipedia.org/wiki/List_of_orbits#Centric_classifications
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1. Common reference frames 

In this section, conventional coordinate frames such as inertia, body, and orbit are 

described to determine the satellite attitude. 

1-1. Earth-Centered Inertial Frame (ECI) 

ECI coordinate frames have their origins at the center of mass of the Earth. The ECI 

coordinate system does not rotate with the rotation of the earth. The x-y plane coincides with the 

Earth’s equatorial plane. X-axis is permanently fixed and corresponds to the vernal equinox. Z-

axis lies at a 90 angle to the equatorial plane and extends through the North Pole. Y-axis is also 

obtained using the right hand rule. It is used to determine satellite attitude [1].  

 
Figure ‎1-1: Earth-Centered Inertial Frame [2] 

1-2. Sat-Centered Inertial Frame (SCI) 

The origin of SCI coordinate frame is located on the orbit. Its axes are parallel with the 

axes of ECI. It moves with the satellite.  

 
Figure ‎1-2: Sat-Centered Inertial Frame (SCI) [2] 
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Where C.O.G. is a point of a satellite exactly remains on the orbit and exactly follows the 

rules of gravity. 

1-3. Orbital Frame   

The origin of the orbital coordinate frame is located at the center of the mass of the 

satellite. Z-axis is toward the center of the earth. Y-axis is orthogonal to the satellite's orbit. X-

axis is obtained by using the right hand rule.  

 
Figure ‎1-3: orbital frame [2] 

1-4. Body-Fixed Frame 

The origin of the body's coordinates is located at the center of the satellite and rotated 

through it. This frame sticks to the body of the satellite. The axes are chosen arbitrarily, but 

usually Z-axis is heading direction for telescope, Y-axis is antenna principal direction and it is 

orthogonal to Z-axis and X-axis is obtained by using the right hand rule.  

 
Figure ‎1-4: Body-Fixed Frame [2] 
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2. Satellite orbits 

There are several types of orbital classifications like as centric classifications, altitude 

classifications for geocentric orbits, eccentricity classifications, inclination classifications and 

etc. in this section, some classifications are described. It is obvious that it may never be able to 

satisfy particular standards for completeness. 

2-1. Centric classifications 

This classification is based on orbit center [3].  

 Heliocentric orbit: An orbit around the Sun. In the Solar System, all planets, comets, and 

asteroids are in such orbits, as are many artificial satellites and pieces of space debris. Moons 

by contrast are not in a heliocentric orbit but rather orbit their parent object.  

 Geocentric orbit: An orbit around the planet Earth, such as that of the Moon or of artificial 

satellites.  

 Areocentric orbit: An orbit around the planet Mars, such as that of its moons or artificial 

satellites.  

 Lunar orbit: An orbit around the Earth's moon.  

 Hermocentric orbit: An orbit around the planet Mercury.  

 Aphrodiocentric orbit: An orbit around the planet Venus.  

 Jovicentric orbit: An orbit around the planet Jupiter.  

 Kronocentric orbit: An orbit around the planet Saturn.  

 Oranocentric orbit: An orbit around the planet Uranus. 

2-2. Orbital elements 

Orbital elements are the parameters that define location of orbits in space [4]. There are 

many different ways to mathematically describe the same orbit, but certain schemes, each 

consisting of a set of six parameters, are commonly used in astronomy and orbital mechanics [5]. 

A real orbit (and its elements) changes over time due to gravitational perturbations by other 

objects and the effects of relativity. A Keplerian orbit is merely an idealized, mathematical 

approximation at a particular time. There are six parameters to define the location in space of a 

body moving in any Keplerian orbit. These parameters are known as the classical orbit 

parameters.  

The main two elements that define the shape and size of the ellipse: 

 Eccentricity (e): shape of the ellipse, describing how much it is elongated compared to a 

circle.  It is defined as 

R R

R +R

A P

A P

e


  (‎2-1) 

https://en.wikipedia.org/wiki/List_of_orbits#Centric_classifications
https://en.wikipedia.org/wiki/Heliocentric_orbit
https://en.wikipedia.org/wiki/Sun
https://en.wikipedia.org/wiki/Solar_System
https://en.wikipedia.org/wiki/Planet
https://en.wikipedia.org/wiki/Comet
https://en.wikipedia.org/wiki/Asteroid
https://en.wikipedia.org/wiki/Space_debris
https://en.wikipedia.org/wiki/Moons#Moons_of_the_Solar_system
https://en.wikipedia.org/wiki/Heliocentric_orbit
https://en.wikipedia.org/wiki/Geocentric_orbit
https://en.wikipedia.org/wiki/Earth
https://en.wikipedia.org/wiki/Moon
https://en.wikipedia.org/wiki/Artificial_satellite
https://en.wikipedia.org/wiki/Artificial_satellite
https://en.wikipedia.org/wiki/Areocentric_orbit
https://en.wikipedia.org/wiki/Mars
https://en.wikipedia.org/wiki/Mars_moons
https://en.wikipedia.org/wiki/Artificial_satellite
https://en.wikipedia.org/wiki/Artificial_satellite
https://en.wikipedia.org/wiki/Lunar_orbit
https://en.wikipedia.org/wiki/Moon
https://en.wikipedia.org/wiki/Mercury_(planet)
https://en.wikipedia.org/wiki/Venus
https://en.wikipedia.org/wiki/Jupiter
https://en.wikipedia.org/wiki/Saturn
https://en.wikipedia.org/wiki/Uranus
https://en.wikipedia.org/wiki/Astronomy
https://en.wikipedia.org/wiki/Orbital_mechanics
https://en.wikipedia.org/wiki/Perturbation_(astronomy)
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/Eccentricity_(orbit)


4 

 

Where RA is apogee/ periapsis and RP is perigee/ apoapsis.  

 Semi-major axis (a): the sum of the periapsis and apoapsis distances divided by two. For 

circular orbits, the semimajor axis is the distance between the centers of the bodies, not 

the distance of the bodies from the center of mass. For paraboles or hyperboles, this is 

infinite. It is defined as 

R R

2

A Pa


  (‎2-2) 

These parameters are shown in Figure ‎2-1.  

 

Figure ‎2-1: Eccentricity and semi-major axis [2] 

Two elements define the orientation of the orbital plane in which the ellipse is embedded: 

 Inclination (i): vertical tilt of the ellipse with respect to the reference plane, measured at the 

ascending node (where the orbit passes upward through the reference plane, the green angle i 

in Figure ‎2-2).  

 Longitude of the ascending node (☊ or Ω): horizontally orients the ascending node of the 

ellipse (where the orbit passes upward through the reference plane) with respect to the 

reference frame's vernal point (the green angle Ω in Figure ‎2-2). 

And finally: 

 Argument of periapsis (ω): defines the orientation of the ellipse in the orbital plane, as an 

angle measured from the ascending node to the periapsis (the closest point the satellite object 

comes to the primary object around which it orbits, the blue angle ω in Figure ‎2-2). 

 True anomaly (ν, θ, or f) at epoch (M0): defines the position of the orbiting body along the 

ellipse at a specific time (the "epoch"). 

https://en.wikipedia.org/wiki/Semimajor_axis
https://en.wikipedia.org/wiki/Apsis
https://en.wikipedia.org/wiki/Orbital_plane_(astronomy)
https://en.wikipedia.org/wiki/Inclination
https://en.wikipedia.org/wiki/Ascending_node
https://en.wikipedia.org/wiki/Longitude_of_the_ascending_node
https://en.wikipedia.org/wiki/Ascending_node
https://en.wikipedia.org/wiki/Vernal_point
https://en.wikipedia.org/wiki/Argument_of_periapsis
https://en.wikipedia.org/wiki/True_anomaly
https://en.wikipedia.org/wiki/Epoch_(astronomy)
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Figure ‎2-2: Keplerian elements [5] 

2-3. Eccentricity classifications 

There are two types of orbits: closed (periodic) orbits, and open (escape) orbits. Circular 

and elliptical orbits are closed. Parabolic and hyperbolic orbits are open. Radial orbits can be 

either open or closed. This classification is based on eccentricity [6, 7]:   

 Circular orbit: An orbit that has an eccentricity of 0 and whose path traces a circle. 

 Elliptic orbit: An orbit with an eccentricity greater than 0 and less than 1 whose orbit traces 

the path of an ellipse.  

 Parabolic orbit: An orbit with the eccentricity equal to 1. Such an orbit also has a velocity 

equal to the escape velocity and therefore will escape the gravitational pull of the planet. If 

the speed of a parabolic orbit is increased it will become a hyperbolic orbit.  

 Hyperbolic orbit: An orbit with the eccentricity greater than 1. Such an orbit also has a 

velocity in excess of the escape velocity and as such, will escape the gravitational pull of the 

planet and continue to travel infinitely until it is acted upon by another body with sufficient 

gravitational force. 

 Radial orbit: An orbit with zero angular momentum and eccentricity equal to 1. The two 

objects move directly towards or away from each other in a straight-line.  

 Decaying orbit: A decaying orbit is one with a minimum distance between the two objects 

that decreases over time due to factors like atmospheric resistance. Often used to dispose of 

dying artificial satellites. 

2-4. Altitude classifications for geocentric orbits 

This classification is based on orbit altitude from the earth [6, 7].  

 Low Earth orbit (LEO): geocentric orbits with altitudes from 160 to 2,000 km.  

https://en.wikipedia.org/wiki/Circular_orbit
https://en.wikipedia.org/wiki/Orbital_eccentricity
https://en.wikipedia.org/wiki/Circle
https://en.wikipedia.org/wiki/Elliptic_orbit
https://en.wikipedia.org/wiki/Orbital_eccentricity
https://en.wikipedia.org/wiki/Ellipse
https://en.wikipedia.org/wiki/Parabolic_orbit
https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/Escape_velocity
https://en.wikipedia.org/wiki/Planet
https://en.wikipedia.org/wiki/Hyperbolic_orbit
https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/Escape_velocity
https://en.wikipedia.org/wiki/Planet
https://en.wikipedia.org/wiki/Infinitely
https://en.wikipedia.org/wiki/Radial_orbit
https://en.wikipedia.org/wiki/Angular_momentum
https://en.wikipedia.org/wiki/Decaying_orbit
https://en.wikipedia.org/wiki/Low_Earth_orbit
https://en.wikipedia.org/wiki/Geocentric_orbit
https://en.wikipedia.org/wiki/Km
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 Medium Earth orbit (MEO): geocentric orbits ranging in altitude from 2,000 km to just 

below geosynchronous orbit at 35,786 kilometers.  

 Both geosynchronous orbit (GSO) and geostationary orbit (GEO) are orbits around Earth 

matching Earth's sidereal rotation period. All geosynchronous and geostationary orbits have a 

semi-major axis of 42,164 km. This works out to an altitude of 35,786 km. All geostationary 

orbits are also geosynchronous, but not all geosynchronous orbits are geostationary. A 

geostationary orbit stays exactly above the equator, whereas a geosynchronous orbit may 

swing north and south to cover more of the Earth's surface. Both complete one full orbit of 

Earth per sidereal day (relative to the stars, not the Sun).  

 High Earth orbit: geocentric orbits above the altitude of geosynchronous orbit 35,786 km 

2-5. Inclination classifications 

This classification is based on inclination orbit angle [7, 8].  

 Inclined orbit: An orbit whose inclination in reference to the equatorial plane is not zero.  

 Non-inclined orbit: An orbit whose inclination is equal to zero with respect to some plane of 

reference.  

2-6. Orbital period  

In this work, the orbital period is the time a satellite takes to complete one orbit around the 

earth. The orbital rotation frequency (ω0) is 

0 3

.

R
  eG M

 
(‎2-3) 

Where G is gravitational constant, Me is the Mass of earth and R is the distance from center of 

the earth (RE + h). RE is the Earth radius and h is the distance of the satellite from the earth [9]. 

2-7. Magnetic field of earth 

The Earth's magnetic field is predominantly that of a magnetic dipole such as that produced 

by a sphere of uniform magnetization or a current loop [9]. Its intensity is proportional to 3
m

R
, 

where R is the distance from the center of the earth and m is the magnetic dipole strength. Thus, 

the strength of the magnetic field decreases strongly with the altitude of the satellite [4]. 

A simplified model of the earth's magnetic field, with respect to the orbital coordinate 

frame is given as (see Figure ‎2-2) 

https://en.wikipedia.org/wiki/Medium_Earth_orbit
https://en.wikipedia.org/wiki/Geocentric_orbit
https://en.wikipedia.org/wiki/Km
https://en.wikipedia.org/wiki/Geosynchronous_orbit
https://en.wikipedia.org/wiki/Geosynchronous_orbit
https://en.wikipedia.org/wiki/Geostationary_orbit
https://en.wikipedia.org/wiki/Sidereal_rotation
https://en.wikipedia.org/wiki/Semi-major_axis
https://en.wikipedia.org/wiki/High_Earth_orbit
https://en.wikipedia.org/wiki/Geocentric_orbit
https://en.wikipedia.org/wiki/Geosynchronous_orbit
https://en.wikipedia.org/wiki/Km
https://en.wikipedia.org/wiki/Inclined_orbit
https://en.wikipedia.org/wiki/Inclination
https://en.wikipedia.org/wiki/Equatorial_plane
https://en.wikipedia.org/wiki/Non-inclined_orbit
https://en.wikipedia.org/wiki/Inclination
https://en.wikipedia.org/wiki/Plane_of_reference
https://en.wikipedia.org/wiki/Plane_of_reference
https://en.wikipedia.org/wiki/Orbit
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0

3

0

cos( )sin( )

cos( )

2cos( )sin( )

xo

yo

zo

B t i
m

B i
R

B t i

 

 

   
   


   
       

 (‎2-4) 

Where α = (ω + υ), R is the distance from the center of the earth and m is the magnetic dipole 

strength.  

3. Satellite Attitude 

Satellite attitude is defined as the rotation from satellite centered inertial frame to Body-

Fixed frame. The rotations are defined mathematically as 

1. Euler angles 

2. Axis + angle 

3. Rotation matrix 

4. Quaternion 

3-1. Euler angles 

The Euler angle rotation is defined as successive angular rotations about the three 

orthogonal frame axes [4]. Any orientation can be achieved by composing three elemental 

rotations, i.e. rotations about the axes of a coordinate system. Euler angles can be defined by 

three of these rotations [2]. 

It is common to define the Euler roll angle (φ) as a rotation about the x body axis, the pitch 

angle (θ) about the y body axis, and the yaw angle (ψ) about the z body axis. 

There are twelve possible sequences of rotation axes, divided in two groups: 

 Proper Euler angles (z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y) 

 Tait–Bryan angles (x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z) 

Tait–Bryan angles are also called yaw, pitch, and roll. Sometimes, both kinds of 

sequences are called "Euler angles". In that case, the sequences of the first group are called 

proper or classic Euler angles. (In this work, z-y-x is used) 

3-2. Axis + angle 

axis + angle is a single rotation by an angle θa about a vector ea that runs through the fixed 

point. The vector itself does not perform rotations, but is used to construct transformations on 

vectors that correspond to rotations. The rotation occurs in the sense prescribed by the right-hand 

rule. The rotation axis is sometimes called the Euler axis. 

https://en.wikipedia.org/wiki/Elemental_rotation
https://en.wikipedia.org/wiki/Elemental_rotation
https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Right-hand_rule
https://en.wikipedia.org/wiki/Right-hand_rule
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Figure ‎3-1: Axis + angle or Euler axis 

3-3. Rotation matrix 

A rotation matrix is a matrix that is used to perform a rotation in Euclidean space. In this 

case, orthogonal axes can be expressed as a matrix so that ,  det( ) 1TC C I C  . It means that a 

rotation matrix is an orthonormal matrix. 

According to Figure ‎3-2, a rotation matrix is defined as 

x x x

y y y

z z z

u v w

C u v w

u v w

 
 


 
  

 (‎3-1) 

Where ux, uy, uz are the components of the unit vector u along the three axes of the reference 

orthogonal system (e.g. satellite centered inertial). In a similar way, v and w have components 

vectors v and w along the same reference axes [4]. 

 

Figure ‎3-2: the orientation of the three axes U, V, W in the reference frame X, Y, Z 

 

https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Rotation_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_space
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3-4. Quaternion 

Quaternion is used for representing orientations and rotations of objects in three 

dimensions. Compared to Euler angle it avoids the problem of singularity. Compared to rotation 

matrix it is more compact.  

The quaternion is defined as  

0 1 2 3 0
     q i j kq q q q q                       q  (‎3-2) 

Where q0 is a scalar, q is defined as a vector part of the quaternion.  

A rotation through an angle of θa around the axis defined by a unit vector ea can be 

represented as [10] 

cos
2

sin
2

sin
2

sin
2









 
 
 
 
 

  
 
 
 
 
 

q
x

y

z

a

a
a

a
a

a
a

e

                                                                        

e

e  

 
(‎3-3) 

It is clear that
3

2

0

1i

i

q


 . 

A quaternion rotation can be converted into a rotation matrix as [11] 

2 2 2 2

0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2

1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2

1 3 0 2 2 3 0 1 0 1 2 3

2( ) 2( )

2( ) 2( )

2( ) 2( )

q q q q q q q q q q q q

C q q q q q q q q q q q q

q q q q q q q q q q q q

     
 

      
      

 (‎3-4) 

3-5. Euler Angles to Quaternion conversion 

For converting Euler angles to quaternion, it is assumed z-y-x sequence. It means that first; 

the satellite rotates about z-axis then y-axis and finally rotates about x-axis. It can be represented 

as 

cos( ) cos( ) cos( )
2 2 2

0 0
sin( )

0 2
sin( )

02
sin( )

0 02

  







    
    
    
    

     
    
    
         

q  
(‎3-5) 

After doing simple calculations, eq. (‎3-5) can be written as 

https://en.wikipedia.org/wiki/Orientation_(geometry)
https://en.wikipedia.org/wiki/Rotation
https://en.wikipedia.org/wiki/Euler_angles
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0
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2

3

(cos  cos  cos ) (sin  sin  sin )
2 2 2 2 2 2

(sin  cos  cos ) (cos  sin  sin )
2 2 2 2 2 2

 

(cos  sin  cos ) (sin  cos  sin )
2 2 2 2 2 2

(cos  cos  sin ) (sin  sin  cos )
2 2 2 2 2 2

q

q

q

q

     

     

     

     

 
 

  
  
      
  
  
 

 
 

                         (‎3-6) 

It is clear that other rotation sequences use different conventions [11]. 

3-6. Quaternion to Euler angles conversion 

Converting quaternion to Euler angles can be obtained by the following equation [12] 

0 1 2 3

2 2

1 2

0 2 3 1

0 3 1 2

2 2

2 3

2(q q q q )
atan( )

1 2(q q )

a sin(2(q q q q ))

2(q q q q )
atan( )

1 2(q q )







 
     

    
   
     

   

 (‎3-7) 

Note, however, that the atan and asin functions implemented in computer languages only 

produce results between −π/2 and π/2, and for three rotations between −π/2 and π/2 one does not 

obtain all possible orientations. To generate all the orientations, one needs to replace the atan 

functions in computer code by atan2.  

2 2

0 1 2 3 1 2

0 2 3 1

2 2

0 3 1 2 2 3

atan2(2(q q q q ) ,  (1 2(q q )))

a sin(2(q q q q ))

atan2(2(q q q q ) ,  (1 2(q q )))







    
  

   
        

 (‎3-8) 

4. Satellite Kinematics and Dynamics 

Dynamics and kinematics of a satellite are nonlinear models from Euler’s moment 

equations. Attitude dynamic is the deferential equation describing how the angular velocities of 

the satellite change with the applied torques to the satellite. Attitude kinematic is the deferential 

equation describing how the attitude of the satellite changes with the angular velocities of the 

satellite.  

4-1. Attitude dynamics 

Attitude dynamics equation of satellite is obtained by Euler’s moment equation [4].  

https://en.wikipedia.org/wiki/Arctan
https://en.wikipedia.org/wiki/Arcsin
https://en.wikipedia.org/wiki/Right_angle
https://en.wikipedia.org/wiki/Atan2
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bi

d
 

dt

 
H

T H  (‎4-1) 

Where T is the total external torques applied to the satellite, H is total angular momentum of the 

satellite, ωbi the angular velocity of the body-fixed reference with respect to the inertial frame 

and ω
×
 denotes the skew symmetric matrix operator 

z y

z x

y x

bi bi

bi bi

bi bi

0

0

0

 

 

 



 
 

  
 
  

  
(‎4-2) 

For a rigid body, H is obtained as 

bi 
s

H I   (‎4-3) 

Where Is is the matrix of the inertia tensor of satellite. Therefore, Eq. (‎4-1) can be represented as 

bi

bi bi

d
 

dt

  
c d s s

T T I I


   (‎4-4) 

Where Td is the external disturbance torque and Tc is the control torque generated by controller. 

Eq.(‎4-4) can be written as 

1 1 1bi

bi bi

d
 

dt

      
s s s c s d

I I I T I T


   (‎4-5) 

4-2. Attitude kinematics 

The kinematic equations of motion are a set of first-order differential equations specifying 

the time evolution of the attitude parameters (Euler angles, quaternion, and rotation matrix). 

These equations contain the instantaneous angular velocity vector [9]. In this work, quaternion 

parameterization is considered.  

Let the quaternion q  represent the orientation of the rigid body with respect to the 

reference system at time t (  0 1 2 3q
T

q q q q ), and q " represent the orientation with respect 

to the reference system at time (t+∆t). Then q ' specifies the orientation at time (t+∆t) relative to 

the position that it occupied at time t: 

cos
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 
 
 
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 
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 
 
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 
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a
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a
a

a
a

e

                                      

e
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(‎4-6) 
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Where eax, eay, eaz are the elements of the rotation axis unit vector at time t and ∆θa is the rotation 

angle in time (∆t). Therefore  

q " = A( q ') q  (‎4-7) 

Where q "= q (t+∆t), q = q (t) and A( q ') is defined as 

z y x

z x y

y x z

1 2 3

a a a

a a a
a a

a a a

a a a

e e e

e e e
A ' cos sin

2 2 e e e

e e

0

0
( ) I

0

e 0

 

  
  

  
   

  
  

 

 

   

q  (‎4-8) 

Where I is a unit matrix 4×4. Eq.(‎4-8) could be converted to a differential equation. In this case, 

∆t is infinitesimal and
a bi t    . For small angle approximations 

a a

bi

1
cos 1,  sin  t

2 2 2

 


 
    (‎4-9) 

and 

1
(t t) [I  t] (t)

2
    q q  (‎4-10) 

Where Ω is the skew symmetric matrix of the angular velocity vector (ωbi). Then  

(t t) (t) 1
 (t)

t 2

 
 



q q
q  (‎4-11) 

If ∆t → 0, then 

d 1
(t)  (t)

dt 2
 q q  (‎4-12) 

5. Attitude Actuators 

5-1. Magnetorquer 

These actuators are used to generate a controllable magnetic moment for attitude control. 

The magnetic moment is generated when an electrical current is passed through its coil. It is 

given by 

. . MM I N A  (‎5-1) 

Where N is the number of coils, A is the cross-sectional area that the coils encompass, and IM is 

the input current of the magnetorquer. In this work, it is assumed that N = 200, A = 49E-4.  



13 

 

Interaction between the magnetic moment and the earth's magnetic field produces a 

mechanical torque to control the satellite. This torque is shown as [4] 

MT = M×B  (‎5-2) 

Where M is the bipolar magnetic produced in the satellite, B is the Earth's magnetic field 

intensity with respect to the body coordinates.  

According to Eq.(‎5-2) 

1) TM is zero when B is parallel to M ( MB M T 0  ).  

2) TM is the maximum achievable when B is perpendicular to M 

( MB M T : max  ).  

A sample of this actuator is shown in Figure ‎5-1.  

 

Figure ‎5-1: A sample of magnetorquer [13] 

Advantages of this actuator are as follows [14, 15] 

 Simplicity 

 Reliability 

 Lightweight 

 Low Volume  

 Low Power Consumption 

 Simple Operation 

Disadvantages of this actuator are as follows [14, 15] 

 Low Level of Torque 

 Dependence on Earth's Magnetic Field Strength 

 No Torque along Earth's Magnetic Field 

 Difficult beyond LEO 
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5-2. Reaction Wheel 

Reaction Wheel (RW) is one of the most common momentum exchange devices used for 

attitude control [4]. When an electrical current is applied to RW, the torque of this actuator is 

generated as 

w M wT K I  (‎5-3) 

This actuator has its own angular momentum. 

w w w w biI I h Dω  (‎5-4) 

Where hw is angular momentum of the wheel, Iw is the inertia momentum of reaction 

wheel, D is the wheel orientation matrix that shows which wheels are mounted on which axis. 

The torque of each wheel on the body of the satellite along the fixed-body coordinate axis is 

expressed by 
wh that is equal to the negative torque of this wheel on the satellite body.  

wd

dt
 

h
T  (‎5-5) 

Therefore 

w

w w w bi

d
I I D

dt
    

h
T =  (‎5-6) 

Eq. (‎5-6) can be rewritten as follows 

w w w w biI T I D     (‎5-7) 

Also, attitude dynamics equation of satellite with reaction wheel actuators is rewritten as [16] 

1 1 1bi

bi bi

d
 

dt

      
s s s c s d

I I I T I T


   (‎5-8) 

( -D ) ( D ) D  w ws s       I I I I dwTwbi bi bi
 (‎5-9) 

 

Figure ‎5-2: a sample of reaction wheel [17] 
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Where d is the external disturbance torque and Tw is the control torque generated by reaction 

wheel.  

A sample of this actuator is shown in Figure ‎5-2.  

Advantages of this actuator, in comparison with magnetorquer, are as follows [4] 

 High Level of Torque 

 High Accuracy of Attitude Tracking 

 Independence on Earth's Magnetic Field Strength 

 Minimum Parasitic Torque Disturbances 

6. Attitude Control  

The attitude of a satellite is its orientation in the body fixed coordinate frame with respect 

to a frame reference.  

Satellite attitude control is controlling the orientation in the given direction. It requires 

actuators to apply the torques needed to re-orient the satellite to a given attitude [15].  

The various algorithms are used to command the actuators, such as robust, optimal linear, 

nonlinear control and etc. 

In this work, Sliding Mode Control method is utilized that is a nonlinear control.  

6-1. Sliding Mode Control 

If the tasks of a control system involve large range and/or high speed motions, nonlinear 

effects will be significant in the dynamics and nonlinear control may be necessary to achieve the 

desired performance. In modeling most systems due to non-modeling dynamics and possible 

nonlinear effects in the linearization of system equations, and also disturbance and noise, there 

may be uncertainties. To control these systems, SMC
1
 theory can be used. It is one of the robust 

and nonlinear control methods for uncertain systems [18]. 

SMC design provides a systematic approach to the problem of maintaining stability and 

performance in the face of modeling imprecision.  

The main concepts and notations of SMC and the associated basic controller designs are 

explained in the following. 

Consider the following dynamic system [18] 

(n)x (t) f (x) g(x)u(t)   (‎6-1) 

Where u(t) is control signal, x(t) is state variable, f(x) and g(x) are nonlinear functions, they may 

also have an uncertain part with upper bound that is known continues function. The control 

                                                 
1
 sliding mode control 
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problem is to get the state vector (n 1)x x x    x  to track a specific time-varying state 

(n 1)

d d dx x x    d
x  in the presence of model imprecision on f(x) and g(x). Suppose a 

designed control law constraints the motion of the system to the following sliding surface 

(S(x,t)=0) 

n 1
d

s( , t)
dt





 
  
 

x x  
(‎6-2) 

Where λ is a positive constant and x  is 

d x x x  (‎6-3) 

As mentioned, the purpose of control is to stabilize the sliding surface and converge it to 

zero. For this purpose, the Lyapunov stability theory is used. So, the Lyapunov function 

candidate is selected as follow. 

21
v S

2
  (‎6-4) 

Where v is a positive define function. According to the theory of the stability of Lyapunov, if the 

derivative of a function is negative define function ( v 0 ), then the function will be asymptotic 

stability. But in SMC theory to guarantee finite time convergence of sliding variable, the sliding 

condition should be satisfied.  

v S(t)S(t) S(t)    (‎6-5) 

Where η is a positive constant. The time duration of convergence is obtained by integrating 

sliding condition inequality (‎6-5) as following. 

rt0

S(0) 0

S(t)
 dS  dt

S(t)
    (‎6-6) 

After doing the math operations, 

r

S(0)
t


  (‎6-7) 

Where tr can be changed by changing η. By substituting eq. (‎6-2) into eq. (‎6-5),  

(n)
nd

S S(t)
dt

 
 

    
 

x
x  (‎6-8) 

By substituting eq. (‎6-1) and eq. (‎6-3) into eq.(‎6-8), the following eq. is obtained 

 (n) n

d dS f (x) g(x)u(t) ( ) S(t)       x x x  (‎6-9) 

The control signal u(t) should be selected so that the inequality (‎6-9) is satisfied. The signal 

control consists of a reaching phase and a sliding phase. In reaching phase, the trajectories start 
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off the manifold S = 0 move toward it and reach it in finite time, followed by a sliding phase 

during which the motion is confined to the manifold S = 0 [16]. These phases are illustrated in 

Figure ‎6-1 [18].  

 
Figure ‎6-1: Graphical interpretation of equations (2) and (5), (n=2) [18] 

As mentioned, the control signal should be satisfied sliding condition. It is selected as 

following 

equ u k sgn(S)   (‎6-10) 

Where sgn(S) = 0 for S = 0, k = μ+β, β is the upper bound of uncertain part of f(x), ueq is 

designed to remove certain items in eq. (‎6-9). In the following equation, it should be noted that 

only certain part of f(x) is considered. 

 1 (n)

eq d du g (x) f (x) x ( )     x x  (‎6-11) 

For more information, please refer to [18, 19]. In the following, advantages and disadvantages of 

SMC are explained.  

Advantages: 

Some advantages of SMC are [18, 20]: 

 disturbance rejection 

 insensitivity to parameter variations 

 maintaining stability in the presence of uncertainty 

 Order reduction 

 decoupling design procedures, 

Disadvantages: 

Main disadvantage of SMC is the phenomenon of chattering. It is due to the sign function 

( sgn(S) ) and consists of sudden and rapid variation of the control signal [21]. Chattering is 

undesirable in practice, since it involves high control activity and further may excite high-
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frequency dynamics neglected in the course of modeling (such as unmodeled structural modes, 

neglected time-delays, and so on) [18]. The phenomenon chattering is shown in Figure ‎6-2.  

 

Figure ‎6-2: Chattering as a result of imperfect control switching modified [18] 

Sliding control has been successfully applied to robot manipulators, underwater and 

aerospace vehicles, vehicle and motion control, process control, automotive transmissions and 

engines, high-performance electric motors, generators and power systems [18, 20].  

In the following section, satellite attitude control by using SMC is described.  

6-2. SMC design for satellite attitude control 

In this work, the control objectives are to achieve an attitude tracking in the presence of 

external disturbance. For this, SMC method is utilized.  

To design SMC, at first, the error signal is defined. The error signal is  q qq de , q  is the 

quaternion and qd is the desired quaternion. Sliding surface is defined as 

                  q qs e ke  (‎6-12) 

To make the sliding variable asymptotically converge to zero, the control rule must satisfy 

the sliding mode condition ( 0Ts s ). Deviating (‎6-12) and substituting (‎4-12) is given  

1
( ) ( )

2
         q q q q qq q d q q ds e ke ke ke  

(‎6-13) 

Where  q  is rewritten as 

31 2

1

20 3

2

13 0

3

02 1

 



 



  
  

       
     

q bi

qq q

qq q
Q

qq q

qq q

 
(‎6-14) 
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Expressionq , is given as 

2 2 21 1 1
( ) ( )

2 2 4
         q q q

x y zbi bi bi  (‎6-15) 

By substituting (‎4-4) into (‎6-14), (‎6-13) is obtained as follows 

x y z

2 2 2 1 1

q d bi bi bi s bi bi s c

1 1 1
s ke ( ) Q Q T

4 2 2

           sq I I Iq  (‎6-16) 

The control signal should be designed in such a way to satisfy the sliding condition. In 

SMC method, the control signal is chosen as  eq ru u u , where ueq is used to remove the effect 

of the definite expression from the first derivative of the sliding variable and ur is used to 

eliminate the effect of the indeterminate. These expressions are shown in (‎6-17) and (‎6-18) 

respectively. 

21 2 2 11 1
2 [ ( ) ] 

4 2

       s sI q I Iq
x y zeq q d bi bi bi s bi biu kQ e Q      (‎6-17) 

12 sgn( ) 
s

Iru KQ s  (‎6-18) 

Where 3K  is design variable vector.  

6-2-1. Satellite attitude control with magnetorquer actuator 

The control signal is a desired torque applied on the satellite. So, the actuators have to 

generate a magnetic moment that interaction between this magnetic moment and the earth's 

magnetic field produces this desired mechanical torque to control the satellite. Therefore, the 

desired torque generated by controller should be converted to the desired magnetic moment of 

the magnetorquer then the input current of the magnetorquer must be obtained.  

At first, it is assumed that there is one magnetorquer mounted on X-axis. So, eq. (‎5-2) can 

be written as 

0 0

0 0

0 0

magx z y x

magy z x z x

magz y x y x

T b b M

T b b b M

T b b b M

       
      

          
             

 
(‎6-19) 

As mentioned, for a desired torque, to be applied on the satellite, the magnetic moment vector 

must be generated. In this case, Mx can be obtained as 

2 2

1
0x z y c

z y

M b b T
b b

   
 (‎6-20) 

Where bz and by are the magnetic field of the earth in the body frame coordinates with respect to 

inertia frame coordinates.  
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Then, it is assumed that there are two magnetorquers mounted on the X-axis and Z-axis. 

So, eq. (‎5-2) can be written as 

0

0 0

0

magx z y x y z

magy z x z x x z

magz y x z y x

T b b M b M

T b b b M b M

T b b M b M

       
      

           
             

 (‎6-21) 

Therefore, Mx can be obtained as eq. (‎6-20) and Mz can be obtained as 

2 2

1
0z y x c

x y

M b b T
b b

    
 (‎6-22) 

Where bx, by and bz are the magnetic field of the earth in the body frame coordinates with respect 

to inertia frame coordinates.  

In the other example, it is assumed that three magnetorquers mounted on each axis are 

used. In this case, M vector can be obtained as 

T

2

B(b)
M Tc

b
  (‎6-23) 

Where Tc is desired control torque produced by controller, b is the Earth's magnetic field 

intensity with respect to the body coordinates and B(b) matrix is explained by Eq. (‎5-2). The 

inverse of B(b) isn’t used because this matrix is singular. 

Now, the input current of the magnetorquer for generating the desired magnetic moment 

must be obtained as 

.


i

i
M

M
I

N A
 (‎6-24) 

Where Mi is magnetic moment generated by magnetorquer mounted on i axis and IMi is the input 

current of the magnetorquer mounted on i axis.  

6-2-2. Satellite attitude control with reaction wheel actuator 

As mentioned, attitude dynamics equation of satellite with reaction wheel actuators is 

obtained by eq. (‎5-9). Therefore, by substituting (‎5-9) into (‎6-14), (‎6-16) is rewritten as follows 

x y z

2 2 2 1 1 1

q d bi bi bi s bi bi s bi w w s c

1 1 1 1
s ke ( ) Q Q DI Q T

4 2 2 2

                sq Iq I I I  (‎6-25) 

So, ueq is rewritten as following 

2 2 2 1 11 1 1 1
2 [ ( )   ] 

4 2 2
                s sqI q I I I

x y zeq q d bi bi bi s bi bi s bi w wu ke Q Q DIQ  (‎6-26) 
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In this case, ur is the same as eq. (‎6-18). 

7. Simulation examples 

In this section, the proposed attitude control is simulated for the nanosatellites with several 

combinations of the actuators. At first, a sample attribute motion for tracking has been described. 

Then, attitude dynamic and kinematic of the satellite has been explained. The numerical model 

for the attitude control has been described in the next section. Finally, the performed simulations 

are explained.  

7-1. Desired Motion 

The desired angle of the each axis of the satellite can be represented as follows [22] 

1

0 0

t
max

0 f 2 2 1
t t

s

T
(t) f ( t, t , )d d           



       I
 (‎7-1) 

Where 0  is initial angle, Tmax is maximum available torque, Is is the momentum inertia 

element, t0 is initial time, τ1 and τ2 are symbols for integrating variables and f(.) is an 

approximation of the signum function that is given as 

1

1 2
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

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

  
        

 (‎7-2) 

Where 1 2 3,  ,  
2 2

f f
f

t t
t t t t t t t      and tf is a final time.  

As mentioned, quaternion describes the attitude orientation of the satellite in this work. 

Euler angles to quaternion conversion are obtained by eq. (‎3-6). 

7-2. The numerical model of the satellite 

To simplify, the fixed parameters of the systems are written in a “m.file” that can be 

modified at any time. These parameters are defined as 

Is =eye(3)*0.012; %the matrix of the inertia tensor of the satellite 
t_final = 300;         %final time for each desired angles 
Euler_d = [60;45;0];           %final desired angles [deg] - first z, then y, then x 
initial_Euler = [0;0;0]; %initial euler angles [deg] 
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Where Is is the symmetric positive definite moment inertia matrix of the cube satellite, t_final 

is final time, Euler_d is final desired angle vector, initial_Euler is initial euler angle vector. 

7-3. Describing simulation satellite attitude models 

To verify the performance of the proposed controller, numerical simulations are performed. 

At first, the presented equations are used as the models of the satellite in MATLAB. They are 

shown in Figure ‎7-1.  

 
Figure ‎7-1: Attitude Dynamic and Kinematic Models 

Where [q0, q1, q2, q3] are quaternion, [ωbix, ωbiy, ωbiz] are the angular velocities of the body-

fixed reference with respect to the inertial frame, Tc is the control torque produced by the 

actuators and Tdx, Tdy, Tdz are the disturbance torques.  

The satellite's dynamics and kinematics details are shown in Figure ‎7-2 and Figure ‎7-3, 

respectively. 

 
Figure ‎7-2: Satellite Attitude Dynamic  
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Where f(x) is given as  

function y = fcn(wx,wy,wz,Is,Iw,D,Ww) 
 

ww = [0 -wz wy; 
      wz 0 -wx; 
      -wy wx 0]; 
y = - inv(Is) * ww * ((Is * [wx;wy;wz]); 

 
Figure ‎7-3: Satellite Attitude Kinematic  

Where (q0_0, q1_0, q2_0, q3_0) are the initial values of quaternion converted from initial Euler 

angles by eq. (6) and g(x) is given as 

function [dq0,dq] = fcn(q0,q1,q2,q3,wbix,wbiy,wbiz) 
   

q = [q1;q2;q3]; 
skew_symmetric_matrix_qs = [0 -q3 q2; 
                            q3 0 -q1; 
                            -q2 q1 0]; 
dq0 = -0.5*qs'*[wbix;wbiy;wbiz];                         
dq = 0.5*((q0*eye(3))+skew_symmetric_matrix_qs)*[wbix;wbiy;wbiz]; 

7-4. Describing actuator model 

The magnetorquer model is shown in Figure ‎7-4. 

 
Figure ‎7-4: magnetorquer model 



24 

 

Where Ic is the input current of the actuators generated by controller, the saturation block is used 

to limit the input current, B_es is the earth of magnetic field with respect to Body frame 

coordinates that is obtained from the following equation  

1_   _B es C B earth   (‎7-3) 

Where B_earth vector is obtained by eq. (‎2-4) and C is rotation matrix defined as 

2 2 2 2

0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2

1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2

1 3 0 2 2 3 0 1 0 1 2 3

2( ) 2( )

2( ) 2( )

2( ) 2( )

q q q q q q q q q q q q

C q q q q q q q q q q q q

q q q q q q q q q q q q

     
 

      
      

 (‎7-4) 

Also, matrix_B is defined as 

0

_  0

0

z y

z x

y x

b b

matrix B b b

b b

 
 

  
  

 (‎7-5) 

Where bx, by, bz are the elements vector of the earth of magnetic field is obtained by Eq. (‎2-4). 

The magnetorquer parameters are defined as 

N = 200;   %number of coils 
Amag = 49E-4;  %cross-sectional area 

Imax = 0.5;  %maximum current 

Where N is the number of magnetorquer coils, Amag is the cross-sectional area that the coils 

encompass and Imax is the maximum current passing through the coils.  

The reaction wheel model is shown in Figure ‎7-5. 

 
Figure ‎7-5: Reaction Wheel model 
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Where Ix, Iy, Iz are the input current of the actuators generated by controller, the saturation block 

is used to limit the input current, KM is the torque coefficient and Tw = IRW KM where Tw is the 

torque produced by the motor [4].  

Reaction wheel parameters are defined as 

Iw = 50e-6; 
D = [1 0 0; 
     0 1 0; 
     0 0 1];   
KM = 9.5e-3;   %[Nm/A] torque constant   
Imax = 0.5;  %[A] 

Wmax = 40;   %[red/sec] 

Where Iw is the inertia of the reaction wheel, D is the wheel distribution matrix, KM is the torque 

coefficient in the reaction wheel, Imax is the maximum current that could be applied to the 

reaction wheel, Wmax is the maximum angular velocity of the reaction wheel. 

As mentioned, Attitude dynamics equation of satellite by using Reaction Wheel actuator is 

defined by Eq. (‎5-9). It is shown in Figure ‎7-6. 

 
Figure ‎7-6: Modified Attitude Dynamic satellite with Reaction Wheels 

Where f(x) is given as  

function y = fcn(wx,wy,wz,Is,Iw,D,Ww) 
 

ww = [0 -wz wy; 
      wz 0 -wx; 
      -wy wx 0]; 
y = - inv(Is-(D*Iw*D')) * ww * ((Is * [wx;wy;wz]) + (Iw*D*Ww)); 

7-5. Simulations 

In this work, it is assumed that the satellite is located in a circular orbit with following 

characteristics 
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Rearth = 6971E3; 
w0 = 0.0011; 
i = 0; 
Mag_earth = 7.96E15; 
G = 6.674E-11; 

Where Rearth is distance from the center of the earth, Mag_earth is the earth’s magnetic 

constant, i is inclination, w0 is the orbital rotation frequency that is defined as
3

.

Rearth

G Mearth
, G is 

gravitational constant.  

7.5.1. Simulation results by one magnetorquer 

In this section, the performance of proposed controller is presented to the satellite attitude 

control by one magnetorquer mounted on X-axis. The simulation results are shown the following 

figures.  

(a)  (b)  

(c)  

 

 

Figure ‎7-7: (a) desired angle and rotation angle about Y-axis (θ), (b) angular velocity, (c) input control torque 

and torque generated in the satellite 

As shown in Figure ‎7-7, the system rotates 60 degrees around y-axis and it could track the 

desired angle, the angular velocity converges to zero and the torque generated in the satellite is in 

the limitation range.  
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(a)                 (b)    (c) 

Figure ‎7-8: desired angle and rotation angle about X-axis (φ), (b) angular velocity, (c) input control torque and 

torque generated in the satellite 

   
(a)                       (b)           (c) 

Figure ‎7-9: (a) desired angle and rotation angle about Z-axis (ψ), (b) angular velocity, (c) input control torque and 

torque generated in the satellite 

   
(a)                           (b)                 (c) 

Figure ‎7-10: the magnetorquer currents laid on the (a) X-axis, (b) Y-axis and (c) Z-axis 

As shown in Figure ‎7-8 and Figure ‎7-9, angular velocity and rotation angle around X-axis 

and Z-axis are zero and the controller doesn’t generate any torque in X-axis and Z-axis. 

Magnetorquer current laid on the Y-axis and Z-axis are zero because there are no magnetorquers 

on these axes.  

As shown in Figure ‎7-10, the magnetorquer currents laid on the Y-axis and Z-axis are zero 

and the magnetorquer current laid on the Y-axis is in the limitation range and converges to zero. 

In the next simulation, the desired angle is 180 degrees around y-axis. It means that the 

satellite rotates 180 degrees around y-axis. As shown in Figure ‎7-11, the satellite can rotate and 
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track the desired angle, the angular velocity converges to zero and the torque generated in the 

satellite is in the limitation range. 

(a)  (b)  

(c)  

 

Figure ‎7-11: (a) desired angle and rotation angle about Y-axis (θ), (b) angular velocity, (c) input control torque and 

torque generated in the satellite 

   
(a)                 (b)     (c) 

Figure ‎7-12: (a) desired angle and rotation angle about X-axis (φ), (b) angular velocity, (c) input control torque and 

torque generated in the satellite 

As shown in Figure ‎7-12 and Figure ‎7-13, angular velocity and rotation angle around X-

axis and Z-axis are zero and the controller doesn’t generate any torque in X-axis and Z-axis. 

Magnetorquer current laid on the Y-axis and Z-axis are zero because there are no magnetorquers 

on these axes. As shown in Figure ‎7-14, the magnetorquer currents laid on the Y-axis and Z-axis 

are zero and the magnetorquer current laid on the Y-axis is in the limitation range and converges 

to zero. But, the amplitude of the current generated by the controller is large at 150 seconds. At 
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this time, the magnetic field of the earth and the actuator are aligned so no torque is generated. 

For solving this problem, two magnetorquers are used.  

   
(a)                 (b)     (c) 

Figure ‎7-13: (a) desired angle and rotation angle about Z-axis (ψ), (b) angular velocity, (c) input control torque and 

torque generated in the satellite 

 
(a)                           (b)                 (c) 

Figure ‎7-14: the magnetorquer currents laid on the (a) X-axis, (b) Y-axis, (c) Z-axis 

7.5.2. Simulation results by two magnetorquers 

In this section, two magnetorquers laid on the X-axis and Z-axis are used. At a moment, a 

magnetorquer is used that is produced the highest efficiency. As long as the angle between the 

actuator and the magnetic field of the earth is more than 45 degrees, this actuator is used; 

otherwise, another actuator is used to generate the torque.  

As shown in Figure ‎7-15, the system rotates 90 degrees around y-axis and it could track the 

desired angle, the angular velocity converges to zero and the torque generated in the satellite is in 

the limitation range.  

As shown in Figure ‎7-16 and Figure ‎7-17, angular velocity and rotation angle around X-

axis and Z-axis are zero and the controller doesn’t generate any torque in X-axis and Z-axis. 

Magnetorquer current laid on the Y-axis is zero because there is no magnetorquer on this axis.  

As shown in Figure ‎7-18, the magnetorquer current laid on the Y-axis is zero and the 

magnetorquer currents laid on the X-axis and Z-axis are in the limitation range and converges to 

zero. 
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(a)  (b)  

(c)  

 

Figure ‎7-15: (a) desired angle and rotation angle about Y-axis (θ), (b) angular velocity, (c) input control torque and 

torque generated in the satellite 

   

(a)                 (b)     (c) 

Figure ‎7-16: (a) desired angle and rotation angle about X-axis (φ), (b) angular velocity, (c) input control torque and 

torque generated in the satellite 

   
(a)                   (b)       (c) 

Figure ‎7-17: (a) desired angle and rotation angle about Z-axis (ψ), (b) angular velocity, (c) input control torque and 

torque generated in the satellite 
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(a)  (b)  

(c)  

 

Figure ‎7-18: the magnetorquer currents laid on the (a) X-axis, (b) Y-axis, (c) Z-axis 

In the next simulation, the desired angle is 180 degrees around y-axis. It means that the 

satellite rotates 180 degrees around y-axis. As shown in Figure ‎7-19, the satellite can rotate and 

track the desired angle, the angular velocity converges to zero and the torque generated in the 

satellite is in the limitation range. 

(a)  (b)  

(c)  

 

Figure ‎7-19: (a) desired angle and rotation angle about Y-axis (θ), (b) angular velocity, (c) input control torque and 

torque generated in the satellite 
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(a)                 (b)     (c) 

Figure ‎7-20: (a) desired angle and rotation angle about X-axis (φ), (b) angular velocity, (c) input control torque and 

torque generated in the satellite 

  
 (a)                   (b)       (c) 

Figure ‎7-21: (a) desired angle and rotation angle about Z-axis (ψ), (b) angular velocity, (c) input control torque and 

torque generated in the satellite 

(a)  (b)  

(c)  

 

Figure ‎7-22: the magnetorquer currents laid on the (a) X-axis, (b) Y-axis, (c) Z-axis 

As shown in Figure ‎7-20 and Figure ‎7-21, angular velocity and rotation angle around X-

axis and Z-axis are zero and the controller doesn’t generate any torque in X-axis and Z-axis. 
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Magnetorquer current laid on the Y-axis is zero because there is no magnetorquer on this axis. 

As shown in Figure ‎7-22, the magnetorquer current laid on the Y-axis is zero and the 

magnetorquer currents laid on the X-axis and Z-axis are in the limitation range and converge to 

zero. Contrary to the system control with one magnetorquer, in this case the current amplitudes 

of the magnetorquers do not suddenly increase; because, the magnetic field of the earth and the 

actuators are not aligned.  

7.5.3. Simulation results by one Reaction Wheel 

The proposed controller is capable of tracking any desired angles. The desired angles can 

be obtained by (‎7-2) or changed during the simulation. For this situation, manual switch, slider 

gain and constant blocks are used as shown in Figure ‎7-23. 

 

Figure ‎7-23: desired angle 

As shown in Figure ‎7-24, the desired angle can be manually changed. To do this, double 

click on the menu button and use the slider gain block to select the desired angle. Minimum and 

maximum value can be defined manually and with moving the slider, the value of the desired 

angle can be changed.  

 
Figure ‎7-24: Slider Gain  

As shown in Figure ‎7-24, -180, 0, 180 are minimum, current and maximum values, 

respectively. In order to observe the angular changes and the results obtained from them, some 

settings on the scope block and the simulation time should be changed. For example, the 

simulation time should be set to “inf”. For changing some settings on the scope block, it is 

necessary to go to view> configuration properties> Time and change “Time span overrun action” 

to scroll and “Time span” to 1000 or any values preferred.  

In this section, the performance of proposed controller is presented to the satellite attitude 

control by one reaction wheel mounted on Y-axis. In this case, the wheel distribution matrix is 

defined as 
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0 0 0

0 1 0

0 0 0

D

 
 


 
  

 

(‎7-6) 

(a)  (b)  

(c)  (d)  

Figure ‎7-25: (a) desired angle and rotation angle about Y-axis (θ), (b) angular velocity, (c) input control torque and 

reaction wheel torque, (d) reaction wheel momentum 

 (a)  (b)  

(c)              (d)  

Figure ‎7-26: (a) desired angle and rotation angle about X-axis (φ), (b) angular velocity, (c) input control torque and 

reaction wheel torque, (d) reaction wheel momentum 
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(a)  (b)  

(c)  (d)  
Figure ‎7-27: (a) desired angle and rotation angle about Z-axis (ψ), (b) angular velocity, (c) input control torque and 

reaction wheel torque, (d) reaction wheel momentum 

As shown in Figure ‎7-25, the system rotates 90 degrees around y-axis and it could track the 

desired angle, the angular velocity converges to zero, reaction wheel torque and momentum is in 

the limitation range. As shown in Figure ‎7-26 and Figure ‎7-27, angular velocity, reaction wheel 

torque and momentum and rotation angle around x-axis and z-axis are zero and the controller 

doesn’t generate any torque in x-axis and z-axis. 

In the next simulation, desired angle is changed during the simulation. 

 (a)  (b)  

(c)  (d)  

Figure ‎7-28: (a) desired angle and rotation angle about Y-axis (θ), (b) angular velocity, (c) input control torque and 

reaction wheel torque, (d) reaction wheel momentum 
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The simulation results are shown in Figure ‎7-28. It can be seen from results that, the 

proposed controller can generate a control signal so that system can track the desired angle. Also, 

the amplitude of the reaction wheel torque and momentum is in the limitation range.  

7.5.4. Simulation results by three reaction wheels 

In this section, the performance of proposed controller is presented to the satellite attitude 

control by three reaction wheels mounted on each main axis and the satellite can rotate around 

each of the three axes. In this case, the wheel distribution matrix is defined as 

1 0 0

0 1 0

0 0 1

D

 
 


 
  

 

(‎7-7) 

The proposed controller performance is investigated for [60, 45, 90] rotations around z, y, 

x axis, respectively. In this case, the reaction wheel constraints are considered. Simulation results 

are shown in Figure ‎7-29, Figure ‎7-30 and Figure ‎7-31.  

(a)  (b)  

(c)  (d)  
Figure ‎7-29: (a) desired angle and rotation angle about Z-axis (ψ), (b) angular velocity, (c) input control torque and 

reaction wheel torque, (d) reaction wheel momentum 
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(a)  (b)  

(c)  (d)  
  
Figure ‎7-30: (a) desired angle and rotation angle about Y-axis (θ), (b) angular velocity, (c) input control torque and 

reaction wheel torque, (d) reaction wheel momentum 

(a)  (b)  

(c)  (d)  
Figure ‎7-31: (a) desired angle and rotation angle about X-axis (φ), (b) angular velocity, (c) input control torque and 

reaction wheel torque, (d) reaction wheel momentum 

In the next simulation, the desired rotations are chosen [120, -80, 180] degrees about Z, Y 

and X axes, respectively. Rotation time for each axis is chosen 50 seconds.  
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(a)  (b)  

(c)  (d)  

Figure ‎7-32: (a) desired angle and rotation angle about Z-axis (ψ), (b) angular velocity, (c) input control torque and 

reaction wheel torque, (d) reaction wheel momentum 

(a)  (b)  

(c)  (d)  
Figure ‎7-33: (a) desired angle and rotation angle about Y-axis (θ), (b) angular velocity, (c) input control torque and 

reaction wheel torque, (d) reaction wheel momentum 

It can be seen from Figure ‎7-32Figure ‎7-34 (a) that the Euler angles follow the desired 

angles very well. As shown in Figure ‎7-32Figure ‎7-34(b), the angular velocities can converge 
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to zero. It can be seen from Figure ‎7-32Figure ‎7-34 (c, d) that actuator input constraints are 

considered.  

(a)  (b)  

(c)  (d)  
Figure ‎7-34: (a) desired angle and rotation angle about X-axis (φ), (b) angular velocity, (c) input control torque and 

reaction wheel torque, (d) reaction wheel momentum 

7.5.5. Simulation results by one reaction wheel and three magnetorquers 

In this section, the performance of proposed controller is presented to the satellite attitude 

control by three magnetorquers mounted on each main axis and one reaction wheel mounted on 

Y-axis. In this case, the wheel distribution matrix is defined as 

0 0 0

0 1 0

0 0 0

 
 


 
  

D  (‎7-8) 

As it mentioned, three magnetorquers laid on each axis are used. So, M vector can be 

obtained as 

T

2

B(b)
M Tc

b
  (‎7-9) 

Where Tc is desired control torque produced by controller, b is the Earth's magnetic field 

intensity with respect to the body coordinates and B(b) matrix is explained by Eq. (‎5-2). The 

inverse of B(b) isn’t used because this matrix is singular.  
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Desired control torque is obtained from the sum of torques generated by magnetorquers 

and reaction wheel (Tc = Tm+Tw), where Tm is the torque generated by magnetorquer and Tw is 

the torque generated by reaction wheel. Tm can be obtained as 

mT B(b) M  (‎7-10) 

And Tw can be obtained as 

y yw c mT T T   (‎7-11) 

Where Tmy is the torque generated by magnetorquer on Y-axis and Tcy is desired control torque 

on Y-axis produced by controller.  

The proposed controller performance is investigated for [0, 90, 0] rotations around z, y, x 

axis, respectively. As shown in Figure ‎7-35, the system rotates 90 degrees around y-axis and it 

could track the desired angle, the angular velocity converges to zero and the torque generated in 

the satellite is in the limitation range.  

(a)  (b)  

(c)  

 

Figure ‎7-35: (a) desired angle and rotation angle about Y-axis (θ), (b) angular velocity, (c) input control torque and 

torque generated in the satellite 

 
(a)            (b)     (c) 

Figure ‎7-36: (a) desired angle and rotation angle about X-axis (φ), (b) angular velocity, (c) input control torque and 

torque generated in the satellite 
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(a)                   (b)       (c) 

Figure ‎7-37: (a) desired angle and rotation angle about Z-axis (ψ), (b) angular velocity, (c) input control torque and 

torque generated in the satellite 

 
(a)                   (b)       (c) 

Figure ‎7-38: the magnetorquer currents laid on the (a) X-axis, (b) Y-axis, (c) Z-axis 

As shown in ‎7Figure ‎7-36 and Figure ‎7-37 angular velocity and rotation angle around X-

axis and Z-axis are zero and the controller doesn’t generate any torque in X-axis and Z-axis. 

Magnetorquer current laid on the Y-axis is zero because there is no magnetorquer on this axis.  

As shown in Figure ‎7-38, the magnetorquer current laid on the Y-axis is zero and the 

magnetorquer currents laid on the X-axis and Z-axis are in the limitation range and converge to 

zero.  

In the next simulation, the desired rotations are chosen [45, 60, 40] degrees about X, Y and 

Z axes, respectively. Simulation results are shown in Figure ‎7-39 to Figure ‎7-42.  

It can be seen from Figure ‎7-39Figure ‎7-41(a) that the Euler angles converge to the final 

desired angles. As shown in Figure ‎7-39Figure ‎7-41 (b), the angular velocities can converge to 

zero. It can be seen from Figure ‎7-39Figure ‎7-41(c) that actuator input constraints are 

considered; but, the torques generated by the actuators are not equal to the desired control torque.  

As shown in Figure ‎7-42, the current of magnetorquers are in the limitation range and 

converge to zero.  
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 (a) (b)  

 
(c)            (d)                 (e) 

Figure ‎7-39: (a) desired angle and rotation angle about Y-axis (θ), (b) angular velocity, (c) input control torque and 

magnetorquer torque, (d) reaction wheel torque, (e) reaction wheel momentum 

(a)  (b)  

(c)  

 

Figure ‎7-40: (a) desired angle and rotation angle about X-axis (φ), (b) angular velocity, (c) input control torque and 

magnetorquer torque 
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 (a)  (b)  

(c)  

 

 

Figure ‎7-41: (a) desired angle and rotation angle about Z-axis (ψ), (b) angular velocity, (c) input control torque and 

magnetorquer torque 

  
(a)                     (b)               (c) 

Figure ‎7-42: the magnetorquer currents laid on the (a) X-axis, (b) Y-axis, (c) Z-axis 

8. Conclusion and future works 

In this work, attitude control system for nanosatellites with reaction wheel and 

magnetorquer actuators is investigated. The control strategy is based on SMC method. Common 

reference frames, classifications of satellite orbits and orbital elements, magnetic field of earth, 

types of satellite attitude expression, satellite kinematic and dynamic equations, types of attitude 

actuators are reviewed before designing controller. The controllers are designed according to the 

actuator type. Also, actuator input constraints are considered. The simulation results show that 

the controller could track any desired angle rotation well. The angular velocities can converge to 

zero.  
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As part of the future work, the controller can be applied to the satellite located in different 

orbits with several combinations of the actuators. Also, the robustness of the controller can be 

tested in presence of the inertia matrix uncertainties and other uncertainties. The controller can 

be implemented and evaluated on a simulator as a future work. Adaptive Sliding Mode Control 

can be designed as satellite attitude control, simulated and evaluated its performance in presence 

of unexpected disturbances, uncertainties. Also, a SMC approach can be designed for flexible 

satellite as a future work.  
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